14

[

DECODING’

ISECRETS OF

1R

LOA T

' 3

L Automate your IT

Table of Contents

i [d oo [¥ Lot o] o [PPSR TPP PR 16
2.Zagreus as @ Whole SYSTEMciiiiiiii e 18
2.1 ZABIOUS SEIVEN .. e s e e 19
2.1.1 COMMUNICATION .eiiiiiiiiiiiiii e 19

P B o= {1 o I SO T U U T U TTTTO 19
2.1.3 COMPONENTS .eiiiiiiie e e e et e e e et e e e e eaae e e e eaaaan s 20
A kYo LV I\ o T o =T 22
2.2.1 CoMMUNICATION ..eeeiiiiiiiiiiiiiiiic e 22
2.2.2 ID of the Zagreus WOIKETcooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 23
2.2, 3 LOBEING e eeeeeeeieee e 23
2.2.8 STATUSES. ettt ettt e e e et e e et et b e e e e e e e eeanaaaas 24
2.2.5Memory handlingccoocuiiiiiiiiiiee e 24
2.3 Zagreus Worker-Controller.......uuuii et e e e 26
2.3.1 ComMmMUNICATION ..eeeiiiiiiiiiiiiiiiii e 26

B T o T4 {1 oY - S 26
2.3.3 STATUSES...eiiiiiiiiii 27
2.3.4 Starting Zagreus WOTKEISccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e 27
2.3.5 Managing Zagreus WOIKEIS.....ccouieeeeeeieeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e 30
2.3.6 Collecting and sending worker information.........ccceecevvvvveeeeieiiecccnnneee, 30
2.3.7 SUSPENAEA MOUE ... e e 31

P Yo YU L O 11T o} 32
2.4.1 COMMUNICATION .eeiiiiiiiiiiiiiiiii e 32
YA V-4 ¢ =T LY/ (o] 11 (o] (PPN 33
2.5.1 COMMUNICATION ..euiiiiiiiiiiiiiii e 33
2.6 Other Zagreus ClIENTS.... ..o e e e e e e e 34
2.6.1 COMMUNICATION ...euiiiiiiiiiiiiii e 34
2.6.2 Command-line@ toOolscceeiiiiiiiiiiiii 34

2.6.3 Zagreus HTML Application......coooeeeeeiiiiieiiecccccccccccceeecceeecceceee e 34

B Y =T ol U | A 35

2.7.1 SSL CertifiCates ...cuueiiiieiiie e 35
2.7.2 Encrypted passwords, CPaSSWOIdceevviiieeeiiiiieeeeniiieeeeesireeeeesiveeees 38
2.7.3 Users and password POLICY ...ccuvveeiiiiiieeiiiiiee et e e 38

3L INSEAHATION Lo e e 39
3.1 DOWNIOAAING ZAGIEUS ..eeeeeiiiieeeeeiiiiee e eireee e esir e e stre e e s s saae e e e s saaaee e s sabeeeeeenes 40
3.2 Installation 0N WINAOWSccceeiiiiiiiiiiieeciee et 42
3.2.1 Copying the installation filescccovveeeiiiiiiiie, 42
3.2.2 Setting the configuration parameters......cccccccvveeeviiieiiiiiiiieeeeeeeeeeeeeeeee, 42
3.2.3 Setting up Zagreus WindOWS SEIVICESccevvvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 44
3.2.4 Opening ports in the firewall........ccccooiiiiiiiri e, 45
3.2.5 Starting the Zagreus SErVICES.......uuiiiiiiiie et 45
3.2.6 Starting the Zagreus Clientsccuveiiiiiciiiecccee e 45
3.3 INStallation 0N LINUX ...eeeruieiiiieeeiie ettt 47
3.3.1 Creating the target installation folderccccccoovvvvviiineiininin, 47
3.3.2 Unpacking the archive fileooovvveeeieeiieeeeee, 48
3.3.3 Editing the set_environment.shfilecccccovrviriiieiiii, 48
3.3.4 Opening portsin the firewall......ccccccoeeeiiiiiiieeee, 49
3.3.5 Starting and administering Zagreuscccccevevveeiiiiiiiiiiiieeeeee, 49
3.4 Sending the liICeNCE KEY .ccovvviiiiiiiiieieeeeeeee e, 50
3.5 Standalone installation of the client modulescccocveiiiiiiiiniiiniiceee, 51
3.5.1 Copying the installation filesccuvveeeieiiieec e, 51
3.5.2 Setting the JAVA_ HOME environment variable........cccccccevvveveeeeenenennn.n. 52
3.5.3 Starting the Zagreus clientsS......cccccceeeeeeeeeeeeeeeeeeeeeeeeeeee, 52
3.6 TroubleShOOtiNg .cccceveeeeeeeeeeeeeeeeeeeee e 53
3.6.1 Issues independent of the operating system.......cccceeeeeeciiiieeieee e, 53
3.6.2 1SSUES ON WINAOWS .coneiiiiiiiiiiiiiiiiiee et 53
3.6.3 1SSUES ON LINUX .eiiiiiiiiiiiiiiiiiiiee ittt 54
B 0o o | 1 T={V] - | o] o U OUUPPPPRN 55

4.1 Zagreus Server CONfigUrationoooccciiiiiiieeee e e e 56

4.1.1 GENEral PrOPEITIES ..cvvvvveriirrrieeiertrrrtrreeerrrrerrrrrrrrr——————————————————————————————————. 56

4.1.2 Server startup and shutdown Properties.......ccccvvveeevveeveeereeeeerreeeneeennn. 57
4.1.3 SSL PrOPEITIES c.eeveeiiiiiieiieiiteittttttteeteeteteeteeeeeeeeeeeeeeeeeesaassssesesssesasssssnnssnnnnnes 57
4.1.4 MYSQL PrOPEITIOS ..cevieiieiiteieiiettitteteetteeeteereeeeeearereeeeeeenesssaresesessssnsssnssnnnnnes 58
4.1.5 QUEUE GroUP PrOPEITIES ..eeveeeiieiieerrertterttereeeetterereeerereneeererereraserensennsnennnnes 58
4.1.6 Password poliCy Propertiescccueeeevecieeeeiiiiieee e ssieee e e 59
4.1.7 Trigger and watCher Properties.......uevureerrrrrrrereereeeireeerrrrererer——————. 60
4.1.8 Miscellaneous ProPertiesuuuueeeeeeeeeerrreererrrrrrrerrrrsrrerrrrrrs——————————. 60
4.1.9 Server-level execution OPLtiONS.........vvvviviiiiiiiiiiiiieerereirrrrrrerrrer ... 61
4.1.10 Server-level and queue-level variablesvvveevvvviveervireeneiiinreennennn, 61
4.2 Zagreus Worker-Controller configuration........ccccccevviiieeeieciieee i, 63
4.2.1 General ProPerties ... ccceiie et 63
4.2.2 Worker-related propertiescccueeeeeecieeeeiiiiieee e 64
4.3 Zagreus Worker configuration.......cc.eeeeieciieii i 66
4.3.1 Property [IStS...uuuuuiiiiiiiiiiiiiiieeiieieieeeeetrrererrrrsrererrrrrrrrrrrrrra——.—..r.————————————————. 66
4.3.2 Property declaration for specific Worker instances...........ccccvvvvvvvvvvvnnnnns 66
4.3.3 Worker startup pPropertiesueeeeeeeveeeeeerrerreerererererereererrrer.————. 67
4.3.4 CoNNECLION PrOPEITIES. . cciiiieieeiiiee et e e e e e e e e e e et e e e eaaeaeees 68
4.3.5 Miscellaneous ProPerti€suuuuuuurireuerurrrerirrririrerrrerrrerrrrrrer———————. 69
4.3.6 Worker-level execution OptioNSeuvviviirivieireiiieiiriierrereeseeerer... 70
4.3.7 Worker-level variables..........ccooiiiiiiieie e 70
L e T o =1 o LR 72
5. System setup and administration.......ccccceeeeeeieeeeieeeeeee, 74
o0 A I Tl = o ol | o =P 75
5.1.1 Content of @ Zagreus LICENCEccovvveeeeeiieee, 75
5.1.2 Installing and listing @ Zagreus LICENCEccccuvvriieieeee e, 76
5.2 Administrative SCripts....cccoiviiiiiiiiiiiie e, 79
5.2.1 CONNECLIONS ..eeiiiiiiiiieeeeete ettt e e e e e e s 79
5.2.2Time SCheAUIES ... 80

o T Yol 1 o) £ UPP R P 80

5.2 4 Error handlingccooveeiiiieieeeeeee e 81

5.3 Concepts of user and group management.......cccccceeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeee, 82
5.3.1 Users in the Zagreus SYSTeMcccccvevviiiiiiniiieee et 82
5.3.2 Groups in the Zagreus SYStemcouiviiiiriiiiee e 83
5.3.3 0wnership of Zagreus reSOUIMCEScvuuviieeiiirieeeeiireeeesiree e esiaeeeeesaees 84
5.3.4 PasSWOId POLICY ceeoeuriiieiiiiiiee ettt e e e e e s s e e s 84

6. RESOUICESuiiiiiiiiiiiii i 86

6.1 RESOUICE TYPES ..t e et e e e e e e e e e e e e e e e eaaeeeeeeaan 87

oI =T U o=l o] fo] o =] o A [U 90
6.2.1 List of resource propertiescccccveee, 90
6.2.2 Resource properties in the Zagreus Clientcccceeeeeeeeeiiiiiiieeeeee e, 92

6.3 RESOUICE VEISIONING ooieiiiiiiieieieeeeeeeeeeeee et e e 93
6.3.1 Version format......cccueeii i 93
6.3.2 CUIENT VEISION i 93
6.3.3 ReSOUrce ID and VErSiONccceeeiieeeeiieeeieeeeee ettt 94
6.3.4 Versioning in the Zagreus Client........cccccveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 95

6.4 RESOUICE STOTABING .. ieeiiiii e e e et e e e e et e e e e eaae e e eeanan 98
6.4.1 Embedded MySQL databasecccccceeeeveiieiieeeeeeeeeeeeeeeee, 98
6.4.2 Local filesystem in the Zagreus Serverocccovveeeeeeeeeecccciiieeeeeee e 98
6.4.3 Local filesystem in the Zagreus Workerccocveveeeeeeeeciciiiveeeeee e 101

7. QUEUINg and JODS ..o, 104

7.1 J0D PrOPertieS e 106
7.1.1 Caller and caller tyPe ...coeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 108

7.2 J0D lIfECYCIE e, 110

7.3 QUEUE ...ttt e e s 112
7.3.1 QUEUE SrOUPS ..eeevriiiiiiieeeeeeeeiiiiiiiaeeeeeeeetssssisseeseeeeeasssaasseeaeeessssssnnnneses 112
7.3.2 Queue-level variables ..o 113
7.3.3 Priority and priority algorithm........cccccoeiiiiiiii, 113

7.4 HIAden JODS ..o, 115

7.4.1 The job_monitoring execution option........ccccceevvveiiiiiiiiiiiiiiicceeeeeeeeee, 115

7.4.2 The invisible result MeSSagecceevvvvieeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 115

7.5 SKIPPEA JODS .o, 117
7.5.1 Skipped jobs in the Zagreus MoNitorcccccvvveiviiieee e 117
7.5.2 Skipped jobs in the Zagreus Clientccccoecvveeiiiiiieeeiiee e 118
7.5.3 Setting the toleranCecuuivi e 120

7.6 CanCeIlAtioN ...eeiiiieieee e s 122
7.6.1 Manual cancellationc.eiiiiiiiiiiieee 122
7.6.2 Multiple cancellation by job statuses.......ccccccevveveieiiiiieiiiiiiiieeeeeeeeeee, 123
7.6.3 Cancellation by the zs:cancel actionccccccvvvvvvveiiiiiiiiiiiiieeeeeeeee, 124
7.6.4 Zagreus Server startup and shutdown cancellation.........ccccccceeeeeeee. 124
7.6.5 Zagreus Worker automatic restart cancellationccccovvveeeeeeernnnnis 125

TN Yo g o1 £ TSP T P PP P PP P PRPPPUPRRRPRORPRRPPRt 126

8.1 ACHIONS e 127
8.1.1 Action groups and aCtion NAMEcceeeiiiiiiiiiiiiiiieee e 127
8.1.2 Action attributes.......coouiiiieee 127
8.1.3 ACtion CONTENT ..ot 130

8.2 Order of execution, reSUIt fFIOWccuueviiiiiiieieiiee e 134
8.2.1 Ordering NUMDEIScccee e 134
8.2.2 Execution of an @CtioNccceeriiiiiiiiieiieccee e 134
8.2.3 Result of @an actioncoocviiiiiiiiiiiic 135
8.2.4 result-message of the SCriPt......cccvvieeieei e 135
8.2.5 Basic traversal of the actions..........ccocveeiiiiiiiiiiini e 136
8.2.6 Special control flow statements.......ccccceeveeeeeiieieieeee, 137
8.2.7 Parallel threads in the z:foreach action........ccccccccvvvvvveveeieeiiiieeeeeeeeeee, 144
8.2.8 TEMPIALES oo 146
8.2.9 RESUIE FIOW ..ot 148
8.2.10 Result attributescccoviiiiiiiiiii 151

8.3 INCIUAES ... e 154
8.3.1 Including conNNEeCtioNS.......cccevviiiiiiiiiiiieeeeee, 154

8.3.2 Including templates......ccooeviiiiiiiiii e, 155

8.3.3 INCluding SCriPtS.ccciiiiiiiiiiiieeeeeeeeeeeee e, 156

8.4 Error handling ...ccooveeiieiiieeeeeeee e, 158
8.4.1 on-error-next-sibling attributeccoeeeiiiiiiiii 158
8.4.2 on-error-next-child attribute..........cceeeiiiiiiiiii e 159
8.4.3 Z:0N-€ITOr ACION ..t 159
8.4.4 errorMessage and errorTrace variablescccccveeeeeeiieeiiiiiieeeeee e, 161
8.4.5Z:raiSe aCtiON....ccoiiiiiiiiiiiiiiiiii e 162

B.5VAriables ..o 163
8.5.1 z:variable action........coouiiiiiii i 163
8.5.2 Variable SCOPES ..., 164
8.5.3 Monitoring variablesooviviiei i 166
8.5.4 Common attributes that create new variablescccocceiriiiennieennnne 166

8.6 ENGINE @XPreSSIONS ..ceeiiiiiiieieieeeeeeeee et e e e e e e e e e e e e 168
8.6.1 BASIC @XPIreSSIONS c.cceeiieiiieeeeeeeeeeeeeeee et e e e e e e 168
I A O o 1=l - | o] PR 169
8.6.3 Lists, records and tablesvivviveiiiiiiieee e 170
8.6.4 FUNCLION CallS ...eeiiiiiieeeee e 171
8.6.5 Expressions and statements.......ccccvvvveeeiieeieeeeeeee, 171
8.6.6 Data LY POS cevui ittt ettt e e e e 173

I AN Yol T oL Al oY =T o T - PP 177
A o] o X FoT = 71 1TSS PPPRTRN 177
8.7.2Z:10G ACHiON...ccccoiiiiieieeeeeeeeeeee 178
8.7.3 109 attribUte..ccceeeeeeeeeeeeeeee e, 179
8.7.4 Logging levels and loglevel ..., 179
8.7.5 z:logfile aCtion.....ccoevveeeeeeeeeeee e, 182
8.7.6 logfile attribULEeeeieieeeeeee e 182
8.7.7 log-attributes attribute........cccceeeiiiiiiie, 183
8.7.8 log-result-attributes attributecccooeviii, 183

8.8 XML representation ... e 185

1S IR 600]] 1=Vt 1 [0 o L3P 187

9.1 Defining CONNECLIONS ...cccceeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 189

9.1.1 Creating @ cCONNECLION rESOUICEuiiiieiiieeeeeiiiee e eeeece e e e e e e e e e aaaas 190
9.1.2 General connection attributescccovveviiiiiiiei e 192
9.2 USING CONNEBCLIONS...ccciiiiiiiiieieieeeeeeeee e e e e e e e e e e e e e 194
9.2.1 Test conNNection fEATUIeccovviiiiiiiiiiie e 194
9.2.2 Referencing to @ CONNECLIONueviiviiiiiee i 195
9.2.3 Inserting connections t0 @ SCHPLcoiiiiiiiiiiiie e, 196
9.2.4 CloSiNg @ CONNECLION.....ccceeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 198
9.2.5 Opening connections in the Zagreus browsercccccccvvvvvvvvviieeeeeneenen, 199
9.3 SECUIE CONNEBCLIONS. .cciiiiiieieieiee et 206
9.4 ZS CONNECLION i 207
9.5 TiPS AN tHCKS .evvieeiciieiee e 208
9.5.1 Creating standalone connection resouUrces........cccceveeeeeeccivneeeeeeeeeeeeennns 208
9.5.2 USINg SUBTOIAEIS ...evvieeieiiiec et 208
9.5.3 Using meaningful NAmMescoovvveeiiiiiiiiieeeeeeeeeeeee, 208
9.5.4 USING reSOUICe VEISIONING couuuuiieiiiiieieeeiiieeeeeeiieeeeetaneeeeeranneeeseaneeeeeanaanns 208
9.5.5 Keeping connections up-to-dateccccceveeeeeeieiiieieeeeeeeeeee, 209
O T <10 L O 1= o | 210
10.1 Zagreus browser WiNAOWccccccociiiiiiiiiiiiiieieceeeceeseeeeee e e ese e s e e s e e e e e e e e e 212
10.2.1 TOOIDAI it 213
10.1.2 BaSiC NAVIGATION ...ccieeeiiiiiccieee ettt e e e e e e et e e e e e eeeenes 216
10.1.3 Common resource management operationsccccceeeevvvvviiceeeeeeennnnns 218
10.1.4 OPENING MESOUICES...uiieiituieeeeiitaeeertttieeeerttnaeeeertnnaeaeeeanaeeerrsneeesesnnaeaeees 225
10.1.5 Searching fOr rESOUICES ... e e e e e e e e e e e e e e e e 226
10.1.6 Drag-and-drop OPerationsS.....ccccceeeeeeeeereeeeeieieeeeeeeeeeeeeeeee e e e e ee e e ee e e e e 229
10.1.7 Script-specific OpPerations........cccceeeeeecciiiieieee e 230
10.1.8 Connection-specific Operations........ccccvvvveeeeeeeeeeccciirreeeee e 237
10.1.9 Operations for event-type reSOUICESuuveeeeeeeeeeeciirrreeeeeeeeeeeenrnnenes 237
10.1.10 Showing dependent r€SOUICES......ccceeeeeiieeeieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeenns 238

10.1.11 Send coONteXt SUDMENU .couuiiiieeeeeeeeeee ettt et e s 239

10.1.12 Context menu of the server definition nodeccevveueevieiveinenennn.. 239

10.1.13 Context menu of @ USEr NOAE.....ccccueiiiiiiiiiiiic e 241
10.1.14 Context menu of @ Broup NOAEcccevuviieiiiiiiieeieiiee e 242
10.2.15 RECYCIE DNttt 243
10.2 EQITOr @r@a ceeueieeeiiiei ettt ettt ettt e e bt s s e e 244
O T Yol g o o [o | USRI 244
10.2.2 SiIMPle teXE AITOr ..uuniccccccc e 246
10.2.3 Other @diTOrsSeeiiiiiiiiiieeeee e 247
10.3 Extension windows of the Script Editorcccooeeeiiieieieieiiiieeeccecccceeeeeeeee, 248
10.3.1 OULliNE WINAOW ..ot 248
10.3.2 Attributes WINOWc.eeiiiiiiiiiieeiieeeee et 249
10.3.3 Variables / FUNCLIONS WINAOWeeeviiiiiiiiiiiiiieiec e 249
10.3.4 Breakpoints WiNAOWccoccuiiiieiiiiieee e e esrne e e e svaeee s 251
10.3.5 WatCh WINAOWcooiuiiiiiiiieeeeeee ettt 251
O IR |V o] oY1 o] 1 - 253
10.4.1 Active JODS WINAOW.... ... e e e 253
10.4.2 ActiVe 1085 WINAOWuiiiiccccccccce e e 257
10.4.3 Execution engines WiNAOWccceeeieeeiiiiiiiiieieieceeeeeeeeeeeeee e e eeeee e e e e 260
10.4.4 Finished jobS WIiNAOW ... 265
10.4.5 Finished 1085 WINAOW ... 272
10.4.6 Skipped JObS WINAOW ... e 273
10.5 Main MeNU DAroeiiiiiiiii 277
10.5.1 File MENU .ttt 277
10.5.2 EdIt M@NU ..ttt e e enee e 277
10.5.3 WiNdOW MENUeeiiiiiiiiie ettt 278
10.5.4 TOOIS MENU ..ottt ettt ettt et e s st e e neeeeas 279
ORI I o = /oI 4 1 =1 1 280
10.6 Main t0O0IDAr ...eiiiiiiiiiieee e 281
10.6.1 VIBWS....eiiiiieiieeite ettt st s st 281

10.6.2 Open/close the Zagreus browser Windowcccceveeeeeecnveeeeeecnnnenn.. 283

10.6.3 Open/close the Active jobs WINAOW.........ccccovevveeeeeciiveeeceeireeec e 284

10.6.4 Open/close the Active 1085 WINdOWcoeeeeevveeeeeciiieeececireeee e 284
10.6.5 Open/close the Engine status WindOW........cc.ccevvereeiivieeiveeeereeeeneeenns 284
10.6.6 Open a new Finished jobs WindOW........ccccceevviiieiiiniiiiee i, 284
10.6.7 Open a new Finished 1085 WINAOWc.covvvviiiiiiiniiiiee i 285
10.6.8 Open/close the Skipped jobs WiNndOWcceecveercieeeiieesieecieeeee e, 285
10.6.9 Save resource to the SErVer........cccieiiiieeiiiee e 285
10.6.10 Save as... resource to the Serverccccccevieiiie i 285
10.6.11 Save a new version of the resourceccccccceveeeeniieeiiiee e 287
10.6.12 SAVe @Nd FUN FESOUICE ...ccuveieeiieeeieeeeieeeeiteeesiiee s e s e s eeeneeeeas 288
10.6.13 RUN SCIIPT - s 289
10.6.14 RESUMIE ..ttt ettt e e ettt s e e e e e et eebae e e s e eeeeees 289
10.6.15 Step to the Next actionc..eevvieciiiie i 289
10.6.16 STOP AEDUGEING ..cciiiiiiiieiciiee et e e 289
10.6.17 Create NEW FESOUICEcuuviiiiieiiiiiiiiirniteee e 289
O T R Yo ' 1o 1Y] =12 291
10.6.19 Zoom in @and ZOOM OULeeieiiiiiiiiieeeiiee et 292
O O T oY [oY g T3 =] (o = 293
10.7.1 Graph Editor tab ... 293
10.7.2 Download / upload tab.......cceeeereeieiiieeeiieeceeee e 298
10.7.3 CoPY taD e 300
10.7.4 General behaviour tab...........cccccceoviiiiiiiiiiiiici 301
10.7.5 Palette taboooeeee e 301
10.8 KEYDINAINGS. ... e e e e e e e e s 303
- T €= TU R Y/ Fo] o) W] PRt 304
11.1 Main MENU DA .o e e 306
11.2 Sections of the Zagreus MONItOrccccviuvvveeiee e 308
11.2.1 Zagreus Server CONNECLIONScccvvuiuiiiieieeeeeeetiiieee e e e e eeeraee e e e e eeeenns 308
11.2.2 TIMeliN@ @rea......ciiiiiiiiiiiiciiecec e 310

R B S| (<Y = =T TP 319

11.2.4 Execution ENgINeS WINAOWcoiiiiiiiiiiiiiiieicceecccececeeeceee e e 323

12. Other Zagreus ClIENTS. 325
12.1 Command-line tOOIScccueiieiiiiiie e 326
12.1.1 EXeCUtable files ...ccoiiiiiieeeeee e 326
12.1.2 Examples fOr WindOWScc.uuveieiiiiieeiiiiiee et 327
12.1.3 EXamMPIEs fOr LINUX...ocuuieeiiriiiiee it esiieee e ssieee e s e s svae e e s snaeee s 329
12.2 Zagreus HTML appliCationccceeeeiieeeeccccceecccececeeece e e 331
12.2.1 Run script and get info 1abccoeeeeeiiiiieiiieeeeeccceceeeecee e 333
12.2.2J0D iNFO tAD «.eeeei s 334
12.2.3 Fire @Vent 1ab.......cocueeiiiiiiiiiieeeeeeeeee et 335
12.3 TroubleShOOtINGeeviiiiiiiee e e 337
RS T Yol a1 o] =T 1 o] ST PPPPP 338
13,0 LAYOUL .ot e e e e e e e e e e rnaaaas 339
13.0.0 CANVAS ..ttt e et e e e et bbb e e e eaeeens 340
13.1.2 Palette. e s e 340
13.1.3 View Selector tabscccoiiieriieiiee e 341
13,2 ACHIONS ceeiiiiiiiiiieec e 343
13.2.1 VIEW MOAES ..ottt ettt e e snee e 343
13.2.2 BaSiC OPErationscceviiiiiiiieie ettt e e e e e e ar e e e e e e eeaes 347
13.2.3 EdItiNG cuveeenieeiieeie e e 352
13.3 ACTION NI e 359
S T o T ¢ =) o A1 = P UUPPPPR 361
13.4.1 AligNmMENt OPEIratioNSceeeeieeeeeeeccccccc e e e 361
13.4.2 Size OPEratioNS ..ccvvuee e 362
13.5 Additional displaying OPtioNSceeeeeeeiiiiiiiceeecceecce e 365
13.5.1 Outside displaying option for a child action...........cccccvveeeeieiiinnnnneee. 365
13.5.2 Showing SibliNg liNKS ... 366
13.5.3 OPACITY . eeiiiiiiiiiieee e e e e et e e e e e et e r e aaeeeaae 366
13.5.4 Displaying 0t0 €XPreSSIONSceeeereiririiiiiieiieeeeeeeeeeeeeeeeeeeeeseeseeeeeeeeeenns 367

13.5.5 Attribute as child element.. ...t 370

13.6 SPeCial OPEIratioNSuiieiicciccecccceccc e 373

G T ST I T Vo T Y ol o) 373
13.6.2 Set breakpoint ... 374
13.6.3 ENCrypt PASSWOId ..coeeviiiiiiiiiiee ettt 375
13.6.4 PaSte PAth ..cciiiciiiieeccee e 376
13.6.5 Show path in status [IN€cc.eeevviiiiiiiei e, 376
13.7 Configuration OPtIONS e e e 377
14. Debugging in the Zagreus ClHent......ccooo e 378
141 FEATUIES cooiviiiiiiiiirtccce e 379
14.2 Debugging concepts and teIrMScceeeeiiieeieieeceeececeee e 380
14.3 Starting @ debUE SESSION ...cciiviiiiie it e e 382
I B LT o U= X [} o PP UPPRPPRPRN 384
1 |V = T I oo | o - | PRSPPI 384
14.4.2 Debug Editor and the execution workflowcccccovieiiiiiiieeiiiinnennn. 385
14.4.3 Action coNtext MENUccceuiiiiiiiiiiiiiie e 386
14.4.4 Breakpoints WiNAOWccocieiiiiiiiiiiiiicccceececeeee e e e e 387
14.4.5 Watch WINAOWccooiiiiiiiiieeeeeeeee e 388
IR 2T o] = o o [ol Y 390
15. Initiating SCript @XECUTION ...uueii i 391
15.1 OVEIVIEW ...ceiiiiiiiiiiiii ittt aa e 392
15.1.1 Manual @XeCULIONcoociiiiiiiiiiiceccece e 392
15.1.2 Execution by event-type reSOUICESccoveieeeieeeieeeieeeceeeeeeeeeeeeeee e e e e e 393

I RCIAN = C=To UL dTo] W e] o) dTo] o LIPS 395
15.2.1 Declaration [@VelSeeiiiieiiieeeee e 395
15.2.2 Precedence order for resolutioncccceevieeiiiiiiniiee e 396
15.2.3 List of execution OptioNnseeeeeeiiiiiciiiiiiieeee e 397
15.2.4 PrefiXes oo e 400
15.3 Start-Uup Variables e 401
15.3.1 Declaration [eVelsceeiiiiiiiiiiiiieece e 402

15.3.2 Precedence order for reSOIULIONeveeeeeeeeeeeeee et 403

15,33 Pl XS ettt r ettt a s 404

15.3.4 Automatically set start-up variablesccoooeeeeeeieieiiiieiiieeeeeeeeeeeeeeee, 405
15.3.5 List of resolved start-up variablesccccccvvviiiiiiniiiieeiiee e, 408
15.4 SUDSCIIPTIONS woviiiiiieiiciieie et e e s e e e s s ssbaeeeeeans 410
15.4.1 Subscriptions from the perspective of scripts.......cccvvveeiivciiieeeininnennn. 410
15.4.2 Subscriptions from the perspective of event-type resources............. 415
15.5 Execution by event-type reSOUICEScccciieiiiieieeieieeceeeeeeeeee e e eee e e e e e e e e 417
15.5.1 EVeNt SChAUIE.....coiiiiiieeee e 417
15.5.2 TiMe SChedUle......ccoiiiiiiiee e 419
15.5.3 Mail WatCher ... e 420
15.5.4 Database WatCher.........ouiiiiiiiii i 426
15.5.5 FIl@ AriG N weeei ittt e 433
15.5.6 SPECIAl EVENTSvviiiiiiiiie et 435
15.5.7 Administrative tools for event-type resourcesccccceevvcvveeeercennennn. 437
15.6 Manual SCript @XECULIONuueiicecececcccccee e e e 443
15.6.1 Execution in the Zagreus Client......cccoooeeeiieeieieiiccecccececcccceeeeeeeee e 443
15.6.2 Execution with the .sendscripts fil€......ccoooeeeeeeeeeieieeieeeeeeeeeeeeeeeeeeeeeee, 444
15.6.3 Execution from the command-line client........ccccceviiieeiiniiieeenniinen. 446
15.6.4 Execution from the Zagreus HTML Applicationccccceeeeeeeveecnnnnnene. 446
15.6.5 Execution from external systemsccccvveeeeeeieeeccciiieeeeee e, 447
15.7 Execution from @ Zagreus SCriPt......ccocecciiiireeeee e eeerrree e 451
15,8 SUMMIAIY ettt e e et e e e et b e e e e eaaae e e e aaaaeeeeeaaaanes 452
RO B 2 =T o] = ol o [ol Y 453
15.9.1 Choosing the appropriate event-type resouUrCe......oeeeeeeeeeeeeeeeeeeeeennn. 453
15.9.2 Monitoring watchers and triggers....ccoouuuieeeeeiieeeieeeeeeeeeeeeeeeeeeeeeee e e 454
15.9.3 Quarterly settings for a time schedule........cccccooeeeeiiiiieeei e, 454
15.9.4 Using special subscription features.......ccoccvveeeeeeevccciiereeeee e, 455
15.10 TroubleShOOtINGuueic e e 457
15.10.1 Practices for event-type reSOUICEScccvveeeeeeeeeeecciirereeeeeeeeeeecenneenes 457

15.10.2 CommaNnd-line T00ISoeeeeieieee ettt 458

15.10.3 The HTML application....cccccceeeeeecccccccccccccccece e 458

16. SPECIAI FEATUIES ...eeeiie e e e e 459
16.1 Standalone WOIKercoiiiiieieeeee e 460
16.1.1 HOW O USE...eeiiiiiiiiiiieeee ettt 460
16.1.2 CoNFIBUIAtioN «...uviiee i 461
16.1.3 LICONCING - s 461
16.1.4 LiMItatioNnsS ..oooceeiiiiiiiiiiiiiiiricccc 462
16.0.5 NOLES ...ttt s 462
16.2 External sCript @XECULIONuueiccccccc e e 464
16.2.1 HOW it WOTKS .t 464
16.2.2 CoNFIBUIAtioNvveeiiiiiiie e e 465
16.2.3 tempfilename attributecccoeveciieeiiiiie e 465
16.2.4 params attributeccoeeviiiiiiiii e 466
16.2.5 Synchronous and asynchronous execution.........cccoccveeeevrcieeeeesiveennn. 467
16.2.6 EXAMIPIES...ueicec e 467
16.3 Document URL fEAtUreeeiiiiieiiieeeeeee e 472
16.3. 1 HOW tO USE...uuiiiiiiiiiiiiiiiiiiiinitcccc ittt 472
16.3.2 docurl variablecooiiiie e 473
16.3.3 docurl_replace variable ..., 474
16.3.4 EXAMIPIES .. e 475
16.4 Bank holidays fEatUre.......cccuuiiiiiieee e 479
16.4.1 Common European holidayscccoeeviiiiiiiiiiiiiiiiccccccccccccccceeeee e 479
16.4.2 Specifying additional bank holidaysccccoeeeeeeieiiieieieeececccecccceeceeeeee, 480
17. Server administration in the Zagreus Client........ccooeeeeeeeeeiiieeiiieeeeceeeeeeeeeeeeeeen, 481
17.1 AdMINiStrator OPLIONS ... e e e e e e e e 482
17.1.1 Group MaNAZEMENT .cvuuuuiiieie it ee e e e e e e e e e e e e eaeeees 482
17.1.2 USer ManagemMeENT .. .ccccuuiie ettt e et e e e e e e raa s e s eaaa e e e 485
17.1.3 CancCel All JODS ..uune e 491
17.1.4 Stop / start server COMPONENTSeeeeeeiveeeeeeiieeeeeeeireeeeeetreeeeeeareeeees 491

17.1.5 Manage CertifiCatescoovviiiririieee e 491

17.1.6 Monitor WatChers, trigZerS. ...ccouuiiiiieiiieieeeieececceee e e e e e

17.1.7 Configuration teStINGccceeeeeieiiiiiecccccccrcccc e

17.2 Get licence information

17.3 Server information

1. Introduction

IT departments and their managers face a challenging issue in the rapidly evolving
field of information technology: satisfying rising expectations with limiting budgets.
Organizations seek for success in a competitive market by shifting multiple processes
to IT, with the goal of improving speed, precision, and cost-effectiveness. While
investments in technological infrastructure continue to be approved, the need for
more human resources sometimes falls on deaf ears. This shortage necessitates more
ingenuity, which leads to what is frequently viewed as an outstanding solution:
automation.

Automation, unquestionably recognized for its ability to save time and money,
becomes a significant concern. However, the pressing question remains: how could
automation be implemented successfully in the face of time and money constraints?
The urgency of the issue frequently encourages the selection of the simplest and
quickest choices, including new features via software products, open-source code, in-
house development, or customized systems with restricted capability. Unfortunately,
the quickest solution is not always the best. Although short-term savings may be
realized, negative long-term consequences are more likely to arise.

To avoid falling into the automation trap — attaining short-term goals at the price
of long-term issues — a fundamental change toward centralization is required.
Sustainable automation is based on centralizing all processes within a dedicated
system, which provides a variety of benefits such as process simplification, easy
definition of interdependencies, cost-effective development and maintenance,
integrated error handling with logging functionality, comprehensive monitoring at a
central point, and unparalleled flexibility through scalability.

Enter Zagreus, a cutting-edge process platform precisely created for businesses of
all sizes and types. Zagreus, with its extensive library of capability, enables the quick
mapping of all digitally controllable business processes. This platform is distinguished
by many significant advantages:

e Low-code platform
Zagreus avoids the need for heavy programming by utilizing a low-code platform
that allows users to develop and alter processes without considerable coding
skills.

e Utilization of existing system components
Zagreus readily interfaces with diverse data storage and operating systems,
improving compatibility and lowering implementation hurdles.

e Centralized administration
By streamlining administrative activities, Zagreus enables businesses to manage
and monitor their automated operations from a single location, improving control
and efficiency.

Zagreus stands out as a standard software solution with great flexibility, recognizing
the individuality of each enterprise. Zagreus is a plug-and-play solution with rapid
installation and quick utilization, avoiding the need for lengthy, costly projects. Old
procedures are quickly changed, and new ones are flawlessly incorporated, showcasing
Zagreus's expertise in this area.

Zagreus's flexible REST API interface expands its possibilities even further, allowing
for smooth connectivity with a variety of systems. This versatility distinguishes Zagreus
as a dynamic and future-ready solution that meets the changing demands of modern
organizations.

In essence, Zagreus is more than a software solution: it is a strategic enabler that
allows organizations to navigate automation issues with exceptional efficiency and
agility. As more is learned about Zagreus, its disruptive impact on business process
automation becomes clear, bringing in a new era of IT solutions.

2. Zagreus as a whole system

Zagreus is a modular system, consisting of several main parts that are constantly
communicating with each other. This design has the following advantages:

o different modules are responsible for their own processes only,

e the modules can be installed on different hosts,

e the whole system contains indirectly interfering asynchronous tasks. The proper
implementation for this needs separate main execution processes (Java Virtual
Machines). Therefore, all Zagreus modules are implemented as Java applications
running on separate JVMs.

Embedded database handling |« Managing Zagreus Workers

v

Resource storage Sending worker monitoring info
z

Job queue

Schedule management

4 A A
Zagreus Worker 1 Zagreus Worker 2
Executing job Executing job
Worker filesystem Worker filesystem
\ 4 v
Zagreus Client Other Zagreus Clients
Main user interface Command-line tools
Resource editing HTML Application
General monitoring
\ 4

Zagreus Monitor

Timeline monitoring

Figure 1 — The main structure of the Zagreus modules

In Figure 1., the main modules are shown. In the following chapters, these modules
are introduced and described in details.

2.1 Zagreus Server

The Zagreus Server is the main module of the Zagreus System. The Server module
installation is neccessary in order to have a minimal working system, it maintains an
embedded database (see - Embedded MySQL database) for its resources and job
information (see - Job properties).

The Zagreus Server is performing the following tasks:

embedded database management

e web server management

e user authentication and authorization

e resource management in database and in local filesystem
e job queue management

e maintaining connection for Zagreus Workers

e storing job-log files, results

e running time schedule events and subscriptions

e managing watcher and trigger type resource events

2.1.1 Communication

The Zagreus Server uses two different communication protocols:

e The Zagreus Client modules communicate with the Zagreus Server via HTTP /
HTTPS webservice protocol. Therefore the clients and the Server can be installed
anywhere throughout the Internet.

e The Zagreus Workers and Zagreus Worker Controller communicate with the
server by Java RMI protocol, so these modules need to be installed on the same
intranet, or preferably on the same machine.

The Zagreus Server is the central module to which all other modules connect.
Therefore, it is recommended to start the Zagreus Server first , right before all other
modules.

2.1.2 Logging

The Zagreus Server module generates log-files as it is running. They contain events
and possible error messages as well as information about job execution and user

interaction. This is crucial for monitoring system performance, diagnosing issues, and
ensuring security.
There are two different types of log-files:

e server log-file

The server log-file contains information about the server module: starting up and
shutting down, events in the job-queue, user logins and logouts. It is located in
the <zagreus home>/server/log folder, under the file name srv.

The log-file is maintained by the 1og47 system, and it is archived regularly by
rolling file appender feature: when the size of the log-file exceeds 10 megabytes,
or a full day has passed, a new .gzip archive is automatically generated from
the actual log-file. The content of the log-file will be stored in the archive, and a
log-file itself will be reset to empty. The name of the archive . gzip file uses the
format of srv <yyyyMMdd>.log.gz, where the timestamp in the filename
follows the creation date of the archive. Archived log-files older than 30 days are
deleted automatically.

e job-log files
For each job executed in the Zagreus System, a separate job-log file is generated.
The file name is the ID of the job, and the file is located under
<zagreus home>/server/log/job unlessitisset otherwise, see - General
properties . For more information about job-logs, see = job-log file.

2.1.3 Components

There are several larger parts of the Zagreus Server that can be categorized as
system components.

2.1.3.1 Job queue

The job queue is the main component in the Zagreus Server. It stores and manages
the tasks (the so-called jobs) to be executed by the Zagreus Workers, see - Zagreus
Worker. For further details, see - Queue.

2.1.3.2 Quartz scheduler

Quartz Scheduler is the component which manages the execution of recurring, time-
based tasks. The Scheduler component registers crontime-based definitions (see =

Time schedule) and triggers events at the specified time points. These events can
execute a Zagreus script (see = Execution by event-type resources) or check out a mail-
or database watcher condition, see - Mail watcher and - Database watcher.

Zagreus System uses the Quartz Scheduler, which is a robust, open-source job
scheduling library for Java applications, enabling flexible scheduling of jobs with
simple, interval-based, or cron-like expressions.

The scheduler can be temporaliry switched off from the Zagreus Client (see = Stop
/ start server components) and from the Zagreus Monitor (see = Additional options)
applications.

2.1.3.3 Embedded MySQL database

The Zagreus Server stores its resources and metadata information in an embedded
MySQL database, which is starting and shutting down together with the Zagreus
Server. For more details, see - Embedded MySQL database.

2.1.3.4 Local filesystem

Another important component of the Zagreus Server is the connection with the local
filesystem, that allows managing files and folders on the local installation machine. For
more details, see - Local filesystem in the Zagreus Server.

2.2 Zagreus Worker

The Zagreus Worker is responsible for executing a Zagreus script type resource, see
- Scripts. Multiple Zagreus Worker instances can run at the same time, at least one is
needed to allow script execution. Each Worker instance runs as a separate JVM (Java
Virtual Machine), so they are independent processes on the OS level. The number of
Zagreus Worker instances depends on the Zagreus licence (see = Licencing) and the
configuration (see - Configuration).

The Zagreus Worker module is designed to be a constantly running process which is
connecting to the Zagreus Server job queue (see - Queue) and waiting for a new job
to execute. When there is no such job, it stays in idle mode and keeps waiting for a
task.

The Zagreus Worker contains an execution processor called the Zagreus Execution
Engine which provides the main functionality for executing Zagreus scripts.

The Zagreus Worker is performing the following tasks:

In idle mode, it is constantly connecting to the Zagreus Server, waiting for a new

job to execute.

e |f there is a job to execute, it passes the script content of the job to the Zagreus
Execution Engine.

e The Zagreus Execution Engine processes the script content.

e After the execution has been finished or failed, the status and the result of the

job are sent to the Zagreus Server, and the Zagreus Worker switches back to idle

mode, waiting for the next job to execute.

2.2.1 Communication

The Zagreus Worker communicates both with the Server and the Zagreus Worker-
Contoller, and uses the Java RMI protocol:

e The Zagreus Worker as a client connecting to the Zagreus Server
The Worker is constantly connected to the Zagreus Server job queue (see =
Queue) via the Java RMI protocol. This RMI port is defined in server configuration
(see = Zagreus Server configuration), but the same port has to be set in the
Zagreus Worker configuration (see = Zagreus Worker configuration) in order to
Worker could connect to the Server properly.

e The Zagreus Worker behaves as a server when the Zagreus Worker-Controller is
connecting to a Worker instance
The Worker-Controller also maintains a communication to the Zagreus Worker
instances to be able to monitor and manage them. The Worker-Controller is using
Java RMI communication. The RMI port is different for each worker instance and
it is derived from the specified server RMI port and the Worker ID; so if the pre-
defined Zagreus Server RMI port is 6666, then the RMI port is 6667 for Worker
(ID: 1), 6668 for Worker (ID: 2), respectively.

Each job is assigned to the Zagreus Worker instances with round robin assignment,
except when a specific Zagreus Worker group is selected (see - Queue groups).

2.2.2 1D of the Zagreus Worker

Each Zagreus Worker has an ID which is an numeric integer value starting from 1.
When the Zagreus Worker-Controller starts the Zagreus Workers (see - Starting
Zagreus Workers), the Worker IDs are consecutive numbers, such as 1, 2, ... N where N
is the the maximum number of the allowed Workers defined in the Zagreus Licence,
see - Licencing.

Zagreus Workers can be stopped, restarted by the user - Worker information tab,
so the Worker IDs might not be consecutive any more. However, when the user
manually starts a new Zagreus Worker, its ID needs to be unique and in the range of
[1, N] where N is the maximum number of allowed Workers.

In some cases. a fully qualified Worker ID is neccessary which is specified in the form

of:
<Worker-Controller ID>.<Worker ID>

This format can unambigously identify the given Workers even if they belong to
different Worker-Controllers.

2.2.3 Logging

Each Zagreus Worker module instance generates a log-file as it is running. It contains
events and possible error messages as well as information about job execution. This is
crucial for monitoring system performance, diagnosing issues, and ensuring security.

The module log-file contains information about the actual Worker instance: starting
up and shutting down, initiating and finishing job execution, as well as stacktraces of
module-related errors. It is located in the <zagreus home>/worker-

controller/worker/log folder, under the file name worker <worker-
id> <yyyyMMdd>.log, where the timestamp in the filename follows the creation
date of the log-file.

2.2.4 Statuses

The Zagreus Worker undergoes a life-cycle with distinct statuses. These statuses are
the following:

e Inijtializing
The Zagreus Worker is starting up. It lasts only for a few seconds.

e /dle
The Zagreus Worker has successfully started and is waiting for a job to execute.

e Busy
The Zagreus Worker is currently executing a job.

e Shutting down
The Zagreus Worker is shutting down.

For most of the time, the Zagreus Worker switches between Idle and Busy statuses.

The status of the Zagreus Workers can be seen in the Execution engines window in
the Zagreus Client application, see - Zagreus Client.

Aside from these statuses, there is another property which defines the availability
of the particular Zagreus Worker. The Enabled property tells if the Worker can receive
any job. By default, the Enabled property is true, but the user can manually set it to
false in the Zagreus Client (see - Worker information tab). In the latter case the
Zagreus Worker is in Idle status, but will not accept any job for execution.

2.2.5 Memory handling

The Zagreus Worker has a few settings in terms of memory handling. Each Worker
instance manages its memory independently.

Because of the fact that a Zagreus Worker is a JVM, the memory settings are
specified as standard Java options in the Zagreus Worker configuration, see - Worker
startup properties.

There might be a need for restarting a Zagreus Worker if it has exceeded a pre-
defined memory consumption after a job execution. For such cases, a special
configuration property can be set, see = Miscellaneous properties.

The actual memory consumption of each Zagreus Worker can be monitored in the
Execution Engines window in the Zagreus Client (see = Execution engines window) and
in the Zagreus Monitor applications (see - Execution Engines window).

2.3 Zagreus Worker-Controller

The Zagreus Worker-Controller module is responsible for managing the instances of
Zagreus Worker modules. Although the execution of a Zagreus script is performed by
a Zagreus Worker module, the Zagreus Worker-Controller module installation is
neccessary to start and manage the Zagreus Worker instances themselves.

The Zagreus Worker-Controller is performing the following main tasks:

e starting and managing Zagreus Workers

e canceling a running job on a Zagreus Worker

e collecting real-time information about Zagreus Workers and sending them to the
Zagreus Server module

Besides these, it also handles minor tasks like managing SSL certificates (see =
Manage certificates) and testing the integrity of both the configuration files of itself
and of the Zagreus Worker (see - Configuration testing).

Info: When the Zagreus Worker-Controller module starts up, it starts the
number of worker instances set in the configuration. When the Worker-
Controller is shut down, it first stops all worker instances.

2.3.1 Communication

The Zagreus Worker-Controller communicates both with the Server and the Zagreus
Workers via the Java RMI protocol. The RMI port of the Zagreus Server can be defined
in the configuration file, see - General properties.

2.3.2 Logging

The Zagreus Worker-Controller module generates a log-file as it is running. It
contains events and possible error messages as well as information about job
execution and user interaction. This is crucial for monitoring system performance,
diagnosing issues, and ensuring security.

The module log-file contains information about the Worker-Controller module:
starting up and shutting down, commands from the Zagreus Server and the OS

commands which start the Zagreus Worker processes. It is located in the
<zagreus home>/worker-controller/log folder, under the file name wc.

The log-file is maintained by the 1og47 system, and it is archived regularly by rolling
file appender feature: when the size of the log-file exceeds 10 megabytes, or a full day
has passed, a new .gzip archive is automatically generated from the actual log-file.
The content of the log-file will be stored in the archive, and a log-file itself will be reset
to empty. The name of the archive .gzip file uses the format of
wc <yyyyMMdd>.log.gz, where the timestamp in the filename follows the creation
date of the archive. Archived log-files older than 30 days are deleted automatically.

2.3.3 Statuses

The Zagreus Worker-Controller undergoes a life-cycle with distinct statuses. These
statuses are the following:

e Starting
The Zagreus Worker-Controller is starting up. It lasts only for a few seconds.

e Running
The Zagreus Worker-Controller has successfully started and is running.

e Suspended
The Zagreus Worker-Controller can not establish an active connection to the
Zagreus Server, see - Suspended mode.

e Shutting down
The Zagreus Worker-Controller is shutting down.

The status of the Zagreus Worker-Controller can be seen in the Execution engines
window in the Zagreus Client application, see - Execution engines window.

2.3.4 Starting Zagreus Workers

A Zagreus Worker is started by the Zagreus Worker-Controller module via a
command-line command as a separate Java child process. The structure of this
command is:

<Java executable> -cp <classpath> <Java options> <Worker class name>
<Worker ID> <Worker-Controller ID> <Server address> [<parameters>]

All of this is performed automatically by the Worker-Controller. However, it is useful
for the end-user to know about this command structure in case there is a need to
configure or add parameters for the starting Zagreus Workers, which can be done by
editing the appropriate configuration properties (see - Worker startup properties).

The elements of this command are the following:

e <Java executable>
The OS path of the Java executable, shipped with Zagreus.

e <classpath>
The Java classpath of the Zagreus Worker.

e <Java options>
The various Java options passed to the Zagreus Worker. Besides the user-
configured values (see - Worker startup properties), further parameters are

added:

-Dworking.folder
-Djava.folder
-Dworker.id
-Dworker.date
-Dworker.timestamp

o <Worker class name>
The fully qualified name of the main Java class of the Zagreus Worker.

o <Worker ID>
The ID of the actual Zagreus Worker.

o <Worker-Controller ID>
The ID of the Zagreus Worker-Controller.

e <Server address>
The address of the Zagreus Server.

Info: The actual command-line command used to start the Zagreus
Worker instances can be seen in the log file of the Worker-Controller
module.

2.3.4.1 Number of Zagreus Workers

The Zagreus Worker-Controller is a standalone module, thus it is starting up in itself,
and it tries to connect to the Zagreus Server as soon as possible. The number of possibly
running Zagreus Worker instances is limited by the Zagreus license (see = Licencing),
which is installed in the Zagreus Server module database. Before reaching the Zagreus
Server, the Worker-Controller module is not aware of the maximum number of Zagreus
Workers allowed. However, the Zagreus Worker-Controller can start the Zagreus
Worker instances before connecting to the Server module. The number of started
instances can be set in the Worker-Controller configuration (see - Zagreus Worker-
Controller configuration) with the workercontroller.defaultworkercount property.

When the connection between the Zagreus Worker-Controller and the Zagreus
Server is finally established, the limitation of the Zagreus Licence is automatically
applied if the number of started Zagreus Worker instances is greater than the allowed
number (it can only happen by misconfiguration), so some of the Workers are stopped
by the Worker-Controller.

Setting the default number of starting Zagreus Worker instances, however, can be
practical in the following cases:

e The user can manually configure the proper load-balance settings when multiple
Worker-Controller instances are installed. In this case, the total count of Zagreus
Worker instances managed by each Worker-Controllers cannot exceed the limit
set in the Zagreus licence.

e When there is one Worker-Controller instance in the Zagreus ecosystem, this
setting can manually be matched to the allowed number of Zagreus Worker
instances defined in the Zagreus licence. In this case, all Worker instances are
already running when the Worker-Controller establishes the connection to the
Zagreus Server.

2.3.5 Managing Zagreus Workers

The Worker-Controller module is responsible for managing the worker instances by
receiving commands from the Zagreus Server.
These command can be one of the following:

e Start: starts a new worker instance.

e Stop: stops an already running worker instance.

e Restart a worker instance: stops the worker instance, and then starts it again.

e Disable a worker instance: the worker instance is kept running, but does not
accept any job from the Zagreus Server

e Enable a worker instance: enables the disabled Zagreus Worker

e Cancel a job: cancels a job running on a worker instance.

The Worker-Controller is also checking the availability of the worker instances:

e When a worker instance is not available (the connection is lost between the
Worker-Controller and the worker instance), the Worker-Controller restarts the
particular worker instance.

e When any worker instance has been exceeding a configurable maximum memory
consumption limit for its lastly executed job, the Worker-Controller restarts that
Worker in order to avoid any memory issues for its future jobs.

2.3.6 Collecting and sending worker information

The Worker-Controller module collects the actual status and further information
about the worker instances (i.e. worker information), and forwards them to the
Zagreus Server. The following information are collected:

e the ID of the worker instance

e whether the worker instance is enabled

e the status of the worker instance, see - Statuses

e the ID of the currently executed job (if any)

e the status of the currently executed job (if any), see = Job lifecycle

e the ID of the currently executed script (if any)

e the full path of the currently executed script (if any)

e the number of log lines produced by the currently executed job (if any)

e the time when the worker instance was started

e the actual time when the worker information was sent
e the maximum allowed memory of the worker instance
¢ the total memory of the worker instance

e the free memory of the worker instance

e the number of available processors

Furthermore, the Worker-Controller sends information about itself to the Server as
well, consisting of:

e the ID of the Worker-Controller

e the status of the Worker-Controller

e the time when the Worker-Controller was started

e the actual time when the Worker-Controller information was sent
e the maximum allowed memory of the Worker-Controller

e the total memory of the Worker-Controller

e the free memory of the Worker-Controller

This information can be viewed in the Execution Engines view of the Zagreus Client,
see - Execution engines window.

The frequency of collecting and forwarding this information can be defined in the
configuration file, see - Zagreus Worker-Controller configuration.

2.3.7 Suspended mode

When the Worker-Controller is unable to send the worker information to the
Zagreus Server multiple times in a row, it switches into suspended mode. When in
suspended mode, the Worker-Controller module suspends all forms of communication
with the Server: it does not send the worker and worker-controller information, does
not accept (and forward) commands related to the Workers, and does not accept
commands controlling its own behavior (e.g. shut down). The suspended Worker-
Controller is trying to establish the lost connection regularly, and when it can be
repaired, all suspended services are revoked.

The properties for timeouts and polling frequencies in suspended mode are
configurable, see > Worker-related properties.

2.4 Zagreus Client

The Zagreus Client is the main user interface in the Zagreus System. The Zagreus
Client is implemented only for Windows operating systems.

The end-user or administrator can use the following functionality with the Zagreus
Client:

e creating and maintaining Zagreus Server connections

e browsing the embedded database and local OS filesystems (see = Resource
storaging) and performing file operations (e.g. copy, move, create folder)

e viewing and editing Zagreus resources

e managing and browsing external connections (see - Opening connections in the
Zagreus browser)

e creating, editing and debugging Zagreus scripts

e monitoring the active and finished jobs

e monitoring the Zagreus Worker-Controller and Zagreus Worker instances

e doing administrative tasks like user and group management (see - User

management)

2.4.1 Communication

The Zagreus Client communicates with the Zagreus Server by using the HTTP / HTTPS
webservice protocol.

2.5 Zagreus Monitor

The Zagreus Monitor is a standalone client application for monitoring script
execution including finished and active jobs as well as scheduled estimations. The
Zagreus Monitor is the secondary user interface in the Zagreus System and is
implemented for Windows operating systems only.

The end-user or administrator can check the following in the Zagreus Monitor:

e the job executions on the timeline with user-defined filters

e the future estimations of subscribed scripts on the timeline, see - Timeline area
e the skipped jobs on the timeline, see = Skipped jobs in the Zagreus Monitor

e the properties of jobs including start-up variables, see = Start-up variables

e the monitoring variables, see - Monitoring variables

e the job-logs of any finished job, see = job-log file

2.5.1 Communication

The Zagreus Monitor communicates with the Zagreus Server by using the HTTP /
HTTPS webservice protocol.

2.6 Other Zagreus clients

Apart from the Zagreus Client and Zagreus Monitor modules, there are a few other
client applications in Zagreus. Due to the fact that there are several common
functionalities of the Zagreus Server which are used quite often (initiating a script
execution, firing an event, etc.), these functionalities can be accessed via multiple client
applications.

2.6.1 Communication

All other client applications communicate with the Zagreus Server by using the HTTP
/ HTTPS webservice protocol.

2.6.2 Command-line tools

The Zagreus command-line tools consist of a collection of simple executable files. To
support both Windows and Unix platforms, there is a .bat and an .sh script file
available for every functionality supported. There are batch files and shell scripts for
administrative tasks as well as for running scripts and firing events. For further details,
see - Command-line tools.

2.6.3 Zagreus HTML Application

The Zagreus HTML Application is a web-based user interface for initiating script
execution, triggering event schedules and get information about jobs. It is hosted by
the Zagreus Server. For further details, see - Zagreus HTML application.

2.7 Security

Securing online communications is essential to protect sensitive information from
cyber threats. This chapter focuses on the critical role of SSL certificates in ensuring
secure connections over the internet. SSL certificates encrypt data transmitted
between users and websites, establishing a trusted and secure environment for online
transactions.

Zagreus uses several connection types between its modules as well as external
connections from the system. Besides that, there is always a user who is using the
connection. There are the following points where any security risk can emerge in terms
of connections and users for the Zagreus System:

e HTTP /HTTPS connections among modules
The connection between the Server and the clients are HTTP / HTTPS, see -
Communication, which needs to be secured, specially if the client modules are
installed on different hosts over the internet.
The goal here is to protect the transmitted data by using a trusted SSL protocol.

e HTTP /HTTPS external connections
In the Zagreus System, the user has the possibility to use external connections,
such as IMAP, POP3, FTP, etc., see - Connections.
In most of the cases, these external connections require an installed certificate
on the client (Zagreus) side in order to open a secure connection, see - Secure
connections.

e Security on the user level, authentication and authorization
On a fine-tuned system, there are multiple users, each of them performing
specific tasks. Users need to authenticate by their user name and password. The
administrator user needs to authorize common resources (i.e. groups) for them
(see = Groups in the Zagreus System) as well as applying password policy.
The goal is to fine-tune the system properly and maintain user accessibility.

2.7.1 SSL Certificates

SSL is a protocol used to encrypt data transmitted over the internet, providing
security and privacy. When SSL is combined with HTTP, it forms HTTPS (HyperText
Transfer Protocol Secure). HTTPS is the secure version of HTTP, ensuring that all data

exchanged between a user's client application and a web server is encrypted and
secure from eavesdropping or tampering.

Each module has a specific file location for storing the SSL certificates. These files
are called truststores.

e for Zagreus Server:
<zagreus_ home>\server\service\conf\ssl\client.trustedservers

In this truststore, both the Zagreus Server self-signed certificate (public and
private key) and the certificates for external connections (see - Certificates for
external connections) are installed.

The truststore filename can be changed in the Zagreus Server configuration, see
- SSL properties

e for Zagreus Workers:
<zagreus_home>\worker-controller\worker\confl\ssl\client.trustedservers

In this truststore, both the Zagreus Server self-signed certificate (public key) and
the certificates for external connections (see - Certificates for external
connections) are installed.

The truststore filename can be changed in the Zagreus Worker configuration, see
- Miscellaneous properties

e for Zagreus Client:
<zagreus home>\guilconfiguration\client.trustedservers

In this truststore, the Zagreus Server self-signed certificate (public key) is
installed.

e for Zagreus Monitor:
<zagreus home>\monitor\confl\client.trustedservers

In this truststore, the Zagreus Server self-signed certificate (public key) is
installed.

e for Zagreus command-line tools:
<zagreus_ home>\command-line\keystore\client.trustedservers

In this truststore, the Zagreus Server self-signed certificate (public key) is
installed.

e for Zagreus HTML application:
By using the recommended HTTPS URL for the Zagreus HTML application (see >
Zagreus HTML application), the connection is already trusted.

2.7.1.1 Certificates for communication between modules

There is a pre-configured SSL certification installed for the connection between the
Zagreus Server and the client applications. This is a self-signed certificate, meaning that
it is signed by the same entity whose identity it certifies, therefore the issuer and the
subject of the certificate are the same. Self-signed certificates, in general, can safely be
employed for internal use.

If the Zagreus System is installed in a way that the client applications are not on the
same host as of the Zagreus Server is installed on, there is the possibility to install an
official CA-signed certificate. In order to do this, the system administrator needs to
perform the following steps:

e obtain the official CA certificate (public and private keys)

e connect to the Zagreus Server with the Zagreus Client, and open the Manage
certificates dialog box, see - Manage certificates. This process can be done with
the keytool command-line application as well

e delete the pre-installed self-signed Zagreus Server certificate (with the alias
zagreus_server)

¢ install the official public and private key to Zagreus Server truststore file with a
selected alias

e using the keytool command-line application, the user needs to install the
official CA certificate (public key) into the truststore file of each client module

2.7.1.2 Certificates for external connections

Only the Zagreus Server and the Zagreus Worker modules use external connections.
Therefore, the certificates for external connections need to be installed for these two
modules. The most straightforward way to do this is via the Manage certificates dialog
box, see - Manage certificates. This process can be done with the keytool
command-line application as well; the locations of the truststore files were already
listed above in this chapter.

2.7.2 Encrypted passwords, cpassword

Just like in any system, passwords are considered as sensitive data in the Zagreus
System. User passwords are stored in the following locations:

e inthe embedded MySQL database (encrypted in AES-256)

e in the connections.dat files for the Zagreus Client and Zagreus Monitor
applications (encrypted as cpasswords)

e inthe Zagreus script connections (can be encrypted as cpasswords)

The user needs to take care about the last occurences only. There is a way to hide
the password values declarared in a Zagreus script by encrypting them as cpassword,
see = username, password and cpassword attributes.

2.7.3 Users and password policy

It is the responsibility of the administrator user to create and manage the non-
administrator users (see = Users in the Zagreus System) for the system. The password
policy (see = Password policy) is an important aspect of the security. Besides their own
home folder, each user has authorization for the groups they are the member of, see
- Groups in the Zagreus System.

3. Installation

In this chapter the installation and configuration of specific Zagreus modules, the
Zagreus Server, Zagreus Client and Zagreus Monitor are described.

The Zagreus Server and the Zagreus Worker-Controller module can be run both on
Windows and Linux platforms, while the Zagreus Client and the Zagreus Monitor
modules are available only for the Windows operation system.

3.1 Downloading Zagreus

The installation packages and instructions can be downloaded from the following
web address: https://support.etixpert.com/zagreus/download-1.5.php , see Figure 1.

To obtain a username / password pair for accessing the page content, please contact
support@etixpert.com .

Figure 1 — The download page of the Zagreus Support site as of the writing of the documentation

On this site, the following archive types can be downloaded (the link title also
contains the name of the operation system and the version of Zagreus):

o All

Contains the Zagreus Server, Zagreus Client, Zagreus Monitor, Zagreus
Commandline and Zagreus Worker-Controller (and the embedded Zagreus
Worker) modules.

e (lients

Contains the Zagreus Client and the Zagreus Monitor modules.

https://support.etixpert.com/zagreus/download-1.5.php
mailto:support@etixpert.com

e Command Line
Contains the Zagreus Command Line module.

e Server
Contains the Zagreus Server module with the embedded MySQL database.

e Server Without Database
Contains the Zagreus Server module without the embedded database.

e Worker-Controller
Contains the Zagreus Worker-Controller and the embedded Zagreus Worker
modules.

Since the Zagreus Client and the Zagreus Monitor modules are available only to
Windows OS, not all of above-listed archive types can are available for Linux platform
either.

3.2 Installation on Windows

Under the ‘Installation files (Windows)' section, download the ‘Zagreus All for
Windows v1.5.x.x" installation package. After downloading, the following steps are
required to install the Zagreus System on a Windows environment:

e copying the files to the target installation folder
e setting the proper configuration parameters
e setting up the Windows services

Next, these steps are described in details.

3.2.1 Copying the installation files

First, the user has to select a folder which Zagreus will be installed in. By default, the
OS path of this folder is C:\Programme\zagreus . All the contents of the
downloaded installation .zip archive must be extracted to this target installation folder.

Warning: When Zagreus is installed in a different folder than the default
one (such as C:\Program Files\zagreus), the configuration files
must be changed accordingly.

3.2.2 Setting the configuration parameters

After copying the Zagreus files to the target installation folder, specific configuration
parameters might be set. These parameters are pre-configured in the downloaded
Zagreus installation .zip archive; editing them is required only when the Zagreus target
installation folder path differs from the default one (i.e. C: \Programme\zagreus).

These particular settings are located in three files:

e the setenvironment.bat file in the installation root folder
e the wrapper.conf configuration file of the Server module
e the wrapper.conf configuration file of the Worker-Controller module

3.2.2.1 setenvironment.bat

First the file setenvironment.bat (located in the root folder of the Zagreus
target installation folder) has to be reviewed: the variables JAVA HOME and
ZAGREUS HOME must be defined accordingly, when the target installation folder path
differs from the default value of C: \Programme\ zagreus . For example, if the target
installation folder path is C:\Program Files\zagreus, the edited part of the
setenvironment .bat file should look like:

set JAVA HOME="C:\Program Files\zagreus\java\openjrell"
set ZAGREUS HOME="C:\Program Files\zagreus\server"

3.2.2.2 wrapper.conf (Server module)

The file wrapper.conf (located in the server/service/conf folder within the
Zagreus target installation folder) also has to be reviewed: the properties
wrapper.java.command and wrapper.java.additional.l must be defined
accordingly, when the target installation folder path differs from the default value of
C:\Programme\zagreus . For example, if the target installation folder path is
C:\Program Files\zagreus, the new values should look like:

wrapper.java.command="C:/Program Files/zagreus/java/openjrell/bin/java”
wrapper.java.additional.l=-Dworking.folder="C:/Program
Files/zagreus/server"

Note, that in the wrapper.conf file, the OS paths contain ‘/’ characters in the
paths unlike in the setenvironment .bat previously.

3.2.2.3 wrapper.conf (Worker Controller module)

The file wrapper.conf (located in the worker-controller/service/conf
folder within the Zagreus target installation folder) may also need to be reviewed: the
properties wrapper.java.command, wrapper.java.additional.l and
wrapper.java.additional.2 must be defined accordingly, when the target
installation folder path differs from the default value of c: \Programme\zagreus
For example, if the target installation folder path is c: \Program Files \zagreus,
the new values should look like:

wrapper.java.command="C:/Program Files/zagreus/java/openjrell/bin/java”
wrapper.java.additional.l=-Dworking.folder="c:/Program
Files/zagreus/worker-controller"
wrapper.java.additional.2=-Djava.folder="c:/Program Files/zagreus/java”

Note, that in the wrapper.conf file, the OS paths contain ‘/’ characters in the
paths unlike in the setenvironment.bat previously.

Warning: If the installation path contains space characters, quotations
must be used, as shown in the samples above.

3.2.3 Setting up Zagreus Windows services

The two main modules of the Zagreus System, the Zagreus Server and the Zagreus
Worker-Controller are designed to run as Windows services on the Windows OS
system.

To install these two modules as Windows services, execute the following scripts in
command line with administrator privileges (the paths are relative to the Zagreus
target installation folder):

e InstallApp-NT.bat inthe server/service/bin folder
e InstallApp-NT.bat inthe worker-controller/service/bin folder

After installing the Windows services, the proper administrator rights for both
services have to be set by the following steps:

1) Start the Run Windows application and type services.msc to run the Services
system application.

2) If necessary, navigate to the Extended tab in the Services window, then right-click
on the Zagreus-Server service and select the Properties menu item from the
context menu.

3) Click on the Log On tab on the opened Properties dialog box and set up the
Administrator account (or an account with administrator rights) of the current
Windows installation, see Figure 2.

Name Zagreus-Server Properties (Local Computer) n
Zagreus-WorkerController

X} Zugreos Server General LogOn | Recovery | Dependencies

+ WWAN AutoConfig Log on as
Workstation
Work Folders

WMI Performance Adapter

() Local System account

WLAN AutoConfig (®) This account: Mdministrator Browse...
Wired AutoConfig :
WinHTTP Web Proxy Auto-Di¢ Easewond: Bt

« Windows Update Confirm password: | ®eeeessssssssee

Windows Time

Figure 2 — Setting up administrator privileges for the Zagreus-Server service

4) Repeat steps 2) and 3) for the Zagreus-WorkerController service.

3.2.4 Opening ports in the firewall

To allow external connections to the Zagreus Server, its HTTP connection port must
be allowed via the firewall. By default, the Zagreus Server module communicates over
the port 7323 for HTTP and port 7443 for HTTPS connections, but these can be
modified (see - General properties).

For instructions how to open specific ports on Windows, consult your system
administrator.

3.2.5 Starting the Zagreus services

After installing Zagreus, the Zagreus Server and the Zagreus Worker-Controller
modules can be started / stopped by starting / stopping the corresponding services (i.e.
Zagreus-Server and Zagreus-WorkerController). The services can be configured to be
automatically started when the Windows system boots up. Alternatively, these
services can be started manually by the Services system application, accessible either
from the Task Manager (and by selecting the Services tab) or via the Run application
by starting the services.msc command.

3.2.6 Starting the Zagreus clients

To start the Zagreus Client or the Zagreus Monitor applications, the following batch
files have to be executed from the target installation root folder:

e startgui en.bat :Starts the Zagreus Client application (English version)
e startgui de.bat : Starts the Zagreus Client application (German version)

e startmonitor.bat : Starts the Zagreus Monitor application

Warning: If the Zagreus installation folder is located under the Windows
default program folder (e.g. C:\Program Files) then client applications
must run with administrator privileges — Run as Administrator!

Note that the Zagreus Client and the Zagreus Monitor modules can be downloaded
as standalone applications as well. For detailed instructions, see also - Downloading
Zagreus.

3.3 Installation on Linux

Under the ‘Installation files (Linux)’ section, download the ‘Zagreus All for Linux
v1.5.x.x" installation package to a temporary folder. Note: it is not possible to install
the Zagreus Client and the Zagreus Monitor modules for Linux, as these modules
support only the Windows operation system. After downloading, the following steps
are required to install the Zagreus System on a Linux environment:

e creating the target installation folder

e unpacking the archive and copying the unpacked files to the target installation
folder

e setting the proper configuration parameters

Next, these steps are described in details.

3.3.1 Creating the target installation folder

First, the root user has to create the folder which Zagreus will be installed in. The
recommended OS path of this folder is /home /zagreus, which path is pre-configured
in the shipped configuration files. For a different installation folder path, the steps must
changed accordingly.

su root
mkdir /home/zagreus

Due to the limitations of MySQL (the embedded SQL database shipped with
Zagreus), Zagreus cannot be started as the root user. Therefore, it is recommended
to configure the hostmaster user to start the Zagreus System. The installation steps
shown below are still performed by the root user though.

As the first step, the target installation folder needs to be created, and the
ownership of this folder must be handed over to the hostmaster user and the users

group.

chown hostmaster /home/zagreus
chgrp users /home/zagreus

Warning: Zagreus cannot be started as the root user due to the limitations
of the MySQL server!

After setting up the correct privileges it is recommended to switch to the
hostmaster user, otherwise the files that will be copied later will belong to the root
user.

su hostmaster

3.3.2 Unpacking the archive file

Next, the downloaded archive (e.g. zagreus linux install.tar.gz)hastobe
unpacked into the temporary folder which it was downloaded to (assumed to be the
current folder):

tar -xzvf zagreus linux install.tar.gz

The user then needs to copy the unpacked files (i.e. the contents of the zagreus
folder) to the target installation folder:

cp -ra zagreus/* /home/zagreus

3.3.3 Editing the set_environment.sh file

After copying the Zagreus files to the target installation folder, the file
set _environment.sh (located in the root folder of the Zagreus target installation
folder) has to be reviewed: the variable ZAGREUS INSTALLATION HOME must be
defined accordingly, when the target installation folder path differs from the default
value of /home/zagreus . For example, if the target installation folder path is
/home/zagreus installation, the edited part of the set environment.sh
file should look like:

export ZAGREUS INSTALLATION HOME=/home/zagreus installation

3.3.4 Opening ports in the firewall

To allow external connections to the Zagreus Server, its HTTP connection port must
be allowed via the firewall. By default, the Zagreus Server module communicates over
the port 7323 for HTTP and port 7443 for HTTPS connections, but these can be
modified (see - General properties).

For instructions how to open specific ports on Linux, consult your system
administrator.

3.3.5 Starting and administering Zagreus

The Zagreus Server and Zagreus Worker-Controller modules can be started, stopped
and restarted by using the zagreus.sh script, located in the Zagreus target
installation folder root. The user has to provide one of the following commands as the
only command line parameter for the aforementioned script (e.g. issuing the command

‘./zagreus.sh start’):

e start: starts the Zagreus Server module

e stop: stops the Zagreus Server module except when there are queued or running
jobs (about job statuses, see = Job lifecycle)

e forcestop: forces the Zagreus Server module to stop without checking any queued
or running jobs

e start-wc: starts the Zagreus Worker-Controller module

e stop-wc: stops the Zagreus Worker-Controller module

e status: prints the status of the following processes: Zagreus Server, Zagreus
Worker-Controller, Zagreus Workers and the embedded MySQL database

ﬁ Warning: When the Zagreus Server is installed in a Linux environment, the
Zagreus Client and Zagreus Monitor applications have to be installed
separately, in a Windows environment.

3.4 Sending the licence key

The various features of Zagreus are accessible depending on the installed Zagreus
licence. The properties of the Zagreus licence is managed via the Zagreus licence key,
issued by Etixpert GmbH. By default, the downloaded Zagreus Server is shipped with a
demo licence key to allow the user to perform the very basic operations. When the
administrator user obtains a new custom licence key, this licence key needs to be sent
to the Zagreus Server. This can be done in the Zagreus Client application: after right-
clicking the server definition node, the user has to select the Get licence information...
menu item from the appearing context menu, that opens the Licence info dialog box,
see Figure 3.

€, Licenceinfo O *

Licencing information

You can see the licence information here,
or send a new licence key.

Licence status: Company: zagreus_docs ~ Licence
Execution engines: 4 // details
Parallel loops: 10 £
Maximum users: 99
Current number of saved scripts: 52
Licence type: Registered.
| irence nenerated dates 07 07 2033 42.25.42 hd
Licence key:
-1F-3E-VE7A-6A-3F-3C49305432-6F0C-5412-60371B-0E- 22-0B-692F-0B-28-64-4404-74- ” Licence
4C21-25-25666E025F57-15561B6F-474137-2B04-3B346A777008-70-31-3D-3B29-8066-7F- 7E-
2AT2-17-44-67-48-1C1656-53-2D-3A38527E-80-79-516A15-3F4CT0-4A-176B6A15-3F4CT0- k’/ key
4A-176B6A15-3FACT0-4A-176B-03-73-526C275F63156A15-3FACT0-4A-176B6A13-3F4CT0-
4A-176B6A15-3F4CT0-4A-176B6A15-3F4C70-4A-1768-03-73-526C275F631 3641 3-3F4C70-
4A-176BBA15-3FACT0-4A-176B6A15-3F4CT0-4A-176BEBAT5-3FACTO-4A-176B71-41505A05-
FE-TTAI5R-24AN-ATIFIGTE-AFSR-2AAN-ATIF3GTF-AFSR-244N-ATIFIGTF-AFSR- 244N e
Send licence key

\ Send licence key

button

Figure 3 — The Licence info dialog box

The Licence status textbox contains the details of the currently installed (demo)
licence. To install the obtained custom licence key, the user needs to paste the key into
the Licence key text area and click on the Send license key button, see Figure 3.

For further details on the Zagreus licence features, see - Licencing.

3.5 Standalone installation of the client modules

The Zagreus Client and the Zagreus Monitor modules can be downloaded and
installed separately as standalone applications in order to connect to a remotely
installed Zagreus Server. This is useful when the Zagreus Server is installed on a Linux
environment, or any of the Zagreus client applications is installed on multiple PCs,
which need to access the same Zagreus Server remotely.

To install one or both of these client applications separately, the user first needs to
navigate to the section ‘Installation files (Windows)’ in the download page of the
Zagreus Support site (see - Downloading Zagreus) and download the ‘Zagreus Clients
for Windows v1.5.x.x" installation package. After downloading, the following steps are
required to install the Zagreus client applications:

e copying the files to the target installation folder
e setting the proper JAVA HOME environment variable (only for the Zagreus
Client application)

Next, these steps are described in details.

Warning: The Zagreus Client and Zagreus Monitor applications can be
installed only on Windows operating system!

3.5.1 Copying the installation files

First, the user has to select a folder which the Zagreus client applications will be
installed in. All the contents of the downloaded installation .zip archive must be
extracted to this target installation folder (e.g. C: \Programme\Zagreus Clients
).

The installation .zip archive contains three folders:

e gui: contains the Zagreus Client application

e monitor: contains the Zagreus Monitor application

e java: contains the Java Runtime Environment (JRE) recommended for the
Zagreus Client and Zagreus Monitor applications

If the user wants to install only one of the Zagreus client applications, it is enough
to copy the content of the corresponding application folder and the java folder to the
target installation folder.

3.5.2 Setting the JAVA_HOME environment variable

To run the Zagreus client applications, the value of the JAVA HOME system variable
has to be set properly in the setenvironment.bat file. For example, if the target
installation folder path is C: \Programme\ Zagreus Clients, the edited part of the
setenvironment .bat file should look like:

set JAVA HOME="C:\Programme\Zagreus Clients\javal\openjrell”

@ Info: When installed as standalone applications, the Zagreus Client and
the Zagreus Monitor modules do not use the ZAGREUS HOME setting,
therefore the definition of this property can be ignored.

3.5.3 Starting the Zagreus clients

After proper installation and configuration, the client applications can be started by
executing the following batch files:

e startgui en.bat : Starts the Zagreus Client application (English version)
e startgui de.bat : Starts the Zagreus Client application (German version)
e startmonitor.bat : Starts the Zagreus Monitor application

Warning: If the Zagreus installation folder is located under the Windows
default program folder (e.g. C: \Program Files) then client applications
must run with administrator privileges — Run as Administrator!

3.6 Troubleshooting

The installation might enounter some specific problems. Next some suggestions will
be described in details for these possible cases.

3.6.1 Issues independent of the operating system

3.6.1.1 RMI port conflict

In rare cases it can happen that Zagreus server cannot start up because RMI ports
are already used. In this case, new RMI ports need to be defined for Zagreus. Please,
check configuration section for further information — see also - Configuration

3.6.2 Issues on Windows

3.6.2.1 Enabling logging for the Java Service Wrapper

If Zagreus services cannot start up and there are no log files generated for the Server
and Worker-Controller, the user can analyse the problem by enabling logging for the
Java Service Wrapper by editing the following configuration files:

e for Zagreus Server:
<zagreus_home>\server\service\conf\wrapper.conf

e for Zagreus Worker-Controller:
<zagreus_home>\worker-controller\service\conf\wrapper.conf

Uncomment the logging-related variables in the configuration files, i.e.:

in the Server wrapper.conf
wrapper.logfile=log/srv_YYYYMMDD.log

in the Worker-Controller wrapper.conf
wrapper.logfile=log/wc_YYYYMMDD. log

After starting the services again, the following wrapper log files will be created:

e for Zagreus Server:
<zagreus_ home>\server\log\srv.log

e for Zagreus Worker-Controller:
<zagreus home>\worker-controller\log\wc.log

3.6.3 Issues on Linux

The content of the set environment. sh file should be double-checked, see -
Editing the set_environment.sh file.

4. Configuration

Zagreus consists of several modules (for an overview, see - Zagreus as a whole
system). The user can configure the modules by editing specific configuration files for
each module.

After installation, the configuration files of these modules are already prepared for
a fully functional Zagreus System. However, further fine-tuning of these configuration
files might be necessary, depending on the actual requirements.

Next the available parameters available in the three configuration files will be
described in details.

4.1 Zagreus Server configuration

The OS path of the Zagreus Server module configuration file s
server/conf/conf.properties (relative tothe Zagreus target installation folder).
In it, the following properties can be set:

4.1.1 General properties

e server.listener.port
The HTTP port of the Zagreus Server module. This port must be specified for the
client applications like for the Zagreus server definition node in the Zagreus
Browser window in the Zagreus Client application. Note that this value applies
only when the specified connection is not in secure mode; when the connection
is secure, the value of the ssl.listener.port property is used.
Default value: 7323

e server.rmi.port
The Java RMI port, which is used by the Zagreus Worker-Controller and Zagreus
Worker instances when connecting to the Zagreus Server. This setting also has to
be configured consistently in the Zagreus Worker-Controller and the Zagreus
Worker configuration files (see - Zagreus Worker-Controller configuration and
- Zagreus Worker configuration).
Default value: 6666

e filesystem.root
The OS path of the Zagreus local filesystem root. This path can be absolute, but it
is recommended to use the S{working.folder} subtitution string, see = File paths.
Examples: (on Linux)

filesystem.root=/your/absolute/path/to/filesystem
filesystem.root=${working.folder}/filesystem

Default value: S{working.folder}/filesystem

e job.logpath
The OS path of the folder where the job-log files are stored. This path can be

absolute, but it is recommended to use the S{working.folder} subtitution string,
see - File paths.

Default value: S{working.folder}/log/job

4.1.2 Server startup and shutdown properties

e startscheduler
Sets whether the scheduler component starts up when the server is started.
Setting this property to false is useful when the Zagreus System needs to be
started without any automatic script execution, e.g. debugging.
Possible values: true / false
Default value: true

e server.canceljobs.onstop
Sets if all running and queued jobs should be canceled when the server is shutting
down.
Possible values: true / false
Default value: true

e server.canceljobs.onstart
Sets if all running and queued jobs should be canceled when the server is starting.
These can be useful when there are stuck jobs in the job queue.
Possible values: true / false
Default value: false

4.1.3 SSL properties

e ssl.listener.port
The port for secure Zagreus HTTPS connection. This port must be specified for the
client applications like for the Zagreus server definition node in the Zagreus
Browser window in the Zagreus Client application. Note that this value applies
only when the specified connection is in secure mode; when the connection is not
secure, the value of the server.listener.port property is used.
Default value: 7443

e ssl.listener.cipher-suites
The list of accepted SSL cipher suites.
Default value:
SSL_RSA_WITH_RC4_128 MD5,55L RSA WITH_RC4 128 SHA,SSL_DHE_RSA W
ITH_3DES EDE_CBC SHA,TLS ECDHE RSA WITH_AES 256 GCM_SHA384

e ssl.listener.algorithm

Sets the keystore file management algorithm for the embedded webserver.
Default value: ssl.listener.algorithm=SunX509

e trustedstore.filename
The name of the SSL truststore file. This is the file which the additional SSL
certificates have to be installed into for secure external connections, see -

Secure connections. The location of this file is always
/zagreus_home/server/conf/ssl

Default value: client.trustedservers

4.1.4 MySQL properties

The Zagreus Server is shipped with an embedded MySQL database for storing its
internal data. The following properties can be used to configure the MySQL database.

e mysql.port
The port of the MySQL database.
Default value: 3336

e mysql.basedir
The OS path of the root directory of MySQL database. This path can be absolute,

but it is recommended to use the S{working.folder} subtitution string, see - File
paths.

Default value: S{working.folder}/mysql

4.1.5 Queue group properties

It is possible to group workers into queue groups (see - Queue groups). The specific
settings of grouping workers are the following:

® queue.groups.num

The number of worker groups for the queue.
Default value: 1

e queue.groups.<WorkerGrouplD>.worker
This property defines the worker identifiers for each queue group.
The following example defines two worker groups with four and two workers,
respectively:

queue.groups.l.worker=1.1, 1.2, 1.3, 1.4
queue.groups.2.worker=1.5, 1.6

4.1.6 Password policy properties

The following properties configure the settings of the password policy. Password
policy can be switched on for any user in the Zagreus Client, see - Zagreus Client.

e password.validity
The number of days after the password expires.
Default value: 90

e password.expiration.reminder
There is a reminder for the user before the password expires. The user gets this
reminder as a warning dialog box when conneting to the Zagreus Server in the
Zagreus Client. The number of days before the reminder starts to show up can be
configured by this property.
Default value: 7

e password.reusable.after
The number of password changes after which the same password can be used
again.
Default value: 6

e password.minimum.length
The minimum length of the password.

Default value: 10

e password.minimum.capital

The minimum number of upper-case characters in the password.
Default value: 1

e password.minimum.numeric
The minimum number of numeric characters in the password.
Default value: 1

e password.minimum.special
The minimum number of special characters in the password, which are: &« @ #
"""+ %/ =() ., ;2! *<>- andspace.
Default value: 1

4.1.7 Trigger and watcher properties

o filetrigger.double.trigger.limit
Sets the minimum time difference between two subsequent trigger events for
the same file to treat them as two different events, see also - Server-side
configuration. This value is defined in milliseconds.
Default value: 500

e watcher.counter.policy
Sets when the actual value property of a watcher is supposed to be decreased,
see - Scheduling section . The possible values are:

o evaluate: when the condition is evaluated

o condition_true: when the condition is evaluated to true

o script_run: when the condition is evaluated to true and at least one script is
going to be executed

4.1.8 Miscellaneous properties

e userecyclebin
Sets whether the server uses the recycle bin (see - Recycle bin) when deleting a
resource.
Possible values: true / false
Default value: true

e bankholidays.path
Defines the full path of the optional bank holidays descriptor file, see - Bank
holidays feature.

e variable.server.docurl
Sets the URL for the optional Document URL feature, see - Document URL
feature.

e variable.server.docurl_replace
Sets the additional substring replacements for the optional Document URL
feature, see = docurl_replace variable.

e queue.skippedjobs.threshold
Defines time threshold when a job must be marked as skipped in Zagreus
Monitor, see = Skipped jobs in the Zagreus Monitor. The value is defined in
milliseconds.
Default value: 5000 (5 seconds)

4.1.9 Server-level execution options

The configuration file of the Zagreus Server can contain server-level options as well
(see = Declaration levels). These are optional, and defined in the same key=value
format as the aforementioned properties. The keys defining these options must start
with the option.server prefix. The following example defines the execution option
running_timeout set to 50000:

option.server.running timeout=50000

For more details on the option resolution precedence order, see - Precedence
order for resolution.

4.1.10 Server-level and queue-level variables

The configuration file of the Zagreus Server can contain server-level and queue-level
variables as well (see - Declaration levels). These are fully optional, and defined in the
same key=value format as the aforementioned properties. The keys defining these
variables must start with the variable.server or variable.queue prefix,
respectively. The following example defines a server variable x with the value 2:

variable.server.x=2

For more details on the start-up variables resolution precedence order, see -
Precedence order for resolution.

4.2 Zagreus Worker-Controller configuration

The OS path of the Zagreus Worker-Controller module configuration file is worker-
controller/conf/workercontroller.properties (relative to the Zagreus
target installation folder). In it, the following properties can be set:

4.2.1 General properties

e workercontroller.id
The ID of the Worker-Controller, which must be unique (to avoid conflict if there
are multiple Worker-Controller instances installed).
Default value: 1

e server.host
The URL of the Zagreus Server host (accessed through Java RMI protocol).
Default value: rmi://localhost

e server.rmi.port
The Java RMI port of the Zagreus Server to which the Worker-Controller is
connecting. This setting also has to be configured consistently in the Zagreus
Server and the Zagreus Worker configuration files (see - Zagreus Server
configuration and - Zagreus Worker configuration).
Default value: 6666

e workercontroller.servercommandservicepolltimeout
Defines the timeout when the Worker-Controller is trying to reconnect to the
Zagreus Server in suspended mode, see = Suspended mode. This value is defined
in seconds.
Default value: 60

e workercontroller.serverconnectioncheckfrequency
Defines the time period between two trials when the Worker-Controller is trying
to reconnect to the Zagreus Server in suspended mode. This value is defined in
milliseconds.
Default value: 5000

4.2.2 Worker-related properties

e worker.rootfolder
The folder where the Zagreus Worker is installed. By default, it is located in the
/worker subfolder in the Worker-Controller module installation root folder. This
path can be absolute, but it is recommended to use the S{working.folder}
subtitution string, see = File paths.
Default value: S{working.folder}/worker

e workercontroller.defaultworkercount
Defines the number of workers which are started when the Worker-Controller
module starts up, see > Number of Zagreus Workers. If it is set to -1, no Zagreus
Workers are started by default before the connection to the Zagreus Server is
established; after the connection is made, the maximum number of Zagreus
Workers allowed in the Zagreus Licence will be started, see = Licencing.
Default value: -1

e workercontroller.autokillcommand
When the Worker-Controller module is starting up, it automatically checks if
there is any running Zagreus Worker instance (accidentally stuck and could not
be stopped). For safety reasons, the module can automatically execute a
command-line command to kill any of these stuck Worker instances. This
property defines this OS command.

Recommended value on Windows:

workercontroller.autokillcommand=taskkill /f /im \"zagreus-worker.exe\"

Recommended setting on Linux/Unix:

workercontroller.autokillcommand=killall -9 zagreus-worker

e workercontroller.workerrestarttimeout
Defines the time threshold after which the Worker-Controller restarts a particular
Worker in case when the connection between the Worker-Controller and any of
the Zagreus Workers is lost. This value is defined in milliseconds.
Default value: 30000

e workercontroller.softcanceltimeout
When a job is canceled, the Zagreus Server sends a cancel command to the
Worker-Controller module. The Worker-Controller first tries to do a soft
cancelation, and if it is not successful, it restarts the whole JVM of the particular
Zagreus Worker instance. This property defines how long the Zagreus Worker-
Controller waits for the soft cancelation. This value is defined in milliseconds.
Default value: 1000

e workercontroller.workerpollingfrequency
Defines the frequency at which the Worker-Controller module obtains
information from the Zagreus Worker instances, see - Collecting and sending
worker information. This value is defined in milliseconds.
Default value: 2000

e workercontroller.monitorinfofrequency
Defines the frequency at which the Worker-Controller module sends the worker
information to the Zagreus Server module, see = Collecting and sending worker
information. This value is defined in milliseconds.
Default value: 2000

4.3 Zagreus Worker configuration

The OS path of the configuration file of the Zagreus Worker-Controller module is
worker-controller/worker/conf/worker.properties (relative to the

Zagreus target installation folder).

4.3.1 Property lists

In the worker.properties configuration file, there are special properties which
belong together as a parameter list, such as worker.javaoptions and
worker.parameters . The general declaration format of these property lists is worker.
<property-name>.<property-index>, for example:

worker.javaoptions.l=-Xmx4096M
worker.javaoptions.2=-Xms256M
worker.javaoptions.3=-Djava.io.tmpdir=temp

4.3.2 Property declaration for specific Worker instances

Most property keys in the worker.properties file can be declared either in a
general or in an instance-specific way. Instance-specific declaration allows the user to
configure any particular Worker instance differently when needed. Configuring Worker
instances with specific parameter values can be useful in combination with queue
groups, see use case - Queue groups.

The general format is worker.<property-name>, while the instance-specific format
contains the particular Worker ID: worker.<worker-ID>.<property-name> . Resolving
the value of a specific Worker property is performed in the following order:

e instance-specific property declaration
e general property declaration
e default value of the general property

For example, the MSTR classpath of the Worker instances can be declared generally
in the following way:

worker.classpath.mstr=1ib/mstr/11.3.0760/%*

For Worker ID=2, it can be overridden with another value:

worker.2.classpath.mstr=1ib/mstr/11.2.0/*

For property lists, overriding a specific list element can be declared in the format
worker.<worker-ID>.<property-name>.<property-index> . For example, overriding the
second Java option for Worker ID=3 can be done with the following declaration:

worker.3.javaoptions.2=-Xms512M

4.3.3 Worker startup properties

When the Zagreus Worker-Controller starts the Zagreus Worker instances one by
one (see - Starting Zagreus Workers), it reads the following property values from the

worker.properties configuration file:

e worker.javabin
Defines the local OS path for the Java executable (by default it is set to use the
one shipped with Zagreus). The user should avoid using backslashes in the path.
This path can be absolute, but it is recommended to use the S{working.folder} or
the S{java.folder} subtitution string, see > File paths.

e worker.classpath
Defines the main classpath for Zagreus Worker execution. This path can be
absolute, but it is recommended to use the S{working.folder} or the S{java.folder}
subtitution string, see - File paths.

ﬁ Warning: To set the worker.classpath property under Linux, use colons
(“:") instead of semicolons (‘;’) as delimiters!

e worker.classpath.mstr
Defines the classpath specifically for MicroStrategy libraries. Since MicroStrategy
external libraries change more often than other libraries, in such cases the user
only needs to update the value of this property. This path can be absolute, but it
is recommended to use the S{working.folder} subtitution string, see - File paths.
For example, to use the libraries for MicroStrategy 11.3.0760 version, specify the
following:

worker.classpath.mstr=1ib/mstr/11.3.0760/*

On Linux/Unix systems, use the following format:

worker.classpath.mstr=${working.folder}/lib/mstr/11.3.0760/%*

e worker.javaoptions
Defines additional JVM command line options. This is a property list, see =
Property lists, so different numbers must be used as postfixes. For example:

worker.javaoptions.l=-Xmx4096M
worker.javaoptions.2=-Xms256M

Instance-specific way (see = Property declaration for specific Worker instances)
of property declaration is also possible:

worker.l.javaoptions.5=-Dworker.self.id=1
worker.2.javaoptions.5=-Dworker.self.id=2

e worker.classname
Defines the fully qualified name of the main Java class of the Zagreus Worker
module. Instance-specific way of declaration is not accessible for this property.
Default value: com.etixpert.zagreus.worker.impl.Worker

e worker.parameters
Defines additional start-up command-line parameters for the Zagreus Worker
module. This is a property list, see = Property lists, so different numbers must be
used as postfixes. For example:

worker.parameters.l=additional testparaml
worker.parameters.2=additional testparaml

Currently this property is not used.

4.3.4 Connection properties

e worker.serverport
The http port of the Zagreus Server module. Must match the value of the
server.listener.port property defined in the Zagreus Server configuration (see -
Zagreus Server configuration). This port is used for creating the default zs local
connection, see - zs connection.

Default value: 7323

e server.rmi.port
The Java RMI port of the Zagreus Server. Must match the value of the
server.rmi.port property defined in the configuration file of the Zagreus Server
(see = General properties) and the server.rmi.port property defined in the
configuration file of the Zagreus Worker-Controller modules (see - General
properties).
Default value: 6666

4.3.5 Miscellaneous properties

e worker.maxmemorytorestart
After the job execution has finished, a Zagreus Worker module can restart itself
when its memory allocation exceeds a certain limit. This property sets the
memory limit of this feature. Value -1 indicates that the given Worker should
never be restarted, while value 0 indicates that the Worker must be restarted
after each job execution. This value is expressed in bytes, but the following
postfixes are recommended to use :

o korK:1024 (i.e. kilobytes)
o mor M: 1024 kilobytes (i.e. megabytes)
o gor G: 1024 megabytes (i.e. gigabytes)

For example, the following setting sets the memory limit to 500 megabytes:

worker.maxmemorytorestart=500M

Default value: -1

e trustedstore.filename
The name of the SSL truststore file. This is the file which the additional SSL
certificates have to be installed into for secure external connections, see -

Secure connections. The location of this file is always /zagreus home/worker-
controller/worker/conf/ssl

Default value: client.trustedservers

e worker.filesystem.path
Specifies the worker filesystem path (see = Local filesystem in the Zagreus
Worker) relative to the Zagreus Worker root folder.
Default value: /filesystem

e worker.standalone.joblog.path
Specifies the joblog path that the Standalone Worker module (see - Standalone
Worker) uses, relative to the Zagreus Worker root folder.
Default value: /joblog

4.3.6 Worker-level execution options

The configuration file of the Zagreus Worker can contain one specific worker-level
option: log_level, see = List of execution options. This is optional, and it must start
with the option.worker prefix. The following example defines the execution option
log level set to debug:

option.worker.log level=debug

For more details on the option resolution precedence order, see - Precedence
order for resolution.

4.3.7 Worker-level variables

The configuration file of the Zagreus Worker can contain worker-level variables as
well (see = Declaration levels). These are fully optional, and defined in the same
key=value format as the aforementioned properties. The keys defining these
variables must start with the variable.worker prefix. The following example
defines a worker variable x with the value 3:

variable.worker.x=3

For more details on the variable resolution precedence order, see - Precedence
order for resolution.

The worker variables can be declared in an instance-specific way, just like most of
the other properties listed above. The following examples show different variable
declarations for different worker instances:

Zagreus Documentation 1.5.6.1

variable.worker.1l.x=3
variable.worker.2.x=6

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 71

4.4 File paths

In the various configuration files there are properties which need to specify a local
OS path. If the user does not like to use an absolute OS path, there is the possibility to
use a substitution for the working folder root of the corresponding module: if the string
${working.folder} is present in the path definition, that will be substituted. For
example, in the following example:

filesystem.root=${working.folder}/filesystem

If the working folder of the Zagreus Server module is C:\Program
Files\zagreus\server, the value will be resolved as:

filesystem.root=C:\Program Files\zagreus\server\filesystem

The properties which support this substitution are the following:

filesystem.root in the Zagreus Server module

e job.logpath in the Zagreus Server module

e mysql.basedir in the Zagreus Server module

e worker.rootfolder in the Zagreus Worker-Controller module
e worker.classpath in the Zagreus Worker module

e worker.classpath.mstr in the Zagreus Worker module

e worker.javabin in the Zagreus Worker module

Furthermore, for properties worker.javabin and worker.classpath, there is the
possibility to refer to the OS path of the Java root folder in the Zagreus target
installation root folder. If the string ${java.folder} is present in the paths of these
properties, that will be resolved as <zagreus home>/java . For example, in the
following example:

worker.javabin=${java.folder}/openjrell/bin/zagreus-worker.exe

If the working folder of the Zagreus Server module is C:\Program
Files\zagreus\server, the value will be resolved as:

worker.javabin=C:\Program Files\zagreus\server\javalopenjrell\bin\zagreus-
worker.exe

Info: In the Zagreus System, Java executables appear with names like
zagreus-server, zagreus-wc, zagreus-worker and zagreus-monitor (with
.exe extension in Windows) for better maintainability.

5. System setup and administration

After the installation and configuration has been successfully performed, Zagreus
needs a proper system setup including licence installation and basic user management.
Optionally, recurring administrative tasks can be configured for the Zagreus System.
Next, these features will be discussed in detail.

5.1 Licencing

Zagreus has plenty of features and provides efficient solutions for many possible
problems. Most of its functionality is offered by the large selection of actions and
actions groups. The customer needs to buy a Zagreus Licence to be able to use the
Zagreus System. The Zagreus Licence defines the feature-sets that the customer needs,
expiration date and some other personalized information. The licence is sent as an
encoded licence key to the customer and it needs to be installed on the already
configured Zagreus System.

5.1.1 Content of a Zagreus Licence

The Zagreus Licence contains the following information:

e licence type
The type of the Zagreus licence. It can be one of the following:

o Registered:
This is the standard licence type. A company needs to request a registered
licence to be able to use specific action groups and specific number of
Zagreus Workers. The licence also contains settings for all the other listed
features.

o Demo:
This type of licence allows the trying of Zagreus components for a short
period of time. The downloadable Zagreus installation provides a demo
licence by default.

e Company
The name of the company that Zagreus is registrered for.

e Licence generated date
The time the license was created.

e Expiration date
The time the license will be expired.

e Execution engines
The maximum number of Execution engines running at the same time (see >
Number of Zagreus Workers).

e Parallel loops
This specific property constraints the maximum number of parallel threads in
the z: foreach action. This powerful feature allows the script to be executed
efficiently in a parallel manner.

e Maximum users
The maximum number of users that can be created on the Zagreus Server.

e Enabled action groups
The list of action groups that are allowed to be executed.

5.1.2 Installing and listing a Zagreus Licence

The first time the user connects to a newly installed Zagreus Server, the Zagreus
Client shows a notification dialog box that a licence key needs to be installed (see
Figure 1.). Zagreus is deliberately shipped with an expired licence key to trigger this
message.

¥ Licence key expired d

[| Licence key expired, do you want to add a licence key now?

Figure 1 —The Licence key expired dialog box

After clicking on the OK button, the Licence info dialog box will appear and the new
licence key can be inserted in the Licence key field, see Figure 2.

&, Licenceinfo O X

Licencing information

You can see the licence information here,
or send a new licence key.

Licencestatus: | Company: Sample Company A
Execution engines: 5
Parallel loops: 5
| Maximum users: 3
| Current number of saved scripts: 25
| Licence type: Registered.
[licence nenarated date: 22 01 2024 05-02:11 N

Licence key:

Send licence key

Figure 2 — The Licence info dialog box

The Licence Info dialog box serves two purposes:

e Lijsting the contents of the currently installed licence
The Licence status textbox shows the details of the currently installed licence.
When the customer needs to install a new licence key for the first time, the
information in this textbox is not relevant. Otherwise, the important features of
the licence are listed here, as listed in the previous chapter.

e Providing a way to install a new licence key
The new licence key should be pasted into the Licence key textbox. After pressing
the Send licence key button, a notification message reinforces the user that the
licence key has been sent succesfully. The newly installed licence information is
automaticcally refreshed in the Licence status textbox. The Zagreus Server does
not need to be restarted.

Info: The action groups enabled by the installed Zagreus Licence are
listed in the Licence status textbox of the Licence Info dialog box in the
Zagreus Client.

5.2 Administrative scripts

The Zagreus System is shipped with pre-installed administrative scripts that help the
administrator user to perform specific administrative tasks for system maintenance.
These scripts are installed under admin/administration folder in the embedded
database filesystem, see - Embedded MySQL database. The scripts use some external
resources as well from the same folder.

v _fj;] admin
w | administraticn
~ || connections
DB MYSOL metadata
MAIL connection
w [error handling
. 1 ErrorHandler Action
%, 2 ErrorHandler Report
% ErrorHandler Call
. ErrorHandler Test
[README
] job report log
] jobs with errors log
w | schedules
U backup time schedule
[T delete jobs and logs schedule
EI‘I backup metadata
i cancel all jobs
EI‘I delete jobs
EI‘I delete logs
& job report
. jobs with errors
& long running jobs

Figure 3 — The administration subfolder in the admin user home folder

5.2.1 Connections

There are two pre-installed connections in the connections subfolder:

e DB MYSQL metadata
This is the database connection initialized to reach the local embedded MYSQL
database, see - Embedded MySQL database. This is neccessary for the delete
jobs script. When the mysql.port server configuration property is not set to the
default 3336 value, this connection needs to be modified accordingly.

e MAIL connection
This is a connection that is needed for sending error reports when necessary. This
connection is not initialized (because the SMTP settings are installation
dependent), so this must be configured properly!

5.2.2 Time schedules

There are two pre-installed time schedule resources in the schedules subfolder:

e backup time schedule

This is the pre-installed time schedule for the backup metadata script, which is
subscribed to this time schedule in the shipped Zagreus installation. The time
schedule triggers the backup script every day at 3: 00 AM, but it can be modified
to suit the needs of the actual system.

delete jobs and logs schedule

This is the pre-installed time schedule for the delete jobs and delete logs scripts,
which are subscribed to this time schedule in the shipped Zagreus installation.
The time schedule triggers the backup script every dayat 1: 00 AM, but it can be
modified to suit the needs of the actual system.

5.2.3 Scripts

The administrative scripts are located in the root of the administration folder:

e backup metadata

This script performs a database backup of the embedded MYSQL database. The
DaysToKeepJobs script variable defines the number of days to keep existing
backups. The instructions are written in the first action of the script.

cancel all jobs

This script cancels all jobs that are in the queue (i.e. with statuses running or
queued, see - Job lifecycle). The instructions are written in the first action of the
script.

delete jobs

This script deletes the jobs from the embedded database metadata that are older
than the value of the DaysToKeepJobs script variable (defined in days). The
instructions are written in the first action of the script.

e (delete logs
This script deletes log files from different log folders that are older than the values
defined in the appropriate script variables (defined in days). The detailed
instructions are written in the first action of the script.

e job report
This script generates a detailed job report and sends it in e-mail to a pre-defined
address. A job report is a tabular data with special filters, similar to the Active jobs
and Finished jobs windows in the Zagreus Client (see - Zagreus Client). The
detailed instructions are written in the first action of the script.

e jobs with errors
This script is a special case of the job report script: it filters only the jobs with
status error and sends it in e-mail to a pre-defined address. The detailed
instructions are written in the first action of the script.

e Jong running jobs
This script is a special case of the job report script: it filters only jobs with status
finished that have been running for a longer time than the running_time script
variable (defined in seconds). The detailed instructions are written in the first
action of the script.

5.2.4 Error handling

There are helper script ‘snippets’ in the error handling subfolder. These script
behave as templates, their contents can be inserted into other administrative scripts.
With the help of them, the administrator can further customize the existing
administrative scripts, e.g. a specific error handler can easily be implemented, see >
Error handling. The detailed instructions are written in the README text file in the
same folder.

5.3 Concepts of user and group management

In the Zagreus System, a user is an entity (typically a person) that interacts with the
Zagreus System via a client application to perform tasks, access resources and initialize
script execution. The user admin is the default user in a Zagreus sytem.

A group is a shared folder, to which users can be assigned, therefore gaining access
to shared resources. All users in the Zagreus System are assigned to the public group
by default.

This organizational structure helps streamline the administration of user accounts
and enhances security and efficiency.

5.3.1 Users in the Zagreus System

Zagreus provides the possibility for creating multiple users, which is necessary to
build up a safe and efficient system. In Zagreus, there are two types of users: simple
users and administrators.

The only existing user in a freshly installed Zagreus System is the user admin, which
is a default user with administrator rights. This user has the default password admin,
which is recommended to change as soon as possible, see = Password policy. The
admin user can create new users to build up a multi-user system, giving each users only
the necessary rights. Creating new users are described in details here - Create new
user. Users can only be managed by an administrator user, except for changing their
own password, see - Context menu of a user node.

Each user has its own dedicated home folder, in which it can store its own resources.
The user home folder is located in the embedded database under /users/<user-name> .
The only exception is the home folder of the default admin user, whose path is /admin .

Each user has its own dedicated filesystem root mapping as well, see - Mapping of
the root folder. The entry point of this mapping is located in the home folder of the
particular user.

Aside from the unique user name, each user is identified by a user ID as well. For the
user admin it is 1, the ID-s of the newly created users start from 100.

There is the possibility to define variables on the user level, see - Declaration levels.
It can be done in the Zagreus browser window in the Zagreus Client, see - Context
menu of a user node.

5.3.1.1 User rights

Any user in a Zagreus sytem has the rights to:

e Browse all the resources located in its own user home folder.

e Browse all the resources located in the group home folders that the user is
assigned to.

e Open, edit, copy, move, delete all these aforementioned resources.

e Execute the scripts it can access.

e Create and delete subscriptions for the scripts and schedules it can access.

e Manage the jobs it started and check out the logs of these jobs.

5.3.1.2 Administrator user rights

The administrator-type user (see - Administrator user rights) has the additional
rights to:

e Access all the resources in the embedded database and in the local filesytem. The
administrator user can open, copy, move, delete all of the resources of all other
users.

e Execute any of the scripts in the Zagreus System.

e Create and delete subscriptions for any scripts and schedules.

e Manage all the jobs and check out the logs of any job.

e Manage all users and groups.

e Start and stop system components.

e Manage the SSL certificates of the Zagreus Server and Worker-Controller.

e Monitoring all watcher and trigger resources, see - Monitor watchers, triggers.

5.3.2 Groups in the Zagreus System

Zagreus users can be assigned to Zagreus groups. User group assignments can only
be managed by an administrator user, see - Modify existing user.

Zagreus groups facilitate resource sharing and collaboration among members with
similar responsibilities or tasks.

There is the possibility to define variables on the group level, see - Declaration
levels. It can be done in the Zagreus browser window in the Zagreus Client, see =
Context menu of a group node.

Each group has its own dedicated home folder, in which the shared resources are
stored. The group home folder is located in the embedded database under
/groups/<group-name> .

Each group has its own dedicated filesystem root mapping as well, see > Mapping
of the root folder. The entry point of this mapping is located in the home folder of the
particular group.

5.3.3 Ownership of Zagreus resources

Each Zagreus resource has an ownership property (owner, see - Ownership of
Zagreus resources), which governs the access to that particular resource. The
ownership of a Zagreus resource depends on the folder where it is located. If the given
resource is located in the home folder of a user, the resource is owned by that
particular user; this means that only that user (and all the administrator users) is
allowed to access it. If the given resource is located in the home folder of a group, the
resource is owned by that particular group; this means that only users who are
assigned to this group (and all the administrator users) is allowed to access it.

Info: When the storing home folder is changed for a Zagreus resource
(because e.g. the resource was moved), the ownership of the resource
changes as well.

Warning: Ownership (owner property) and who created a resource
(created by property) are two distinct properties!

5.3.4 Password policy

The primary goal of a password policy is to enhance the security of user accounts by
promoting the use of strong and secure passwords. In the Zagreus System, the
password policy rules can be switched on for each particular user, see > Modify
existing user. When the password policy is activated, the password must satisfy several
conditions; the password must:

e be at least 10 characters long,
e contain at least one upper case letter,
e contain at least one digit,

e contain at least one special character (i.e. one of the following: &« @ # ' " + %
/= () ., ; 2 ! *<>- andspace).

An active password policy also affects password expiration and reusability. Fine-
tuning the properties of this feature can be set in the configuration of the Zagreus
Server, see - Password policy properties.

e The user needs to upgrade its password after a certain time period (configurable).
Otherwise the password will be expired and cannot be used for logging in.

e Whenever the user logs in via the Zagreus Client and the time of password
expiration is approaching, a warning message is shown. The time period threshold
of this warning is also configurable.

e The user cannot set a password used recently. The number of password changes
after which the same password can be used again can be configured as well.

6. Resources

Resources are the basic blocks of related information. They are like files and folders
in a filesystem. In Zagreus, resources are stored either in the embedded database or in
the local filesystems (both on server or worker module side). Both are located on the
server side. See - Resource storaging.

Automated workflows need a properly defined and configured underlying resource
system which includes resources containing data, resources for executable content and
also resources which are responsible for trigger mechanisms. See - Execution by
event-type resources.

The easiest approach is to treat resources as files with specific role and behaviour in

a complex automated workflow.

6.1 Resource types

There are several types of resources in the Zagreus System. Different types are used
for different roles in the execution workflow. Resource types can be grouped in the
following categories:

e folder types: They are mainly for organizing other resources.

e types with general data storage: Simple files with content that is unrelated with
the inner mechanism of the Zagreus System. For example an uploaded pdf, xlsx
or a binary file.

e resources with executable content: They store the content which the system can
execute. Scripts, templates and the separated connection resource.

e trigger types: They are responsible for defining trigger mechanisms for script
execution. They can be time-related or event-related.

Resources that are stored in the database can be all types of the following list,
however resources in the local filesystems (server or worker) can only be a folder or a
file (mapped from the operating system file system).

e Folder
Folders are ’virtual locations’. They can help in storing and organizing other
resources or folders. They have basically the same function as the operating
system folders. All local filesystem folders are mapped to this type as well.

e User home folder
This is a special folder type. It represents the home folder of a particular user. The
path of the user home folder of the “admin’ user is ’/admin’; for all other users it
is "/users/username’.

e Group home folder
This is a special folder type. It represents the home folder of a particular group.
Its path is ’/groups/groupname’.

e Filesystem root
This is also a special folder type. It represents the root of a particular user’s
filesystem mapping. It is located in the root of the user home; the name is always

<-filesystem->. Its content is mapped to the user’s server filesystem folder. See
also = Mapping of the root folder

File
Files are used to store general-purpose data. They can contain binary /
textual data. Also, all local filesystem (server or worker) files are mapped to
this resource type, regardless of their purpose.

Script

Script is the resource type where the user can define what tasks should be
executed. Scripts can be edited in the Graph Editor, and they contain the actions
in a hierarchical structure. Script content can be viewed graphically or in an xml
format. See also = Scripts.

Script variables and execution options can be assigned to a script resource, see
-> Start-up variables and - Execution options.

Connection
Connections can be viewed in two ways:

o a specific resource which stores connection parameters
o aseparate part of the script, containing the connection action for reusability

Connections can also be edited in the Graph Editor, but they most have only one
action, a connection type action (i.e. their name ending with ‘connection’).
Some connections can be opened (like a folder) in the Zagreus Browser. See also
- Connections and - Opening connections in the Zagreus browser

Template
Templates are separated, reusable parts of a script. They can be imported and
executed from a script, with passing parameters as well. See also - Templates

Time schedule

Time schedule is an event-type resource, allowing automatic script execution (see
also & Execution by event-type resources). It defines a Cron-type time-based
trigger such as repeating time intervals, time ranges, specific times etc. It uses a
Quartz Cron expression. See also - Time schedule

Event schedule

Event schedule is also am event-type resource. Events can be fired from multiple
sources (manual, from a script, through a webservice call), and that is what is
triggering it. See also - Event schedule

Mail watcher

A mail watcher is a special type of an event-type resource. It uses a mail
connection that it is periodically checking and it triggers when its specified
condition evaluates to true. See also - Mail watcher

Database watcher

A database watcher is another special type of an event-type resource. It uses a
database connection that it is periodically checking and it triggers when its
specified condition evaluates to true. See also - Database watcher

File trigger
A file trigger is checking a specified filesystem folder and triggers on specific
events e.g. file creation or deletion. See also - File trigger

6.2 Resource properties

6.2.1 List of resource properties

All resources have specific properties in the Zagreus System. Resources stored in the
database are slightly different from the ones are located in the local filesystem.
Not all properties are accessible for the local filesystem resources. The following table
shows the differences:

Property name Database Filesystem
Name

ID

Version

Type

Full path

Size

Owner name
Creation time
Modification time
Created by
Description

<SS SRR K
XX X< X K

e Name
The name of the resource. It cannot contain the character ‘/* and the maximum
length is 100 characters.

e ID
The identifier of the resource. For database resources it is a GUID (32 character
long); for referencing resources, usually the version is concatenated at the end of
the ID with delimiter ‘| &’, see also - Embedded MySQL database.
For server filesystem resources, the ID is generated from the operating system
path in the form fs/1/folder/filename.ext, see also = |D and full path format
For worker filesystem resources, the ID is also generated from the operating
system path in the form wfs/folder/filename.ext, see also = D and full path
format
Some special resources like the admin user home folder or the recycle bin folder
have special, pre-defined IDs.

Version

The version of the database resource, for example ‘1.2.3.4’.

Non-versionable resources like folders also have a version, but only the default
version ‘1.0.0.0°. See also - Current version

Type
Resource type, see also - Resource types

Full path

The full path of the resource. It starts with a ‘/* and ends with the resource name.
For filesystem resources, the path constructed of the filesystem root folder path
(/users/username/<-filesystem->’) and the mapped filesystem resource path
(“/fileSystemFolderName/localFileName’).

Size
The size of the resource by bytes.

Owner name
The owner (user) name of the resource. See also - Ownership of Zagreus

resources

Creation time
The timestamp when the resource was created.

Modlification time
The timestamp when the resource was last modified.

Created by
The name of the user who has created the resource.

Description
The description of the resource, which is a short textual element attached to the
resource. Maximal length is 255 characters.

6.2.2 Resource properties in the Zagreus Client

The resource properties can be checked in the Zagreus Client by right-clicking on the
particular resource, and selecting Resource information from the context menu.

¥ Resource info X
Resource name: % test_script
Resource id: Occbfdf37cdad8b3bd9a53f9b2f3af29
Version: 1.0.0.0, current
Resource type: script
Full path: Jusers/Test User/scripts/test_script
Size: 2777 byte(s)
Owner name: Test User
Created: 17.02.2023, 13:16:51
Last medified: 17.02.2023, 13:44:55
Created by: admin
Description:

IThis is a simple test script.

Cancel

Figure 1 — Resource info dialog

Description property can only be set from this dialog for a resource.

Info: Not all properties are listed for all types. E.g. for folders the ‘size’
property is not shown, or for local filesystem file resources there is no
version property.

6.3 Resource versioning

Certain database resources can have multiple versions. There are several use cases
when creating new versions of an existing resource is useful:

e developing complex scripts
All new changes can be saved into a new (trial) version without losing any details
of the already working script.

e keeping track of the changes over time
Versions can be treated as revisions of the same resource.

e multiple choices for tests:
Using multiple versions of the same connection resource (e.g. with different user
credentials) helps in testing different use cases. Switching between test cases is
easy by setting the current version of the resource.

Info: Only database resources can have versions, because local filesystem
resources are mapped from the OS filesystem (which natively does not
have built-in versioning).

6.3.1 Version format

The format of the version is like ‘1.0.0.0°, so it is a

n.n.n.n

format, where n is an unsigned integer number in the range of 0-99.

6.3.2 Current version

Current version is a special version among all the versions. There are built-in rules
for the resource versioning and the current version:

e Each resource has an initial version (aka default version). This is always version
1.0.0.0.

e Each resource has to have a current version. If there is only one (the default)
version for a resource, that must also be the current version.

e Only one current version can exist for a resource. When there are multiple
versions of a resource, all other versions are non-current.

e The current version can be freely selectable among versions. See also - Setting
the current version

e The resource id contains a 32 character long GUID concatenated with the
resource version by the delimiter | &

e Aresource can be referenced by only its GUID and in this case it always refers to
the current version

6.3.3 Resource ID and version

The resource ID and the version are stored together in the database in the following
format:

323eab314a5749068£d1830408d436191&1.0.0.0

where the first part is the generated 32 character long GUID, the last part is the version,
and they are concatenated by the special delimiter: | &. This fully qualified format is
the truly unique identifier for a resource. When there are multiple versions created for
a resource, their ID-s will have the same GUID part with different version parts like:

323eab314a5749068£d1830408d436191&1.0.0.0
323eab314a5749068£d1830408d43619(1&1.0.0.1
323eab314a5749068£d1830408d43619(1&1.0.0.2

This kind of ID structure assures that the versions of the same resource belong to
each other (hence the same GUID) but differ from each other (by their version
numbers).

Info: There is a useful simplification built-in to the Zagreus System:
resource referencing can be done by only the GUID part of the whole ID,
in this case it means the current version of the resource.

6.3.4 Versioning in the Zagreus Client

6.3.4.1 Listing resource versions

Versioned resources are displayed in a parent-child structure in the Zagreus Client.
If there is more than one version of a resource, the resource itself becomes a container
node for all its version.

For example, in Figure 2. the script test_script has only the default version, but
test_script_with_versions has multiple versions:

] schedules
~ [scripts
. test_script
[test_script_with_versions
] templates

Figure 2 — Versioned resources are expandable tree nodes

When expanded (by clicking on the > sign), the versions are listed as child nodes,
the version numbers are shown, and the current version is marked. The current version
is always the first element of the list, all other versions are sorted by the version
number.

] schedules
w [scripts
. test_script

[l test_script_with_versions
@l. test_script_with_versions (v1.0.0.0) current
@l. test_script_with_versions (v1.0.0.1)
@l. test_script_with_versions (v1.0.0.2)

] templates

Figure 3 — All versions are listed as child nodes

6.3.4.2 Setting the current version

Setting the current version can be done by right-clicking on the particular (non-
current) child node, and selecting Set to current version:

] schedules
w [scripts
0. test_script
v [test_script_with_versions
@. test_script_with_versions (v1.0.0.0) current
. test_script_with_versions (v1.0.0.1)

. test_script_with_versions (v1.0.0.2) Set to current versicn
EI ter‘:plates @ Openin Script editor
.autorun
[.sendscripts] Openin XML editor
3 «<filesystem-» [E] Openin Simple text editor

Figure 4 — Changing the current version

The child nodes are refreshed after this operation and the current mark is changed
accordingly.

] schedules
~ [scripts
. test_script

v [ill] test_script_with_versions
. test_script_with_versions (v1.0.0.1) current
. test_script_with_versions (v1.0.0.0)
. test_script_with_versions (v1.0.0.2)

] templates

Figure 5 —The current version is 1.0.0.1

6.3.4.3 Creating a new version

Creating a new version can be done from the Script editor by clicking the icon tool
(‘Save a new version for the resource...”) or by pressing the CTRL+Shift+V hotkey.
In the ‘Set resource version’ dialog box, the following parameters can be set:

e the new version number
e if the new version would be the current version
e adescription for the resource, see also - Resource properties

A list of the currently saved versions are displayed at the bottom of the dialog box.
The new version number must differ from any of the existing ones, and must satisfy
the version format. See also - Version format

@- *test_script_with_versions [1.0.0.2] (script) 2

H{ENE I

INCL DB_MYSQL Connection create insert select delete drop

Set resource version *

This version can be saved as a new version of this resource.

Set resource version: 1.0.0.3

] Current version

Description:

Saved versions:

1.0.0.0
1.0.0.1
1.0.0.2

Figure 6 — Creating and saving a new version

6.3.4.4 Deleting a version

Deleting a version is only possible for a non-current version. The user needs to right-

click on one of the versions of the resource and select the Delete menu item from the
context menu, see Figure 7.

[l test_script_with_versions
@l. test_script_with_versions (v1.0.0.2) current
@l. test_script_with_versions (v1.0.0.0}

. test_script_with_versions (v1.0.0.1; 5et to current version
:j :::Elates % Open in Script editor
. send_mail %] Openin XML editor
[.autorun Open in Simple text editor

2 .sendscripts

2 .serverautorun

78 «<-filesystem-» %5 Runin debug mede
B recycle bin Q

Set script variables and options...

Run script

Script subscriptions...

Send ¥
5 Select

Rename resource...
¥ Delete

Figure 7 — Deleting a script version

6.4 Resource storaging

For flexible resource-handling, Zagreus supports three kinds of resource storage:
database, server filesystem and worker filesystem (from Zagreus Version 1.5.6.0).

6.4.1 Embedded MySQL database

The database (as of Zagreus Version 1.5.6.0) is an embedded MySQL database which
is managed by the Zagreus Server module. For database settings see - MySQL
properties

The advantages of the database storage:

e Typed resources can be saved (e.g. scripts, connections, time schedules) for
specific roles in the workflow.

e Standard filesystems do not support a number of resource-related Zagreus
features: specific properties (e.g. description), variables and options for scripts,
and versioning for resources.

e It is easier to include database resources for more complex workflows like
creating a job when executing a script, filtering with properties when running a
job report, etc.

e Using resource IDs intead of paths (that filesystems only have) opens more
possibilites for synchronizing different systems (like test and production servers).

e Resources, triggers, jobs and automation are embedded into one system.

6.4.2 Local filesystem in the Zagreus Server

Each user and group has a filesystem root folder that does not overlap with
filesystem folders of other users and groups. Symbolic links under Linux / shortcuts
under Windows are supported.

The advantages of the local filesystem storage:
e Direct access for operating system files (easy access for externally generated file

resources such as Excel, PDF, etc.).
e More efficient for handling large input/output files.

e Output files with an external source or target platform (.pdf, .xlsx, images) can be
checked swifter from the local filesystem.

e Symbolic links or shortcuts for extension of the filesystem is easy.

6.4.2.1 Mapping of the root folder

When the user logs in by the Zagreus Client, the filesystem is visible in the home
folder’s root:

W ﬁ_[_| Zagreus Demo [connected]
§% groups

€ users
v _fj;] admin
] administration

] configuration filesystem root folder mapping
] connections

] resources

] schedules

O scripts

] templates

i sample_script

|:| .autorun

£ .sendscripts

|:| senverautorun

v _e <-filesystem-= }}‘Jackup

%I backup / common
_| common

listing of
server/filesystem/<userId>:

- /images
| images /pdf
| pdf /temp

& temp

Figure 8 — Filesystem root folder is located in the user home folder

The OS filesystem is mounted under the <-filesystem-> node, so the <-filesystem->
folder node is the point where the local database folder structure and the OS filesystem
are connected together.

The path of the OS folder which is mounted to this node is located in the server
module under the path

/zagreus_home/server/filesystem/<userId>

The OS folder relative to the Zagreus Server module root folder can be configured
in the configuration of the Zagreus Server by the filesystem. root setting, see -
General properties.

The <userId> part is resolved by the unique user ID, see & Users in the Zagreus
System.

6.4.2.2 ID and full path format

Since the external OS files and folders are mapped to Zagreus file and folder types
(see = Resource types), the Zagreus System is generating IDs and full paths in its own
format for these files and folders. Also, the OS files are identified by their OS path only,
so a specific OS resource can be identified in multiple ways:

OS path:
zagreus_home/server/filesystem/101/

Zagreus resource full path:
/users/testuser/<-filesystem->/

Zagreus resource ID:
fs/101/

The following terms explain the relation among the different identifiers:

e Local OS filesystem root
The main mapping root point for all the user and group filesystems of the external
operating system, see - Mapping of the root folder.

e User/group ID
The unique identifier of the particular user / group to which the filesystem
belongs.

e Local OS user / group filesystem root
The main mapping root point for the particular user or group filesystem. It is
derivated from the local OS filesystem root and the user / group ID (the
concatenation of the two).

The path of the actual resource relative to the local OS user / group filesystem
root.

e Local database filesystem folder
The Zagreus full path to the filesystem mapping folder node, see - Mapping of
the root folder.

o ‘fs’ prefix
In the case of filesystem resources, the Zagreus resource ID is generated from the
and the user / group ID. The 'fs’ prefix indicates that it is an

identifier. The ID is the concatenation of the three elements.

The Zagreus filesystem ID and full path can be used as general identifiers for
resources in the scripts.

6.4.3 Local filesystem in the Zagreus Worker

From Zagreus Version 1.5.6.0, a further storage type is accessible: the worker
filesystem. The worker filesystem is similar to the server filesystem, the main
difference being that it is located on the worker module side. It does not appear in the
Zagreus browser window, nor it is mapped under any browseable node.

The main advantages of using the worker filesystem:

e Large files (such as results of actions) can be stored immediately without
transferring them to the server side storage systems. This results in faster and
safer file I/O operations.

e This feature is neccessary for the Zagreus Standalone Worker (see - Standalone
Worker) to be able to perform file operations.

e Worker filesystem is also essential for the External Script Execution feature (see
- External script execution). Using locally stored files is inevitable for the external
execution engines to read their inputs, and their result output files are also
generated locally. They can be accessed only via the worker filesystem.

The Zagreus Execution Engine provides worker filesystem-related operations only
viathe wfile action group. In the actions of this action group, worker filesystem paths
must be used, which are relative to the worker filesystem root folder, see below.

6.4.3.1 Mapping of the root folder

The location of the worker filesystem root folder can be set in the configuration of
the Zagreus Worker (see - Zagreus Worker configuration): the
worker.filesystem.path property specifies the file system root folder name
relative to the root folder of the Worker module. If this property is not specified, the
folder name filesystem will be used as default. Thus, in this case, the worker filesystem
is under:

/zagreus_home/worker-controller/worker/filesystem

In this case, the worker filesystem path /folder/file.txt will be translated to:

/zagreus_home/worker-controller/worker/filesystem/folder/file.txt

Similarly to the server filesystem, symbolic links or shortcuts can be used.

6.4.3.2 ID and full path format

Similarly to the server filesystem resource identifiers, worker filesystem resources
also have Zagreus IDs and full paths. These can only be used in the dedicated wfile
action group.

The Zagreus System is generating IDs and full paths in its own format for these files
and folders. Also, the OS files are identified by their OS path only, so a specific OS
resource can be identified in multiple ways:

e OS path:

zagreus_home/worker-controller/worker/filesystem/

e Zagreus resource full path in the worker filesystem:
/

e Zagreus resource ID in the worker filesystem:
wfs/

The following terms explain the relation among the different identifiers:
e OS worker filesystem root

The main mapping root point for the worker filesystem of the external operating
system, see - Mapping of the root folder.

The path of the actual resource relative to the OS worker filesystem root. This is
also the Zagreus worker filesystem resource full path.

o ‘wfs’ prefix
In the case of worker filesystem resources, the resource ID is generated from the
. The 'wfs’ prefix indicates that it is a worker filesystem identifier.
The ID is the concatenation of the two elements.

/. Queuing and jobs

After initiating the execution of a script (see = Initiating script execution), Zagreus
generates a job. A job represents a task to be executed.

The system submits this task into a job queue (basically a FIFO data structure: first-
in first-out, so the first job which is put into the queue is the first one that is taken from
the queue. this can be overridden by priority execution option, see - Execution
options). Once a Zagreus Worker successfully takes a job from the queue, the execution
of the job can finally be started by the Execution Engine of the Worker, see - Zagreus
Worker.

It is important to see the difference between the script and the job. The term script
can refer to the resource type as well as the resource content. On the other hand, the
term job means the task for executing a particular script. For example, if a script is
executed three times in a row, that results in generating three different jobs. Because
of the fact that the execution of the script depends on the actual state of the
environment (for example the content of a mailbox folder, or the actual Zagreus
Worker occupancy), the results of the jobs can be very different from each other.

" Active jobs [Zagreus Demo Server]) Active logs [Zagreus Demo Server] | % Execution engines [Zagreus Demo Server] | € Finished jobs [Zagreus Demo Server] 52

Job 1D Status Script path Version Begin queue time Begin exec. time End exec. time Result message
Ocae21e9-91f7-464d-97¢1-5581267842a8 Finished /admin/scripts/sample_script 1.001 20.04.2024, 16:25:56 29.04.2024, 16:25:56 29.04.2024, 16:25:56
1cdch86f-09cd-4248-9991-d0b73734ec8b Finished /admin/scripts/sample_script 1.0.01 29.04.2024, 16:25:53 29.04.2024, 16:25:54 20.04.2024, 16:25:54
Tfbfefdc-1576-4f3e-859e-9938b7e11235 Error Jadmin/scripts/test_script with_versions 1.0.0.2 29.04.2024, 16:25:51 29.04.2024, 16:25:51 29.04.2024, 16:25:52
53dd1edb-ecf2-4bdd-a2fb-9cd4fc 1h5F76 Finished fadmin/scripts/script versioning 1.0.03 20.04.2024, 16:25:49 20.04.2024, 16:25:49 20.04.2024, 16:25:50 test
Tc489246-T7ed-4024-b872-213f07426460 Finished /admin/scripts/sample_script 1.001 20.04.2024, 16:25:47 29.04.2024, 16:25:47 29.04.2024, 16:25:48

Figure 1 — Finished jobs in the Finished jobs window in the Zagreus Client

A script executed by a user
manually

A script executed by a

A script executed by a
zs:runscript action

subscription
Job queue
job 1
job 2
job 3

Zagreus Worker 1

Execution Engine

Zagreus Worker 2

Execution Engine

Figure 2 — The relation of the scripts, the queue and the Zagreus Workers

7.1 Job properties

The job can be considered as a data structure with properties. This properies are

stored in the local database, the administrator can even check them using the local
database connection (see = Connections)

job id
A unique identifier of the job. The format follows the GUID standard.

script id and script path
The ID and path properties of the script whose execution was initiated.

script content

The content of the script which execution was initiated. It is saved for the job,
since the content of the script (i.e. the Zagreus resource) might change after job
execution.

script start-up variables and execution options

The starting variables and options which were used for the script execution. There
are many ways to specify these, such as the variables saved for the script itself in
the Zagreus local database, or the ones defined for subscriptions, as well
zs:runscript action parameters (see = Start-up variables and = Execution
options).

begin queue time and end queue time

At the moment when the job is created, it is automatically put into the queue.
This point of time is the begin queue time of the job. When the job is taken by a
Zagreus Worker to be executed, it is no longer in the queuing state (see job
statuses below). That point in time is the end queue time of the job.

begin execution time and end execution time

The point in time when the execution of the job started by the Zagreus Worker is
the begin execution time. When the execution is finished, the end execution time
is set.

job status
The status shows the current state of the job, see - Job lifecycle. It starts with
status queued then changes accordingly to the execution stages of the job.

worker id and worker-controller id
When a Zagreus Worker gets the job to execute, its worker id is stored to the job.
In default configuration, there is only one Worker-Controller set up to the system,
which has worker-controller id = 1.

user id
The id of user who manually executed the script or whose subscription initiated
the execution, see - Users in the Zagreus System

parent job id
If the execution was initiated from another script via a zs: runscript action,
the id of that job is the parent job id.

caller and caller type

caller type describes the type of how the execution was initiated, see - Caller
and caller type. The property caller stores additional information about the
initiation.

For more details on these two properties, see the following sub-chapter.

execution mode
describes the execution mode of the job. The possible values are: direct,
scheduled, fired and triggered.

priority
It is an integer value (from 1 to 1000). The lower the value the higher the job
priority is.

result and result-message of the execution
When the job successfully finished (the job status is finished), the result and
result-message of the executed script is stored. See - Result flow

7.1.1 Caller and caller type

The caller-type job property defines the type of how the execution was initiated, see
- Initiating script execution. Its value can be one of the following list elements:

e scheduler: initiated by a time schedule trigger

e gui: initiated by a user manually from the Zagreus Client

e webservice: execution initiated from the html pages or other external source, see
- Execution from external systems

e script: initiated from a zs:runscript action using local zs connection, see -
Execution from a Zagreus script

e remote script: initiated from a zs:runscript action using remote zs
connection, see = Execution from a Zagreus script

e gutorun: execution initiated by the autorun funcionality of Zagreus, see = Script
execution by autorun configuration files

e event: the execution was initiated by an event schedule, see - Event schedule

e file trigger: a certain file event triggered a file trigger (see = File trigger) which
initiated the execution of this script

e db watcher: execution was initiated by a database watcher whose condition was
evaluated to true, see - Database watcher

e mail watcher: execution was initiated by a mail watcher whose condition was
evaluated to true, see - Mail watcher

The caller job property provides additional information about the execution.
Depending on the caller type, the value of the caller property can be:

Caller type Caller property value
scheduler the time schedule id : subscription id
gui the client ip

webservice custom text, in case of a html call, it is "htm/’
script the caller script id

remote script caller script id @ ip address

autorun the constant ’ServerAutorun’

event event id : subscription id

file trigger file trigger id : subscription id

db watcher database watcher id : subscription id
mail watcher mail watcher id : subscription id

The caller and the caller type properties can be checked out and seen both the in
the Job Properties dialog in the Zagreus Monitor, see - Job properties dialog and in
the Finished jobs window in the Zagreus Client, see = Finished jobs window.

7.2 Job lifecycle

Each job has a lifecycle from the creation of the job till the job ends. When the job
is created, basic properties are filled like job id, script id, script path, script content, user
id, caller type, execution mode, priority and parent job id (if there is any).

e The job lifecycle starts with the status 'queued’. It means that the job is put into
the Zagreus job queue, waiting for taken out by a Zagreus Worker for execution.
The job property begin queue time is set at this point.

e Ifthe job is waiting in the queue for too long (the time exceeds the queue timeout
set for the script, see - General properties), the job status is set to 'queue
timeout’. The job is removed from the queue and it will not be executed. The job
property end queue time is set at this point.

e When the job is successfully taken from the queue by a Zagreus Worker, its status
is set to ’'starting’ for a very short period of time, then it is set to 'running’. The
execution of the job is starting now. The job properties end queue time and begin
execution time are set at this point.

e If the execution finished successfully, the job status is set to ‘finished’. The result,
result message of the executed script (see also - Order of execution, result flow)
is stored in the local database along with the property end execution time.

e If the execution does not finish successfully (an error has been thrown, or the
status attribute of the z : exit action was set to ‘error’, see = z:exit and z:return
actions), the job status is set to ‘error’. The result message property of the
executed script is set only if it was specified by the z:exit action. The job
property end execution time is set as well.

e Ifthe job is running for too long (the time exceeds the running timeout set for the
script, see = General properties), the job status is set to ‘running timeout’. The
system interrupts the execution of the job, and the job property end queue time
is set.

e A job can be cancelled in several ways, such as manual cancellation from the
Zagreus Client, server shutdown automatic cancellation or the zs : cancel action

(see = Server startup and shutdown properties and - Cancellation by the
zs:cancel action). The job status is set to ‘cancelled’. The system interrupts the
execution of the job, and the job property end queue time is set.

There are two further, special statuses: suspended and debugging. These are
available only if the script has been run in debug mode, see = Starting a debug session

A script executed by a user A script executed by a A script executed by a
manually subscription zs:runscript action

Status: QUEUED Job queue
job 1
job 2
Status: STARTING .
job 3

Status: CANCELLED
Status: QUEUE TIMEOUT

Status: RUNNING

Zagreus Worker 1 Zagreus Worker 2

Execution Engine Execution Engine

Status: FINISHED Status: ERROR
Status: CANCELLED
Status: RUNNING TIMEOUT

Figure 3 — The job statuses in the same structure as in Figure 2

7.3 Queue

The queue (or job queue) is a data structure managed by the Zagreus Server. It is
basically a priority queue (see = Priority and priority algorithm) stored in the memory
and in the local database as well. The Zagreus Workers (with their Execution Engines,
see - Zagreus Worker) are connected to the queue, and are constantly trying to get a
new job to execute. When a Zagreus Worker finally obtains a job, it starts to process it
and the status of the Worker is turning to busy. The particular job is removed from the
queue.

The job queue can be stopped from the Zagreus Client (see - Stop / start server
components) and from the Zagreus Monitor (see - Additional options) applications.
When the queue is stopped, it can not receive any new jobs and the currently queued
jobs will not be passed to any Zagreus Workers.

7.3.1 Queue groups

All the Zagreus Workers are connected to the aformentioned job queue. Therefore,
each given job can be assigned to any of the Workers. However, sometimes there is a
need to override this default behavior of the dispatcher mechanism.

For example, there may be a need for a specific Worker to be configured using a
different library path than the others (such as libraries of different MicroStrategy
versions). Defining queue groups can be a solution for this scenario.

A queue group is a set of Zagreus Workers. By default, there is only one queue group
in the system (the default group), and all Workers belong to this group. However, the
user can define custom queue groups. This means that the Zagreus Workers will be
split into groups.

Custom queue groups can be defined in the Zagreus Server configuration, see -
Zagreus Server configuration.

Example: Suppose the Zagreus System allows to use up to five Zagreus Workers.
Defining two queue groups would look like this in the configuration file:

queue.groups.num=2
queue.groups.l.worker=1.1,1.2,1.3
queue.groups.2.worker=1.4,1.5

This means that two different queue groups are defined. Group 1 is associated with
Worker 1.1, Worker 1.2 and Worker 1.3 while Group 2 is associated with Worker 1.4
and Worker 1.5. For fully qualified Worker numbers, see = ID of the Zagreus Worker .

Overlapping between two queue groups is not allowed, i.e. one worker can only be
assigned to one worker group. All the workers need to be assigned to a group.

When there are two or more groups, the jobs can still be executed by any of the
Workers until an additional setting is specified: assigning a script to a specific queue
group. Since any group is associated with specific Workers, the script can only be
executed by those Workers.

The execution option queue_group_id needs to be set in order to assign a script to
a queue group, see —» List of execution options.

In the example above, if the user wants a script to be assigned to Worker 1.4 or
Worker 1.5, the execution option queue_group_id needs to be set to 2.

7.3.2 Queue-level variables

Variables can be defined on the queue level. They must be declared in the
configuration of the Zagreus Server. Variable resolution and their precedences are
described in details, see - Precedence order for resolution.

Example:

This is a queue-level variable (resolved as ’'x’ in the script)
variable.queue.x=1

7.3.3 Priority and priority algorithm

The job queue is a priority queue. It is very similar to a standard FIFO (first in — first
out) queue but with an added feature: each element has a priority associated with it.
Elements are dequeued based on their priority rather than just their order in the
queue.

The priority of the job can be set by the priority execution option (see = List of
execution options) which is a numeric value, set to the value 10 by default. If the
default value of this option is not overriden, the queue will behave accordingly to the
FIFO behaviour: the first queued job will be achievable to a Zagreus Worker first, then
the second one and so on. But if there are jobs in the queue with different priority
values, jobs with lower priority values will be taken out from the queue earlier (so the

queue is ordered by the priorities). This way, more important jobs can be put to the
beginning of the queue.

Warning: The word priority can be misleading, as high-priority jobs have
low prioritiy values and vice versa.

There is a case, though, which should be avoided. Assume that there are many jobs
in the queue with different priorities, and high-priority jobs (i.e. those with low priority
values) are regularly put into the queue. Because the number of Zagreus Workers is
limited, these high-priority jobs will always occupy the Workers, so the low-priority
jobs would be waiting for a very long time. To prevent this case, Zagreus offers a built-
in feature called priority algorithm. The priority algorithm works in the following way:
each new job passed to a Zagreus Worker automatically decreases the priority value of
all the other, queued jobs. Therefore, over time, the relative importance of these jobs
will be slowly increased against the newly queued jobs.

This algorithm can be switched on or off from the Zagreus Client (see - Stop / start
server components) and from the Zagreus Monitor (see - Additional options)
applications.

7.4 Hidden jobs

There may be cases when specific jobs are scheduled to run quite often, and this
makes monitoring the other jobs in the Zagreus Client and in the Zagreus Monitor
challenging. Zagreus offers two solutions for hiding these jobs from monitoring.

7.4.1 The job_monitoring execution option

Hidden jobs can be defined by setting the job monitoring execution option. By
default, it is true. When it is set to false, the executed job is only visible if the client
applications explicitly ask for it.

For the Zagreus Client application, this explicit option can be set by the Show hidden
jobs checkbox in the Finished job report parameters dialog box, see Figure 4.

Relationship between columns: | AND rows: |OR ~

Lirnit rows: 1000
[] Show hidden jobs

[] Use sorting:
Sort result by Direction
Begin queue time descending

Figure 4 — The Show hidden jobs setting in the Zagreus Client

For the Zagreus Monitor application, this explicit option can be controlled by the
Show hidden jobs checkbox on the main toolbar of the connected server pane:

] Zagreus Demo Server [connected] !

192,168.50.170:7323 (v1.5.5.7)
Show All | Control Components| | Show users [J show Engine€_ (] Show hidden jobs

Script Mame Version Subs..

check-report 1.0.0.0 17

Figure 5 — The Show hidden jobs setting in the Zagreus Monitor

Execution options can be set in several ways in Zagreus, see - Declaration levels .

7.4.2 The invisible result message

The Zagreus Client also provides an application-level solution for the
aforementioned problem. By default, the Finished jobs window also filters out jobs
which have a specific result message: invisible. A predefined condition is set for the

Result message column in the Finished job report parameters dialog, as shown in Figure
6. Since it is an application-level solution, this filter can be changed (or solved by

another filter) to match special user requirements.
This filter works only if the particular script has a result-message set to ‘invisible’,
see - Result flow for understanding result-message and = z:exit and z:return actions

for setting the result-message in z : exit action.

e
nd exec.t.. Exec.mode Beginque.. End gueue.. Result mes.. Caller Caller type MNumber
Show [show Show [Jshow [show [show [Jshow Show
> <
¥ Condition parameter >
£ >
Relationshi Result message: | <= w HrwlSlbIe |
Lirnit rows:
[] Use sortmg:

| Sert result by

Directio

n

Figure 6 — The condition for the Result message column in the Finished job report parameters dialog

Figure 7. shows an example for using the z:exit action to set the result-message

of the script to ‘invisible’.

Figure 7 — The result-message invisible set by the z:exit action in a script

[allt][T[c]

al[t1[1][c]

Thiz is an invisible script
in the Zagreus Client (GUI}

message = invisible
status = finished

7.5 Skipped jobs

Skipped jobs is a concept in the Zagreus System: these are scheduled jobs which
were not executed, mostly due to an unexpected server shutdown. The user can check
these non-executed (i.e. skipped) jobs by the Zagreus Client and the Zagreus Monitor
applications.

Since the Zagreus Server and its database were down, there are no possible
database entries or log messages about which jobs were skipped. Because of this, the
list of skipped jobs can only be estimated later on, when the Server has been restarted.
The system examines all the calculated points in time according to script subscriptions
and their underlying time schedule definitions, and tries to figure out if a job associated
with the corresponding script has been queued at the given moment of time.

7.5.1 Skipped jobs in the Zagreus Monitor

In the Zagreus Monitor application, skipped jobs are automatically displayed on the
Timeline (depending on the state of the skipped checkbox in the Status filter, see >
Status filter). As it is seen in Figure 8., skipped jobs are represented by red triangles.

[} Zagreus Demo Server [connected]
192.168.50.170:7223 (v1.5.5.7)
Show All | Control Compenents| | Show users []Show Engines [] Show hidden jobs [Merge lines by scrip

Script Name Version Subscr.id. Last Status Last Begi

{1 admin task_example 1605 H finiched N S i A

Figure 8 — Skipped jobs

By clicking on the red triangle icon, the Skipped job dialog opens, see Figure 9. All
the fields which make sense are filled the same way as for the Job properties dialog
(see = Job properties dialog). Note that the Begin Queue Time field shows the
estimated scheduled time, indicating that the job has never actually run.

B " Skipped job d

Info Starting variables Monitoring variables
lob Properties

Script Mame: sample_script
Scriptld: 7730421717c5480d98b0beb76badfbd7|81.0.0.0
Script Path: /admin/sample_script
Script Version: 1.0.0.0
Jobld: Skipped job
Status: skipped
Worker Id:
Execution Mede:
Begin Queue Time: 2024/03/08 08:23:00 (has not run)
End CQueue Time:
Begin Execution Time:
End Execution Time:
Schedule path: /admin/every_min
Scheduleid: d72603847c724adeaf3f98c35aeced38]&1.0.0.0
Subscription id: 3774
Result Message:
Caller Type:
Caller:

Parent Job Id:

Cancel job Show parent job Get log Close

Figure 9 — The Skipped job dialog box in the Zagreus Monitor application

7.5.2 Skipped jobs in the Zagreus Client

In the Zagreus Client, a dedicated window can show the skipped jobs for a specified
time interval. By default, this window is not open, the user needs to select the Skipped
jobs window menu item from the main Window menu. The appearing Skipped jobs
window (see Figure 10.) shows the list of the skipped jobs from the last 24 hours.

" Active jobs [localhost] | 2] Active lags [localhost] | % Execution engines [localhost] | Il Skipped jobs [localhost] &2 G| v = 8

+

Script path Subscription id Schedule path Skipped scheduled time K
~ fadmin/sample_script

5774 Jfadmin/every_min 01.03.2024, 11:01:00

5774 fadmin/every_min 01.03.2024, 11:02:00

5774 fadmin/every_min 01.03.2024, 11:03:00

5774 fadmin/every_min 01.03.2024, 11:04:00

5774 fadmin/every_min 01.03.2024, 11:05:00

5774 Jfadmin/every_min 01.03.2024, 11:06:00

5774 /admin/every_min 01.03.2024, 11:07:00 v

Figure 10 — Cancelling a running job by right-clicking on the job in Active jobs window

The skipped jobs are shown in a tree-table, where the skipped jobs belonging to the
same script are grouped together. The script nodes can be expanded or collapsed. Each
row then contains the following information in its columns:

e Script path: the path of the script that is associated to the skipped job

e Subscription id: the ID of the subscription that should have initiated the execution
of the script

e Schedule path: the path of the time schedule that is associated to the subscription

e Skipped scheduled time: the time when the job should have been created

The default grouping and the time interval of the skipped jobs can be modified in
the Skipped jobs window preferences dialog (see Figure 11.), which can be open by

—+*]
. s I .
clicking on the + icon.
3
From server: | localhost (127.0.0.1:7323) w
Range from: |2024.03.01. [~ | [11:00:00 .

Range to: |2[)24. 03.01. [E~ | |‘IE:DD:DD 2 [Juse always current time as 'to’

Group result: | By script ~

Figure 11 — Cancelling a running job by right-clicking on the job in Active jobs window

In the Skipped jobs window preferences dialog, the user can set the following
properties for the skipped job estimation:

e From server drop-down list
The user can select the Zagreus Server connection from the list of opened
connections.

e Range from time selectors
The user can set the start time for the skipped job estimation. By clicking on the
[~ icon, the user can select the start date from the appearing date picker widget.

e Range to time selectors
The user can set the end time for the skipped job estimation. By clicking on the
[~ icon, the user can select the end date from the appearing date picker widget.

e Use always current time as ‘to’ checkbox
If set, the skipped job estimation will always take the current time as the end
date, ignoring the value in the Range to time selector.

e Group result drop-down list
The user can select the field on which the skipped jobs will be grouped together.
Possible values are: By script, By subscription and By schedule.

7.5.3 Setting the tolerance

There is a certain tolerance used for the calculation of the skipped job list, set by the
queue.skippedjobs.threshold property in the configuration of the Zagreus
Server, see - Miscellaneous properties. The default value is 5000 (in milliseconds).

This tolerance value is used when the system is checking if any jobs has been created
at a given calculated point in time according to the subscriptions and time schedules.

Example:

A script called script 1 was subscribed and scheduled to be executed at every
hour on weekdays, and the server was down for two hours on a Friday from 10:55 to
13:10. Assuming that no further issues were experienced with Zagreus Server on this
day, there are three skipped jobs for script 1 (at 11:00, at 12:00 and at 13:00).

After the Zagreus Server has been restarted, and the client applications are
connected again, there are ways to check if there was any skipped jobs during the
shutdown period (see = Skipped jobs). Possible skipped jobs are always calculated in
a user-defined time range. So, if the user likes to see the skipped jobs from e.g. on
Friday, the system calculates points in time when script 1 should have been
queued: 00:00, 01:00, 02:00, ... 11:00, 12:00, 13:00, etc. To find out, the mechanism
checks if there were any corresponding scheduled jobs queued around these times.

Because of the fact that queuing is not happening immediately, the checkout for
finding these jobs needs to use a tolerance: if the tolerance is set to 5000 milliseconds,
it means that a job corresponding to script 1 (started by the corresponding
subscription) queued at 09:00:04.100 is accepted as one started at 09:00, since the
time difference is only 4100 milliseconds.

Example:

This setting increases the tolerance to 10 seconds
queue.skippedjobs.threshold=10000

7.6 Cancellation

Job cancellation can be initiated by the user manually or the automatically by the
Zagreus System. Cancellation is especially useful when:

the job is running for an unreasonable long period of time

the job execution is hanging and not responsive

the job has been started accidentally

the memory consumption of a Zagreus Worker exceeds the configured limit
7.6.1 Manual cancellation
The user can cancel a single job manually in several ways:

e in the Zagreus Client, via right-clicking on the job in the Active jobs window:

@ Active jobs [Zagreus Demo Server] &2 | & Active logs [Zagreus Demo Server] %%, Execution engines [Zagreus Deme Server]

Job 1D User D Script path Version
Oaef543f-0ela-4169-bbd2- b2fd 179359 1 /admin/connections/sample_scrint 1nnn
Open script

Cancel job

Cancel all jobs...

Figure 12 — Cancelling a running job by right-clicking on the job in Active jobs window

e inthe Zagreus Client, via right-clicking the particular Worker row in the Execution
engines window, on Worker Information tab:

n Active jobs [Zagreus Demo Server] 1) Active logs [Zagreus Demo Server] %%, Execution engines [Zagreus Demo Server] &2

Worker information Worker-controller logs

Warker Controller Worker id Status Enabled Started CPU cores Job id
v Worker Controller 1 Running 28.03.2023, 11:08:03
1 Idle yes 06.04.2023, 13:3:17 6
2 ldle yes 06.04.2023, 13:39:35 6
3 Busy yes 06.04.2023, 13:37:47 & Dae¢ L
4 Idle yes 06.04.2023, 133751 6 ERabieons

Disable worker
Stop worker
Restart worker
I Cancel job l

Cancel all jobs...

Start new worker...

Figure 13 — Cancelling a running job by right-clicking on the job in Execution engines window

e in the Zagreus Monitor, clicking on the Cancel job button in the Job properties
dialog box, see - Job properties dialog:

B Daef343f-0ela-4169-bbd2-b2fd17cf3359

Infao
Job Properties
Script Marme:

Scriptld:

Script Path:
Script Version:
Job ldk:

Status:
Waorker Id:
Execution Mode:
Begin Queue
End CQueue Time:
Begin Execution
End Execution Tirme:
Schedule path:
Schedule id:
Subscription id:
Result Message:
Caller Type:
Caller:

Parent Job Id:

Cancel job

Starting variables Monitoring variables

sample_script

a14ff341c5504d5eBeba7dcbalt316d3]&1.0.0.0

Jadmin/connections/sample_script

1.0.0.0

Daef343f-0ela-4169-bb42-b2fd17cf9359
running

1.3

direct

2023/04/06 13:39:23

2023/04/06 13:39:23

2023/04/06 13:39:23

n/a

Show parent job Get log

Cloze

Figure 14 — Cancelling a job with the Cancel job button in Zagreus Monitor

7.6.2 Multiple cancellation by job statuses

In the Zagreus Client, there is a way to cancel multiple jobs at once. The Cancel jobs
dialog box (see Figure 15.) can be opened by the following menu items:

e right-clicking the job in Active jobs window (see Figure 12.) and select Cancel all
jobs...

e right-clicking the worker in Execution engines window (see Figure 13.) and select
Cancel all jobs...

e right-clicking the server definition node and select Administration options /
Cancel all jobs...

8 Cancel jobs x

[Running
[Queued
[Suspended
[starting
[Debugging

Cancel jobs Close

Figure 15 — The Cancel jobs dialog box

In the Cancel jobs dialog box, the user can filter which running statuses are going to
be cancelled. For a list of job statuses, see = Job lifecycle.

7.6.3 Cancellation by the zs:cancel action

Cancelling can also be done using the zs : cancel actionin a script. Figure 16. shows
the case when the action cancels one particular job, identified by its job id.

al[t][][e]

connection-name =

job-id = Daef543f-0ela-4169-bbd2-b2fd17cf9359

Figure 16 — Cancelling a job with the zs:cancel action by job-id

The zs:cancel action can also cancel multiple jobs just like using the Cancel jobs
dialog in the client applications (see - Multiple cancellation by job statuses). Figure
17. shows an example for cancelling all the jobs with queued and running statuses.

al[t][1][c]

connection-name =

status = gueued;running

Figure 17 — Cancelling all jobs with the zs:cancel action by job statuses

7.6.4 Zagreus Server startup and shutdown cancellation

Jobs can be cancelled automatically on Zagreus Server startup at shutdown. This can
be configured in the configuration of the Zagreus Server (see = Zagreus Server
configuration). The following settings are configurable:

e server.canceljobs.onstop

If this boolean setting is true, the server will cancel all jobs on shutdown that have
one of the following job status: queued, starting, running, suspended and
debugging. The default value is true.

Cancelling the jobs during shutdown is recommended in order to prevent jobs
remaining in an inconsistent state. Though a Zagreus Worker can still continue to
execute a job when the Zagreus Server is shut down, the queue is not active on
the server side, so the Server and the Worker cannot be synchronized anymore.

e server.canceljobs.onstart

If this boolean setting is true, the server will cancel all jobs on startup that have
one of the following job status: queued, starting, running, suspended and
debugging. The default value is false.

This is useful when there are jobs left in the queue (stored in the queue in the
database when the Server was down) which the user does not want to execute.
Practically most of these jobs are in an inconsistent state anyways, so cancellation
of all jobs is highly recommended by using the server.canceljobs.onstop setting.

7.6.5 Zagreus Worker automatic restart cancellation

The job status can be canceled in the rare case when the communication between
the Zagreus Worker-Controller and the Zagreus Worker has been lost. If the duration
of communication outage exceeds the default 30 seconds value, the Worker-Controller
automatically restarts the particular Zagreus Worker. If there was a running job on the
given Worker, the status of this job will be set to canceled.

The default threshold of this behavior can be set in the Zagreus Worker-Controller
configuration (see - Worker-related properties), with the
workercontroller.workerrestarttimeout property.

8. Scripts

Scripts are the most important resources in the Zagreus System. They contain
executable actions in a flexible structure which makes possible to define a proper
execution order for the actions and the dataflow pipeline among the logical parts of
the script.

Scripts use a hierarchical model to define a sequence of executable actions. Actions
are the basic building blocks of the script, so the script resource is a container for its
own actions. Scripts contains all the actions that belongs to the same logical workflow.
Scripts are stored in a XML format (see - XML representation), but they are viewed
and edited in the fully-featured Script Editor in the Zagreus Client, see = Script Editor.

Though templates are technically different resource types, they strictly belong to
the script execution mechanism, so they are described in this chapter as well.

8.1 Actions

An action represents a basic function or feature that can be executed. It can
transport or transform data as well as perform complex operations in the background.

8.1.1 Action groups and action name

Actions are divided into logical groups (Action groups, e.g. file, mail or db).
Each action has a unique, fully qualified name containing two parts separated by the
“:” character: the action group title and the action name like file:read or db:sql.
All actions in the same group have the same action group qualifier. The basic form is
then:

<actionGroupTitle>:<actionName>

[json

(= kafka

= Idap]
ldap:connection
Idap:search

Idap:test

= mail

= Microsoft

= MSTR Administration
= MSTR Reporting

Figure 1 — Actions are listed in groups on the palette

Technically this is stored as a namespace-prefix and element name in the XML
correspondingly. Fully-qualified names are useful to avoid collisions (for example,
db:connection and 1dap:connection actions are different actions). This name is
always written on the action icon or container (depending on which view mode is used,
see also - View modes)

8.1.2 Action attributes

Attributes are the input parameters of the action, they store name-value pairs,
similary to the case of XML attributes. The user can set a parameter by selecting the
attribute name and specifying its value.

Action documentation can be displayed by right-clicking on the action name in the
palette (see also - Action help).

8.1.2.1 Predefined and common attributes

There are predefined attribute names for each action, which are action-specific
inputs for the particular feature, and there are also common attributes which can
freely be used for every action. These latter define some common functionality, e.g.
the output common attribute is used for storing the result of the action in a file
resource.

a|[t][T][c]
path = fusers/Demo User/scripts

filename =
detailz = true

recursive = false
cutput = fusers/Dema User/file_list.tet

Figure 2 —File:dir action with a common attribute

For example, in Figure 2., the file:dir action has four pre-defined attributes
(path, filename, details and recursive), while output is a common attribute which was
added manually.

The pre-defined attributes are shown in the Script Editor after drag-and-dropping
an action from the palette (when the view mode is set to Full, see also = The full view
mode). The common attributes can be drag-and-dropped to an action from the palette
too.

Attributes can be edited in several ways in the Script Editor, see - Attributes.

8.1.2.2 Required and optional attributes

There are attributes which are required (mandatory) to be able to process the given
action. These attribues must be filled by the user. Sometimes these values are already
filled when the action is created in the Script editor. Required attributes are indicated
in the Documentation dialog, see = Action help. If the value of a required attribute is
left empty, an error will be thrown.

Other attribues are optional, i.e. they can be left empty. Optional attributes can still
have a default value even when they are not specified, see also the Documentation
dialog - Action help.

8.1.2.3 Attribute value types

Textual, numeric and date types are stored as textual values and checked only

during the execution of the script.
There are some special types though, which can restrict the value selection:

e elements from a list
there are attributes that expect their values from a predefined list. The user can
select a list element from the Attributes dialog box, see - Attributes

(L

Mame Value

name
filenarme

content-type application/pdf v
application/json
application/octet-stream
‘application/pdf
application/zip
image/jpeg
image/gif
image/png
text/htrml
text/plain

Figure 3 — An example for the list selection of an attribute in the Attributes dialog box

e boolean
other attributes can have a boolean type logical value as true/false. This is also
selectable from a combo box in the Attributes dialog box, see = Attributes

(L

MName Value
connection-name

resource-id

resouUrce-name

permanent

Figure 4 — An example for a boolean type attribute in the Attributes dialog box

8.1.3 Action content

Actions can contain further elements inside. In some cases, child content is needed
for the proper action performance (for example, mail:body is needed as a child
action of mail: send parent action), while in some other cases a dataflow pipeline is
implemented by this way (amail:attachment parent action containsa file:read
child action, in order to attach a file to the email). Sometimes a simple textual content
is enough as an input for the particular action (for example z: 1og action).

8.1.3.1 Textual content

An action can contain a simple textual content just like PCDATA in an XML element.
Some actions expect text content only (e.g. z: 1og, db:sqgl), while others can process
textual content and other child action content together (e.g. rest:call).

Textual content is processed in UTF-8 encoding.

ElIRINIE

level =

nul-fermat = null

This is a log message.

Figure 5 — Textual content of a z: 1og action

Textual content can be edited in several ways in the Script Editor, see - Text content

8.1.3.2 Child action content

Actions can also contain child actions. They are special or general inputs for the
given action. The ouput result of the child actions serve as the input of the parent
action.

For the order of processing actions, see - Order of execution, result flow, for
checking the result pipelines, check = Pipelining actions.

al[t][1[c]
x8l= fusers/Demo User/ < -filesystem- > /sample.xsl
xshvalue =

write-xml-header = true
merging = false
encoding =

log = true

&l (1.1 fileread
al[tI[t]le]

filename = fusers/Demo User/<-filesystern-=/input.xml
binary = false
encoding = UTF-8

Figure 6 — An example for a child action serving as an input to the parent action

There are several types of child actions:

e A child action which provides output for further usage
This is the most general case: a child action generates an output which is used as
an input of the parent action. See result flow - Result flow .

[al[t][][c]
output = test.zip
password =
B 11 zipitem B 1.2 zipitem
[a][t][T][c] [a][t][T][c]
[filename = out.bet || [[fiename = out2.tct |
111 1.21
file:read file:read

Figure 7—-A zip: file parent action uses the outputs of the zip: item actions.

They also pipeline data from their own file:read action children

e Some child actions can be used with a particular parent
these child actions make sense only with the parent action together, and the
parent actions may need them as a mandatory child action or as an optional one.
For example, action z: in can and must be the child of action z: foreach, just
as the relation between mail :body and mail:send:

ieEEELIe — B 3 mail-send

- al[t[1][e]
parallel = 1 connection-name = connection nam
monitor-counter = false from = your address

z:in

multipart = true
d
—

mail-body

Figure 8 — Child actions belonging to particular parent actions

e A child action that behaves as an attribute

In some rare cases, setting an attribute value is not possible or not convenient for
an action. In these cases, an attribute can be changed to a child action which has
the same name as the attribute was. There is a context menu to do it in the Script
editor, see - Attribute as child element

These are so-called pseudo-actions because they do not exist in the palette and
thereis no list of their possible names. Any predefined attribute can be converted
to a child element. Figure 9. shows a use case where an attribute value would be
read from a file. The first and second picture behave just like the same, the pdf-
name attribute was converted to a pdf : pdf-name child action. Then in step 3,
the original value was replaced for one that is set by a file: read action output.

B [1 pdfioad

al[t][1][c]

pdf-name = /admin/<-filesystem- > /temp/sample.pdf
encrypt-output = false

B pdfoad
BAIRNE

| encrypt-output = false

B 1.4 _pdf pdtname
EIRINIE

fadmin/=-filezystem-=/itemp/sample.pdf

B 1 pdfload
[al[t][T][c]
[encrypt-output = false |

1.4 pdfpdtname NN
EAIRINIE

il 1.1 fileread
a|[t][1][c]
filename = fadmin/pdf_file_name.tct
binary = false

encoding = UTF-8

Figure 9 — Usage of an attribute converted to a child action

8.2 Order of execution, result flow

In Zagreus, script execution follows a comprehensive logical pattern in terms of
execution order of actions and input-output data flow. The order of execution can be
imagined horizontally (sibling actions are executed one after the other), but the data
flow is going vertically, from inside to outside — from the child action to the parent
action. This way, a wide variety of use cases can be implemented easily in a Zageus
script.

8.2.1 Ordering numbers

Each action has an ordering number. This is visible before the action name in the
Script editor.

On the root level (i.e. canvas) the ordering numbers are simple ordinal numbers like
1, 2, 3 etc. Following the hierarchical model, child actions are numbered with prefixes
of the ordering number of the parent. Thus, the first child of Action 2 will have the
ordering number of 2.1.

In Figure 10., a general structure is demonstated:

[a][t][T][c]
|E| 1-2
z:block z:block
ElRINE
[~ [24 z:block N
[a][t][T][c]
1 1
z:block z:block

Figure 10 — Parent-child actions and siblings

8.2.2 Execution of an action

The execution of an action consists of three different steps:

1) Processing and evaluating the attributes
All attributes from the pre-defined list of the action are read by the processing
engine. If needed, variable references in attribute values are resolved at this
point.

2) Processing child elements
If the action contains any child elements (i.e. child actions or textual content),
they are executed.

3) Processing the actual action
After processing all possible inputs for the action (i.e. attributes and child
elements), the processing engine finally executes the actual action.

8.2.3 Result of an action

Executing an action does not only mean that the given action performs a specific
task, but it can also produce an output called action result. For example, the result of
a file:read action is the content of the specified file. The type of the action result is
one of the Zagreus data types, see - Data types.

The result can be accessed in one of the following ways:

e Implicitly propagated
If an action has a result, it is always implicitly propagated upwards to the parent
action, see - Pipelining actions.

e alias and alias-global attributes
The action result can manually be stored in a script variable (see - Variables) by
the alias and alias-global attributes, see - alias and alias-global attributes.

e output, debug-output and worker-output attributes
The action result can manually be stored in a simple file by the output, debug-
output (see = output, debug-output and output-encoding attributes) and worker-
output (see > worker-output attribute) attributes.

8.2.4 result-message of the script

The script itself can also have an output that is stored in a job property called result-
message (see - Job properties). The result-message of the script is a textual value

which can provide useful feedback for the user about how the execution went. It can
be set in the script by the z:exit action, or by the exit-message attribute of any
action, see - exit and exit-message attributes. It can be read from the finished job by
the Finished Jobs window in the Zagreus Client (see = Finished jobs window), the Job
properties dialog of the Zagreus Monitor (see = Job properties dialog) or by the
zs:jobinfoand zs:joblist actions.

For example, if the script ran successfully, the last action can be a z:exit action
with a human-readable message that can be seen in the Finished Jobs window in the
Zagreus Client. This way, not only the job status would inform the user about the status
of the script, but also the result message can reinforce the successful execution.
Another possible use case could be to distinguish multiple scenarios where the script
execution was successful.

8.2.5 Basic traversal of the actions

Script execution always starts with executing Action 1. This is the entry point of
the execution for the whole script.
Actions with child contents are processed in the following way:

e The parent action processes its own child actions first (if any) in the order of their
ordering numbers. This happens in a recursive manner.
e Then the action itself is processed, i.e. it is performing its own function.

In the example of Figure 10., the execution order is the following:

1) Execution starts with Action 1. This action has child actions, so it processes
them first. Action 1.1 andAction 1.2 are processed one after the other.

2) Then Action 1 itselfis executed. If there were any outputs of its children, it can
use it as its own input, see - Pipelining actions

3) Execution is followed by Action 2. It has a child action, Action 2.1, so
Action 2 startsto process its child first.

4) Action 2.1 also has children, so it processes them first. Action 2.1.1 and
Action 2.1.2 are processed respectively.

5) Action 2.1 is executed. If there was any output from its child actions, it can
use them as its own input, see = Pipelining actions

6) Action 2 is executed last. It can also use the output of Action 2.1 asits own
input.

So the execution order is:

Action 1.1
Action 1.2
Action 1
Action 2.1.1
Action 2.1.2
Action 2.1
Action 2

8.2.6 Special control flow statements

Control flow statements change the flow of execution. Following the logics of
programming languages, Zagreus has several control flow statement actions and
attributes. These structures are used in the script in order to control the flow of
execution based on a condition or a loop definition.

8.2.6.1 z:if action

The z:if action is a conditional control flow action that allows to execute a
different child action of the parent action, based on a specified condition. This
condition is set in the test-expr attribute. The dedicated children elements are z : then
and z:else. For example, the script displayed in Figure 11., prints “less than five”.

|~ 11z variable NN
[al[t]T]lc]

|name=x |

3

ECESEEEEE———]
[T][]

|test—ex|:|r =x<5 |

= 24 zthen NN = 22 zelse NN
[al[t][][e] [al[t][][e]

~ 214 zlog NN

[allt][T][e] [allt][T][e]

less than five at least five

Figure 11 — Example for a z: i f action

8.2.6.2 test-expr attribute

The test-expr attribute is also common attribute, i.e. it can be set for all actions, not
just for z : i £ (see previous sub-chapter). The evaluation result of the attribute decides
whether the action is to be executed or not. Figure 12. shows an example for the usage
of this attribute: the Action 4 will not be executed because the expression specified
evaluates to false.

= 1 z:wvariable

[a][t][T][c] [al[t][T][c]

[name = x | |gizprayed

3

[a][t][T][c] [al[t][T]c]

[testexpr = x<5 | [[testexpr=1x>5 |
displayed not displayed

Figure 12 — Example for the test-expr common attribute

8.2.6.3 z:switch action

The z:switch action is a control flow action that allows one selection of several
choices to be executed, based on a specified condition. This condition is set in the test-
expr attribute. The dedicated child elements are z:case and z:else. Former sub-

actions define what to execute on the matching condition, latter is the default / else
branch.

[al[t][T][E]
|te.st-expr=x |
~ |21 zcase NN [22 z:case NN
[al[t][1][c] [al[t][1][c] [a][t][1][c]
[value =1 [] vale =2 |
~ 214 ziog N |~ 221 zlog NN [T I
EinniE EIRINIE all other cases
case ong case two

Figure 13 — Example of a z : switch action

8.2.6.4 z:for action

The z:for action is a control flow action that allows to iterate over a range of
numbers. The content of the z:for action is executed within each iteration. For
example, Figure 14. shows a z : for action which logs the numbers 1, 2, ..., 10.

a[t][1[c]

loop-counter = |

fram =1
to=10

al[t][t[c]

level =

nul-format =

Si

Figure 14 — Example of a z: for action

8.2.6.5 z:foreach action

The z:foreach action is a control flow action that allows an iteration over the
elements of a pre-defined list. This pre-defined list has to be defined in the mandatory
z : in first child element which can also be specified as the attribute in. In Figure 15.,
the foreach loop logs the first ten prime numbers.

[al[t][T][c]

[key =k |
[al[t][T][z] [a][t][T][c]
§([2,3,5,7,11,13,17,18,23,25T} | [sk

Figure 15 — Example of a z:foreach action

The z: foreach action has a special parallel thread feature, see - Parallel threads
in the z:foreach action.

8.2.6.6 z:while action

The z:while action is a control flow action that allows to repeatedly execute the
content of the action as long as a given condition is true. The condition is evaluated
before each iteration.

In Figure 16., a four-element list is defined as variable $x. In Action 2, another
variable, $7 is used as an index counter, which value is increased by 1 in every loop
iteration in Action 3. The condition in the z:while loop checks if the next list
element is not null, in this case the loop body (children 3.1 and 3.2) is executed and
the condition is checked again. The result of the while loop is the logged s$x list
elements one by one.

For better understanding of engine expressions, see = Engine expressions

[al[t[M[e] [al[t[[e]
[name = x | [[test-expr = not isnull(=[1) |
Elistfa" b’ ")}
[allt][T][e] [al[t[T][e]
actual list element is: S} SHi=j1}
[al[t[M[e]
[name = |
S{number(1}}

Figure 16 — Example of a z:while loop

8.2.6.7 z:do-while action

The z:do-while action is a control flow action that allows to repeatedly execute
the content of the action as long as a given condition is true. The condition is evaluated
after each iteration, so (in contrast with z : while) the content of the action is executed
at least once.

8.2.6.8 Goto expressions

If a goto expression is defined in the Script Editor (see = Script Editor), it allows the
execution of the script jump to a different action (on the same sibling level). For
example, Figure 17. shows a goto expression setto Action 2. Since the goto condition
is true, Action 4 will be executed right after Action 2.

[BI[TI[T[]

[name = x |

2

= |2 z:block (|
[a][t][T][c] BRnE

' ¥ Manage goto expressions
BiRnE Current goto expressions:
label = target
| 3 | Goto condition Goto label
ixxl target

Figure 17 — Example of a goto expression
8.2.6.9 z:break and z:continue actions

For loop actions (z:for, z:foreach, z:while, z:do-while) there are two
further actions in order to control the flow of execution. They need to be used inside
the body of the loop.

e z:break

It terminates the execution of the current iteration and the processing engine
continues executing the next action after the loop. So it exits the loop early and
skips any remaining iterations.

In Figure 18., a list $x is defined with mixed elements in it, the 5th element is a
number, all the others are of text type. Inside the z: for loop, a z:if action is
checking whether the current list element is a number. If so, it breaks the whole
loop, until then it logs the corresponding elements of the list. The result would be
‘a’, ’b’, ’c’ and “d".

[a][t][T][c] a][H][T][c]
[name = x | loop-counter = i
Sflistla’'b,'c,'d, 12, 'F, g} from =1

to = §{lengthix)}
step=1

loglevel = user

ECEEE
[al[t][1][=] EllRINIE
|te.st-ex|:|r = isnumber(x[i]) | T

[a][t][1][c]
2.1.1.1

z-break

Figure 18 — Example for z :break: the first occurrence of a number breaks the loop

e z:continue
It also terminates the execution of the current iteration, but then the engine
jumps immediately to the next iteration. It does not exit the loop itself, only the
current iteration.

[al[t][T][e] al[t][[c]
[name = x | loop-counter = i
S{list(fa, b e, 12, °F, g T from =1
to = §{length(x)}
step =1
Ioglevel = yser

~ 121 z:continue NN
[a][t][T][c] BlRnE
[test-expr = isnumber(x[i]) I

Figure 19 — Example for z: continue: numbers are not logged

In Figure 19., a similar example is shown as in Figure 18., but this time, a simple
common attribute test-expr is used to evaluate if the z : continue is executed or not.
In case of a number, the z: 1og is not executed, so the result is ‘a’, ‘b’, ’c’, ‘d’, ’f’ and

7

g.

8.2.6.10 z:exit and z:return actions

There are two special actions that immediately interrupt job execution: z: exit and
z:return. Aside from the fact that they break the execution flow, they can set the
result or the result-message of the script as well, see - Result flow.

e z:exit exits the execution flow and sets the result-message of the script as well
as the job status (for example ‘error’ or ’finished’, see = Job lifecycle). This action
is useful in error handlers: Figure 20. shows an example where, after catching an
error with a z:on-error, the z:exit action immediately interrupts script
execution with error status (see = Job lifecycle) and a custom result message (see

- result-message of the script).

[al[t][T][]
[~ 11 z:on-error NN
ElIRINIE [al[t][t][c]
| path = nonexistent_path |
a|[t][1][e]

message = Path was not found!

status = error

Figure 20 — z: exit action controls the script status and result-message

e z:return exits the execution flow and sets the result of the script. Figure 21.
demonstrates an example for using z : return. Itis highly recommended that the
z:return action should be the last action of the execution flow, as any other
actions after this would not be executed!

EOETET
BIRINE [al[Tle]

Starting execution...

[al[t][][c]

| path = fadmin/scripts/example-script |

Figure 21 — An example for a z: return action

8.2.6.11 exit and exit-message attributes

The exit attribute immediately exits the execution flow, just like the z:exit action
in the previous chapter. If the exit-message attribute is also filled along with the exit
attribute, the result message will be set to the specified value.

8.2.7 Parallel threads in the z:foreach action

The action z: foreach has a special feature: it can use parallel processing for its
iterations. In some important cases, it can make the execution much faster. For
example, there is a long list of email addresses, any simple loop would send emails one
by one which can take a lot of time. In this case, the order of the addresses (as well as
the order of email sending) is not important, so parallel execution threads can do the
job faster.

Normally, the execution of an action is processed in the main thread of the particular
engine. The main thread is the first thread created by the Java Virtual Machine (JVM)
when the engine starts running. All actions are executed one by one in this thread. The
JVM thread id of the main thread is 1. This is called single-threaded or sequential
execution type.

In contrast, parallel execution is when multiple tasks are executed simultaneously.
In order to do this, it is necessary to create and manage multiple threads. There is a
special attribute parallel for z:foreach, it is set to 1 per default (sequential
processing). When it is set to greater than one, the z:foreach action works as
following:

e |t creates a new child thread for all iterations (regardless of the parallel setting).

e It allows these threads to be executed at the same time but only according to the
parallel setting. So when parallel="3” and there are 5 iterations, then each child
thread will be executed in a controlled way, so that only 3 of them can be
executed at the same time.

e Two variables can be obtained in the loops: sthreadId (the JVM thread id) and
SparallelThreadId (Zagreus managed parallel thread id).

al[t][[c]

key = variable_name

parallel = 1
ElRINIE ElIRINIE
H[1,2,3,4,5; Thread id: Sthreadid

Parallel thread id: SparallelThreadid

Figure 22 — Sequential processing in z: foreach

In Figure 22., the sequential processing is shown with the parallel="1" setting. The
result of the z: foreach loop in the logfile is:

<"1" z:foreach>
<"1.1" z:in>

</"1.1" z:in>

<"1l.2" z:log>

Thread id: 1

Parallel thread id: 1
</"1.2" z:log>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1
</"1.2" z:log>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1
</"1.2" z:log>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1
</"1.2" z:log>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1
</"1.2" z:log>

</"1" z:foreach>

It means that there is a main thread (JVM thread id, SthreadId=1) and a single-
threaded processing (parallel=1 setting, the SparallelThreadId=1 as well).

al[t][1[c]

key = variable_name

parallel = 3

[al[t[T][e] [allt][T][e]
H[1,2,3,4,51} Thread id: Sthreadid
Parallel thread id: SparalleThreadid

Figure 23 — Parallel processing in z: foreach

In Figure 23., three parallel processing threads are set with parallel="3”. The result
of this z: foreach is the following:

<"1"™ z:foreach>
<"1.1" z:in>

</"1.1" z:in>

<"l.2" z:log>

<"1l.2" z:log>

<"1.2" z:log>

Thread id: 1027
Parallel thread id: 1
</"1.2" z:log>

Thread id: 1028
Parallel thread id: 2
Thread id: 1029
Parallel thread id: 3
</"1.2" z:log>
</"1.2" z:log>

<"1.2" z:log>

<"1l.2" z:log>

Thread id: 1031
Parallel thread id: 2
Thread id: 1030
Parallel thread id: 1
</"1.2" z:log>
</"1.2" z:log>

</"1" z:foreach>

It shows that 3 z: 1og actions started at the same time, and after they were finished,
two others were started in parallel again. So the 5 iteration was executed in a way that
maximum 3 of them were executed at the same time in parallel.

In this case, Zagreus maintains 3 parallel ‘virtual’ threads (numbered as 1,2,3) and
the actual JVM thread id is different for all the iterations (1027, 1028, ..., 1030) due to
the implementation of the Java threading system.

@ Info: The parallel setting is limited by the licence setting as well.

8.2.8 Templates

Templates define reusable parts of a script. The action z: template is used for this
purpose. The child actions of z:template will be executed when the template is

called by the z:call-template action. Action z:template also can handle
parameters with its optional child action z:param.

Figure 24. shows an example for using a template. Action 1 defines the template
and its parameter x, which has a default value “3”. (This default value will be applied if
the given parameter is not specified at the z: call-template action.)

Both Action 2 and Action 3 call the template. Referencing the template is done
by matching the name attributes, which is “template_1” in this example. Action 2
calls the template without specifying any parameter, while Action 3 is calling the
template with x="2".

= 1 ztemplate = |2 z:call-template = |3 z:calltemplate
EHIRNIE HIRINE [al[H1[[e]
| name = template_1 | | name = template_1 | | name = template_1 |
[all T[] ERINE
[name = x | [name = x |
3 2
HIRNIE
Value of x: Ex

Figure 24 — Calling a template with and without a parameter

The result of executing this script is the following:

<"1" z:template>

</"1" z:template>

<"2" z:call-template>

<"1.2" z:log>

Value of x: 3

</"1.2" z:log>

</"2" z:call-template>
<"3" z:call-template>

<"1.2" z:log>

Value of x: 2

</"1.2" z:log>

</"3" z:call-template>

Action 1 is not executed, hence it is just the definition of the template: without a
z:call-template action it would never be executed. When Action 2 and Action
3 call the template, the content of the template is executed: Action z:1og 1.2 is
logging the value of parameter x, which is different in the two calls.

8.2.9 Result flow

8.2.9.1 Pipelining actions

Most of the actions produce output data, which is called their result. This result is
used as the input of the parent action. In this way, the user can create a pipeline-like
processing of data. In Figure 25., the output of the file:read action serves as an
input of the xs1t:transformaction. Its output is the input of the z: 1og action.

al[t][t[c]

level =

nul-format = null

a[t][1[c]
xgl = fadmin/<-filesystem- = /common/samplexsl
write-xml-header = true

merging = false

#l 11 filerread
al[t[][e]

filename = fadmin/ < -filesystem->/commen/input.xml
binary = false
encoding = UTF-8

Figure 25 — Data flows from child to parent action

There can be multiple children within one parent action. In this case, it depends on
the parent action implementation how it will be handled. For example, in Figure 26.,
the file:write parent action can receive multiple chunks of input data from the

corresponding file:read children action, and it can merge them together with the
append="true” attribute.

al[t[1][c]

connection-name =

filename = /admin/temp/merged
append = true

enceding = UTF-8

bom = false

faljlailal

file-read file:read file:read

Figure 26 — Data flows from child to parent action

8.2.9.2 alias and alias-global attributes

Aside from the pipeline-like dataflow, there are other ways to pass the result data
among actions. Many times it is not practical to produce data directly inside the action
that would use it, or the script is more readable doing it otherwise.

One good solution is to use an alias attribute. It creates a variable (see also -
Variables) out of the result of the action, and that variable can be used at any point in
the script within the same local scope (see = Local scope). In this way, the pipeline-
like result flow can be avoided, and a horizontal result usage can be implemented. In
Figure 27., the three-level pipeline is modified from Figure 25. with the use of the
alias="result_of xslt” attribute. It creates a $result of xslt variable in the
background that is used in the z : 1og action later.

Info:The alias attribute creates a variable with a local scope. If you need
a global scope variable, use the alias-global attribute!

al[t][1][c] al[t][1][c]

xsl= fadmin/<-filesystem->/commeon/sample.xs| level =
write-xmi-header = true nul-format = null
merging = false Sresult_of_xsht
alias = result_of_xsh

EIRINIE

filename = fadmin/< -filesystem-=/common/inputxml
binary = false
enceding = UTF-8

Figure 27 — Using an alias attribute for result re-use

8.2.9.3 output, debug-output and output-encoding attributes

When the result is simply needed to be written into a file, the output attribute can
be the solution. It specifies a filename with a path where the output result data will be
written. In Figure 28., the output of the xslt:transform action is written to the
specified output.dat file.

al[t][c]

x&l = fadmin/ < -filesystem-> fcommon/samplexsl
write-xml-header = true

merging = false

output = fadmin/ < -filesystemn-= foutput.dat
&l (11 fileread

a|[t][1]lc]

filename = fadmin/< -filesystem-=/commen/input.xm|

binary = false
encoding = UTF-8

Figure 28 — Using an output attribute for storing the result

The debug-output attribute behaves in the same way as the output attribute does,
but it is processed only when the script is executed in debug mode (see - Debugging
in the Zagreus Client).

If the output is textual data, the output-encoding attribute can be used to set the
encoding of the written file.

Info: Even when the alias and output attributes are set, the result of the
action will still be propagated to the parent action.

8.2.9.4 worker-output attribute

The worker-output attribute behaves the same way as the output attribute described
in the previous chapter. The only difference is that the output is written into the
Zagreus Worker filesystem (see = Local filesystem in the Zagreus Worker) instead of
the embedded database or the local filesystem.

8.2.9.5 no-result attribute

In some cases it is needed to explicitly tell the script processor not to propagate the
result of the action upwards to the parent action. For example, the output is too large
to store it in the memory. In such cases the no-result attribute can be used. This does
not affect the behavior of the output and debug-output attributes.

8.2.9.6 eval-output attribute

If the result of the given action is of a textual type, in some cases it might be useful
to be evaluated as an engine expression (see also - Engine expressions). By using the
eval-output="true” setting, the result is evaluated before passing as an input to the
parent action. In Figure 29., the result of the file:read action is evaluated before the
parent z:log action processes it, so the message “The value of y is: variable value” will

be logged by resolving the Sy string part to the value of variable y.

=l input.txt [1.0.0.0] (file) &2 @' eval_output [1.0.0.0] (script)
The wvalue of y is: %y

] (file) @ eval_output [1.0.0.0] (script) &2

[allt][T][c] [al[t][t][e]
| name = y | #l 21 filerread
variable_value a|[T1[T][c]
filename = fadrnin/rescurces/input.bot

binary = false
eval-output = true

Figure 29 — Evaluating the file:read result

Info: Common attributes that are related to logging (like log, log-result-
attributes) might be considered as a special type of result flow as well
during the execution of the Zagreus script.

8.2.10 Result attributes

In many cases, not just one single result is expected as an output of an action, but
many other output parameters related to the result. For example, if a result is a list
type data, it can be useful to know the number of rows of the result, or the number of
processed lines of a complex action like zs :migrate. These additional output data
attributes are set after the execution of a particular action and they are called result
attributes.

For the specific list of all possible result attributes for an action, see - Action help
about action documentation.

Contrary to the result data, one must explicitly refer to the result attributes in order
to check their values. The result attributes are mapped together as an associative array
with name-value pairs.

For example, for a zs: 1ist action, there are two result attributes defined: rowcnt
(the number of rows of the result) and execution_time (the execution time of the action
in milliseconds). After the zs: 1ist execution, a special associative array is generated
with values like: [rowcnt:16, execution time:230]. This whole array can be
referenced as well as its keys inside (the result attributes). For associative arrays, see
- Engine expressions

This reference can be done in one of the following ways:

e Using the result-attributes attribute
This attribute can specify a variable name which will contain the result
attributes after the execution of the current action. The attribute itself can be
referenced as a whole array, and its keys as the result attributes.

al[t][t][c] [al[t][T][c]
parent-name = /admin/resources All result attributes: S{res_attrs}
result-attributes = res_attrs Number of listed items: S{res_attrs.rowcnt}

Execution time: ${res_attrs. execution_time}

Figure 30 — Using result-attributes attribute to reference the result attributes

In Figure 30., $res_attrsisused as the referencing variable name. The result
of the z: 1og action is the following:

All result attributes: [rowcnt:16,execution time:230]
Number of listed items: 16
Execution time: 230

e Using special reference to the last executed action type
Instead of a named variable, Zagreus automatically maps the result attributes
to a special variable name which is derived from the action name:

$nameSpace actionName

This automatically generated variable always stores the result attributes of the
last executed action of the specified type. It is useful to quickly check out some
result attribute when testing or debugging.

[a][t][T][c] [a][t][T][c]
[parent-name = /admin/resources || [Number of listed items: 5{zs_list rowent

Figure 31 — Using the special variable name to reference result attributes

Info: the result-attributes attribute sets a variable to a local scope. A
result-attributes-global attribute can set a global scope variable if
needed, just like the alias and alias-global attributes.

Info: The result attributes can also be logged with the log-result-
attributes attribute.

8.3 Includes

Scripts can include the content of other resources as well. A special z:include
action is used for this purpose. The main point of using includes is the reusability of
other resources:

e A connection resource, once defined and configured properly, can be used from
many different scripts.

e A template (see > Templates) can be easily used from other scripts without
modifying the template itself.

e Scripts that are doing simple (or repetitive) jobs can be simply included to other
scripts, they do not need to be implemented all over again.

The easiest way to include a resource to the Script Editor is using drag-and-drop
operation from the Zagreus Browser window, see - Drag-and-drop operations .

8.3.1 Including connections

Connection resources contain a specific connection action with properly set up
parameters so that the Zagreus System can connect to a particular server (database,
ftp, MSTR server, etc.), see - Connections

An already existing and configured connection resource can be included into a script
that can use this connection in its actions. Figure 32. shows the content of a connection
resource that is included into a script in Figure 33. The filename attribute in the
z:include action can be a resource path or a resource id as well.

@- mysgl-dema [1.0.0.1] (connection) 2

B 1 dbjdbe-connection NN
BIRInE

name = mysgl-connection

domain = mysq|

driver = com.mysgl.jdbec.Driver
server = 192,168.50.171

port = 3306

user = demo

cpassworg = T
database = sampledb

autocommit = true

Figure 32 — A connection resource contains a single connection action with parameters

i sample_script [1.0.0.0] (script) 22

EHIRNIE ElRnIE

| filename = /admin/connections/mysgl-dema_ | connection-name = mysql-connection
log = true
select * from test_table

Figure 33 — The connection resource is included with a z: include action and used in the db: sql action

Actions that are using the included connections have to refer to the included
connection action by its name. In Figure 32., the name of the db: jdbc-connection
action is “mysql-connection”. In the script in Figure 33., the db:sgl action is
referencing the connection action by the attribute connection-name="mysql-
connection”. For further details, see - Referencing to a connection .

8.3.2 Including templates

Template resources are used as containers for storing one or more z:template
actions (see - Templates), so that they can be reused from multiple scripts as includes.
The example of Figure 24. is changed to demonstrate this use case: Figure 34. shows
the content a template resource, which is included by the z:include action in the
scriptin Figure 35.

% template_1 [1.0.0.0] (template) 52

7 1 z:template

ElRINE

[name = template_1

EIRINIE

|name=x |

3

[allt][T][e]
Value of x: Sx

Figure 34 — The template resource, containing a z: template action

@- sample_script [1.0.0.0] (script) &2

~ [zinclude NN - 2 zcallteripE :
[a][t][T][c] [al[t][T][c] [al[t][T][c]
| flename = /admin/templates/template_1 | | name = template_1 | | name = template_1 |
[al[t][T][=]
| name = x |

2

Figure 35 — The script uses the included z: template

8.3.3 Including scripts

Script also can be included into other scripts. Contrary to the cases of including
connections or templates, included scripts are executed at the point of inclusion. The
script in Figure 36. is included into the script shown in Figure 37.

@- script_to_include [1.0.0.0] (script) &2

ElRNE

Value of x: Sx

Figure 36 — The script to be included

i script_include [1.0.0.0] (script) 22

= 1 zwariable
HIRINE [allt1[e]
[name = x [| | filename = /admin/scripts/script_to_include |

3

Figure 37 — The script including another script

The log result of executing the script in Figure 37. is the following:

<"1" z:variable>
</"1"™ z:variable>
<"2" z:include>
<"2.1" z:log>
Value of x: 3
</"2.1" z:log>
</"2" z:include>

The included z:1og action was executed as the child element of the z:include
action. This also means that variable Sx in the z: 1og action of the script_to_include
script was treated as a local variable in script_include.

@ Info: The included action ordering numbers are changed to be matched
to the ordering number of the corresponding z:include action.
Included actions behave as direct children of the z : include action.

8.4 Error handling

Errors (or technically: exceptions) are thrown from any action which has unexpected
problems during execution. This includes missing attributes, runtime errors, broken
connections, etc.

If the error is not handled in the action where it occurred, it will be propagated up
to the parent action. This can continue for several levels. If the error is not handled at
all, the script will be finished with an Error status (see also = Job lifecycle).

Zagreus has two ways to handle possible errors:

e specifying one of these attributes: on-error-next-sibling, on-error-next-child

e having a z:on-error action

In the following, we will demonstrate error handling by a file:dir action with an
incorrect path attribute value, which throws an error.

8.4.1 on-error-next-sibling attribute

The on-error-next-sibling attribute instructs the Zagreus processing engine to
continue script execution on the next sibling action when an error occurs. In Figure 38.,
the error is thrown in Action 1.1, which has the on-error-next-sibling attribute set.
Due to this, the next action to be processed will be Action 1.2 (i.e. z:1og), which
will be followed by Action 2.

BIRINE [al[TIIe]

sibling of z:block

a][t[T][c] [a][t][T][c]
path = nonexistent_path this is the next sibling

on-error-next-sibling = true I

Figure 38 — An example for error handling with the on-error-next-sibling attribute

Recall that, if the error is not handled on the level it was thrown, it is passed to the
parent action. In Figure 39., the error is thrown in Action 1.1, butit will be handled
by the parent action, i.e. Action 1. Because this action has the on-error-next-sibling
attribute set, execution will continue with Action 2, and Action 1.2 (along with
all possible further child actions of Action 1) will be skipped.

[allt][][c]

| en-error-next-sitling = true

ElRNE

‘ [al[t][t][c]
| path = nonexistent_path

this is the next sibling

[al[t][T][c]

sibling of z:block

Figure 39 — Another example for error handling with the on-error-next-sibling attribute

8.4.2 on-error-next-child attribute

When the on-error-next-child attribute is specified, execution will continue on the
next child action in the case of an error. This attribute is meant to be used in the parent
action in contrast of using the on-error-next-sibling attribute. (This of course has no
effect if the error occurred within the given action, as its child actions were already
processed; for the order of action execution see - Order of execution, result flow). In
Figure 40., the error is thrown again in Action 1.1, but it will be handled by the
parent action, i.e. Action 1.Because this action has the on-error-next-child attribute
set, execution will continue with Action 1.2, beingthe next child action of Action
1. After this, Action 2 will also be processed. In this case, the order of action
execution is the same as it was in Figure 36. In general, setting the on-error-next-child
attribute for the parent action is essentially the same as setting the on-error-next-
sibling attribute for all its children.

[allt][1][c]

| en-error-next-child = true

ElRINE

[al[tI[T][c]

!

[al[t1[1][e]

| path = nonexistent_path

sibling of z:block

this iz the next sibling ?

Figure 40 — An example for error handling with the on-error-next-child attribute

8.4.3 z:on-error action

The z:on-error action allows performing steps in the case of an error (e.g.
logging, writing into a file, sending an e-mail etc.) by adding child actions to the z:on-
error action. The error handling will be done on the parent level where the z:on-

error action was specified. Script execution will continue with the subsequent action
on the parent level.

Figure 41. shows a simple example of error handling with z: on-error; similarly to
the previous examples, the error is thrown from the file:dir action (now Action
1.2). In this case, the error is propagated up to and handled by Action 1 (i.e.

z:block). After logging the “error caught!” message, script execution will continue
with Action 2, ”sibling of z:block”.

A EETEEE

[al[t][1][c] BERINIE
T sibling of z:block
~ 1.4 z.on-error il 1.2 file:cir NN~ 1.3 zlog NN
[allt][T][e] [allt][T][e] [allt][T][e] A

| path = nonexistent_path | this is the next sibling

ElRNE

error caught!

Figure 41 — Example for error handling with a z: on-error child action

Actions can handle their own exceptions as well: in Figure 42., the z:on-error
action is the child action of Action 1.1 .So when an error occured in Action 1.1,
it can handle it by its own z:on-error child action. Due to this, after logging the

“error caught!” message (Action 1.1.1.1 now), execution will continue with
Action 1.2 (andthen with Action 2).

[al[F][T][c] [a][t][T][c]
il 14 fledr NN 12 zlog]
BElRINIE ElIRINIE

path = nonexistent_path | this is the next sibling

|~ 144 zon-eror N
[T T[]

ERniE

error caught!

Figure 42 —log 1.1.1.1, then go on with 1.2 and 2

In Figure 43., the z:on-error action is specified on the root level of the script. As
the error is not handled by the file:dir action (i.e. Action 2.1), it will be passed
up to the parent action (Action 2).Asitis not handled there either, it will be passed
up further to the root level, where it will be handled by the z: on-error child action.

In this case, both Action 2.2 and Action 3 will be skipped, so the script will finish
after logging the “error caught!” message.

|~ @ zon-eror NN

[al[t][T[e] [allH[T][e] [a1[][T][e]
= 14 ziog NNl 21 file:dir N =ing ofzbiock
[al[t][T][<] [a][t][T][c] [al[t1[T[c]
error caught! [path = nonexistent_path || [this is the next sibling

Figure 43 — Log “error caught” (in action 1.1), then finish the script

Warning: The z: on-error action should be specified as the first action of
a given level. If the action is not specified up to the point where an exception
is thrown, the exception will not be caught, see Figure 44.

|~ [2] z:on-error NN
[al[t][T][c] [al[t][T][c] [a][t][T][c]
il (11 file:dir NI - (12 z:log NN sibing of zbiock
[al[tIfe] ElRInE ElRInE
[path = nonexistent_path || |this is the next sibling error caught!

Figure 44 — The script is finished with error

Info: The z : on—-error action has an error-name attribute, which allows
to filter exceptions based on the type of the error (e.g. AttributeRequired,
10, FileNotFound, JSON, MSTR).

8.4.4 errorMessage and errorTrace variables

In case of any error, two variables are automatically set during the script execution:
errorMessage and errorTrace. These two variables are both set in global scope, see >
Global scope. They appear as result attributes as well, with the same names. Figure 45.
demonstrates the logging of all these variables and result attributes.

[allt][T][e]

|~ 14 zon-emor
BITT[E] BRI

path = nonexistent_path
p

[al[t[T[e]
error name: 3erroriessage
error trace: SerrorTrace

result attributes:

S{file_dir errorMeszage}
S{file_dir errorTrace}

Figure 45 — Using errorMessage and errorTrace

8.4.5 z:raise action

There might be cases when the user intentionally wants to throw (or raise) an error.
It works just as in programming languages: throwing an error stops the normal
execution flow and an error handler (if any) can catch it and continues the execution.

For an example, see Figure 46.

[allt][T]fc]
[al[t][1][c] [allt][T][c] al[t][1]c]
[error-name = FileNotFound | filename = fadmin/non_existing_file error-name = FileMotFound
alias = y test-expr = noty
al[t][1[c]
message = File was not found!
status = error

Figure 46 — Using the z: raise action

8.5 Variables

Variables are basic concepts of the Zagreus System, they are data values which can
change or can be changed over time. The variables in Zagreus consist of two parts:
name and value. Names are strings which are accepted as variables in the standard
programming languages (i.e. a sequence of lower- and uppercase letters, underscore
(7) and digits, where the first character cannot be a digit). Zagreus variable names
are case sensitive, i.e. a and A refer to two distinct variables. Variables have also types,
see - Data types

A variable can be defined on many different levels (see - Declaration levels), but
almost all the variable references are finally resolved and processed during the
execution of a script. The result of a script or the flow of execution in a script can be
based on variables entirely.

In this chapter, only the script level variables are discussed. For variable scopes, see
- Start-up variables. On how to set variables on different levels, see - Server-level
and queue-level variables, = Setting script variables and options, - Context menu of
a user node and - Context menu of a group node.

Variables used in the scipt level has types, see = Data types

8.5.1 z:variable action

The most common way to define a variable is the z : variable action. The variable
name can be specified by the attribute name, and the value is inside the action. Figure
47. shows an example of such a definition and usage. Notice the variable reference $x,
see - Engine expressions.

[al[H1[T[e] ElRINE
[name = x [l [value of variable x: 5x

1

Figure 47 — Defining a variable with the z:variable action

Variables can also be used in action attributes. Figure 48. displays an example for
referencing variable x in Action 2.

[a][t][T][c] [al[t][T]c]
[name = x [|| filename = Sx |

Jadmin/sample.txt Sample file content

Figure 48 — Referencing a variable in an attribute

8.5.2 Variable scopes

Once a variable is specified, it can be referenced by its name. Variable scope is a
specific region in the script where this reference is valid. Zagreus uses only two scopes:
local and global. In action z:variable, scopes can be specified manually (by using
the scope attribute).

Variables are mapped to the action within they are created. When a reference is
used, Zagreus tries to resolve the variable by checking the already mapped variables of
the parent action. If it does not succeed, it goes up to the parent action again in a
recursive manner. In Figure 49., variable x is mapped to Action 1 (since z:variable is
the child action of Action 1). When Zagreus is trying to resolve the variable reference
inAction 1.2.1.1.1,itfirstchecks Action 1.2.1.1, whether it hasa mapped x
variable. Because it is not the case, it goes up one level to Action 1.2.1, ..., untilit
finds this variable mapped in Action 1.

[a][t][T][c]
a][t[T][c] [a][t][T][c]
name = x
scope = |ocal BIRnE
value
[a][t][T][c]
ElIRINIE
x

Figure 49 — Example for variable referencing

8.5.2.1 Local scope

Variables with local scope can be referenced only inside the container action the
variable has been defined in. Outside of this parent action, the variable cannot be
referenced. Figure 50. shows an example such a variable and an embedded reference
toit.

[allt][T][e]
|~ 12 zblock NN
al[t][T[c] [al[t][T][e]
name = x
value Sx

Figure 50 — Local scope variable can be referenced anywhere inside the same container action

A local scope can temporarily override another local scope which is located outside.
In Figure 51., two variables are specified with the name x, in different local scopes.
Referencing for Sx in Action 1.2.2 will be resolved as “second”, while referencing
in Action 1.3 will be resolved as “first”. This is due to the fact that the variable
definedinAction 1.1 ismappedtoAction 1,whilethe variable definedinAction
1.2.1ismappedtoAction 1.2.

7 [z:block
[allt][T][e]
al[t][1[c] [al[t[T][e] [al[t][T][c]
scope = |ocal AIRINE BlRInE N
T o prints "first
first
scope = |ocal
prints "second”
second

Figure 51 — Local scope variable can be referenced anywhere inside the same container action

8.5.2.2 Global scope

Variables with global scope can be referenced from all parts of the whole script after
variable creation. Any variable defined outside of the script (e.g. server variables or
script variables, see = Server-level and queue-level variables and = Setting script
variables and options) are on the global scope per default. Inside the script, the scope
attribute of the z:variable action can be used to specify a global scope variable. In
Figure 52., global scope variable x can be referenced outside of Action 1.

|~ 11 zblock
EIRINE EIRIDE
3

= 14 zvariable
a][t][T][c]

name = i

scope = global

value

Figure 52 — Referencing a variable in an attribute

8.5.3 Monitoring variables

The z:variable action can have a special attribute monitoring. If this attribute is
set to TRUE, the variable can be monitored in real time for running jobs. These
monitoring variables can be checked on the Monitoring variables tab in the Job
properties dialog in the Zagreus Monitor application, see = Job properties dialog.

8.5.4 Common attributes that create new variables

There are common attributes that also create variables in Zagreus System:

e qglias and alias-global
These attributes can control the result flow (see - Result flow) by storing the
result of the action in the variable name (that was specified in the alias attribute).

e result-attributes and result-attributes-global
These attributes belong to the result-flow monitoring (see - Result attributes)
by storing the result attributes of the action in the variable name (that was
specified in the result-attributes attribute).

e action-attributes
This common attribute creates a variable with the specified name. After the
action has been executed, this variable contains the original attribute values of
the particular action, see Figure 53.

~ 1 zvariable NN~ 12 zoneror NN il |3 fic:read
[al[t][T][e] [allt][T][e] a|[t][T][c]

| name = filename | filename = 5filename
fadmin/resources/sample. b GG binary = false

file 2{aa.filename} not found! encoding = UTF-8
Binary was set to 3{aa binary} action-attributes = aa
Encoding was =&t to ${aa.encoding}

Figure 53 — Using the action-attributes attribute

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 167

8.6 Engine expressions

Engine expressions are special expressions in a Javascript-like language, which offer
a wide range of processing functionalities. Every expression has an evaluated return
value.

They can be located in two places: firstly, in the attributes of the actions, and
secondly, in the text content of the actions. By default, these contents are handled
simply as strings; for example, a “hello” text content inside a z: 1og action simply
logs the text hel1lo. There are three ways to interpret a string as an engine expression:

e By simply using a $ sign before a variable name; i.e. Sa means the value of
variable a. For example the “value of a=$a, value of b=S$b” text content
inside a z : 1og action logs the values of variables a and b.

e By encapsulating the engine expressionina ${...} block;ie. "${a + 10}”
will result in the value of the a numeric variable, increased by 10.

e By adding the "-expr” suffix to some specific attribute name (e.g. test-expr
instead of test). Setting the “test” attributeto ”S{a + 10}” and setting the
"test-expr” attributeto “a + 10” will lead to the same result.

Note: to add a $ character to a simple text, $$ should be used; e.g. incoming tax:
SvalueS$s.

Info: In the following examples, remarks will be indicated with the //
characters at the beginning of the lines. However, Zagreus does not
handle these remarks in scripts.

8.6.1 Basic expressions

Basic expressions can be the following:

e Vvariables
e numeric literals, e.g.:1,-2,0.6,-1.2e-30
e string literals: “hello”, "hello’

Inside the string literals which are specified inside double quotes, it is possible to
use special characters using the \ escape character. The available constructions are:

e \n:newline
e \r:carriage return
e \t:tab character

\’:the ’ character
\”: the ” character
\\: the \ character

For example, the literal "first\tsecond” leads to a tabular character between
the two words, while the literal * first\tsecond’ leads to a backslash (i.e. \)and
a t character between the words £first and second.

8.6.2 Operators

Inside the engine expressions, the following operators can be used to construct
more complex expressions:

member access operators: . (dot), [] (for the details, see = Lists, records and
tables)

multiplicative operators: *, /

additive operators: +, -

relational operators: <, >, =, <=, >=, <> or !=, ~ (string matching regular
expression), !~, in

logical operators: and, or, not

assignment operator: : =

The operators are processed in a standard priority order, i.e. * is processed before

+ and + is processed before <. Subexpressions using operators with the same priority
are evaluated in direction from left to right, except the assignment operator (which is
evaluated from right to left).

In the following examples all expressions are considered to be inside a S{...}
block.
// variable ”a” is assigned a value of 2.
a =1+ 1
// variable ”a” is assigned a text (containing a new line character).
a := ”"Zagreus\nAutomate your IT”
// the .. block is executed if the logical condition is satisfied

if

(a < b - 10 or a > b + 10) {

8.6.3 Lists, records and tables

Lists (or indexed arrays) and records (or associative arrays, or maps) are data types
which can contain any type of data. There is no type restriction for the stored elements,
i.e. a list or record might contain numbers, texts and other lists at the same time.

Lists can be created by the 1ist ([...]) function, and specific actions have lists
as their result. Element access can be done by the [...] operator; e.g. a[8] refers to
the 8th element of list a. Indexing is one-based.

// new list with different data types
l:=1ist ([1, date, "apple"l])

// displaying the current date
println(1[2]);

Records map its elements by keys. If no keys are defined, they are automatically
created as numbers starting from 1. Records can be created either by the
record(...) function, inline in an engine expression, and specific actions have
records as their result. Element access is possible by specifying the corresponding key
either by the . (dot) or the [...] operators; e.g. a[”"x"”],al[’'x"],a.'x",a.”"x"
and a.x all refer to the element of variable a mapped by the ”x” key.

To create a record, use one of the following:

// empty record variable

a := [1;

// referencing to a non-existing member will create this item
a.x := 1;

// new record, having keys of 1, 2 and 3

b := ["first”, "second”, ”“third”];

// new record with keys x, y

c = ["x":1,"y":2]1;

// accessing items of c:
cxl := c.x;

cx2 = c[’'x"];

cyl := c.y;

cy2 = cl[”y"]1;

// new record with function call: x:11, y:12, z:13, 1:14
d := record(['x','y','z"'], [11,12,13,14])

Tables are special lists containing records with the same keys. One can see it as a
two-dimensional matrix. Tables are returned by specific actions as their result (e.g.
z:parse). For example, given a table t, £ [5] . x refers to the field x of row 5. Tables
can be easily logged in a human-readable format, see - Script Logging.

8.6.4 Function calls

Engine expressions might include simple function calls. Parameters are passed
within brackets (i.e. (...)), separated by commas (,). For example:

// a substring function call
s:=substring (’this is a string’, 6, 7)
// displaying ”is”

println(s);

For a list of the supported functions, see = Variables / Functions window.

8.6.5 Expressions and statements

At its simplest terms, expressions are evaluated to produce a value. In contrast,
statements are executed to make something happen. Statements can be also
evaluated to return a value.

The following simple statements are supported in Zagreus:

if:runs a statement if a given condition is true.

e switch: processes statements according to the value of a given expression.

o for:takes all items of the specified expression (e.g. list) and processes the given
statement with these items (practically a foreach loop). When iterating through
arecord, it processes the values and ignores the keys.

e while: executes a statement while the given condition is true.

e break: stops the execution of the current while, for or switch statement.

e continue: skips the remaining part of the loop and goes to the beginning of the

current for or while statement.

Examples:

// store the absolute value of x in x
if (x < 0) {
X 1= x * -1;

// store the signum of x in x
if (x < 0) {

x = -1;
} else {

x = 1;

}

// store the text representation of x in y

switch (x) {
case 1: vy
case 2: y
case 3: y := "three”; break;
default: y := ”“other”;

"one”; break;
"two”; break;

// add up the values stored in x
var act record := [2, 4, 6, 8, 10];
sum := 0;
for (item in act record) {

sum := sum + item;

// example for a while loop

var act record := ["a”: 2, ”"b”: 4, ”"c”: 6, "d”: 8,
counter := 0;
while (act record .b > 0) {

act record .b := act record .b - 1;

counter := counter + 1;

}

println(’iteration count: ’ + counter);

// printing even numbers

var counter := 0;

while (counter < 20) {
counter := counter + 1;

if (counter % 2 = 1) continue;
println (counter) ;

// adding up numbers until they exceed 10 (i.e. 12)
var act record := [2, 4, 6, 8, 10];
sum := 0;

for (item inlist act record) {
sum := sum + item;
if (sum > 10) break;

}

println (sum) ;

// printing numbers until the first negative one
var act record := [2, 4, -6, -8, 10];
for (item inlist act record) {
if (item < 0)
break;
println (item) ;

”

@

” .

107 ;

8.6.6 Data types

The values of variables or the result of the actions can be of different types. Most
data types can also be created within engine expressions; others are just returned by
specific Zagreus actions as their results or as their result attributes. The type of a
Zagreus variable can be determined by using the gettype (.. .) function.

Data types also fall under some categories. These are:

e Comparable
The comparator operators (e.g. <, >, ! =, <= etc.) can be applied to them.

o Concatable
The values can be concatenated, primarily by the concat (...) function. For
example, concating the texts “Zag” and “reus” results in the text ”zagreus”,
while concatenating two lists results in a list containing the contents of both
original lists.

e Formatable
They can be formatted with the format (. ..) function.

e Mergeable
The contents can be merged by the z:union action.

e Iterable
The elements stored inside the variable can be iterated over, for example by a
for(...) engine expression (see - Expressions and statements) or a

z:foreachor z: for action (see - z:for action and = z:foreach action).

8.6.6.1 Simple data types

Most data types in Zagreus are simple ones; next we describe them in details.

e Text

{ Comparable, Concatable, Formatable, Mergeable }

Texts are string, i.e. character sequences. They can be created in engine
expressions with the format “Zagreus text” or ’Zagreus text’; the
difference among the two syntaxes is that the former one resolves certain specific
characters such as \n or \ t. Data belonging to other types can be converted to
text by using the text (...) function. The istext (...) function returns true
iff the type of its parameter is text. Texts can be concatenated with the + operator
(along with the straightforward concat (.. .) function). There are several text
functions in Zagreus, the Variables / Functions extension window in the Zagreus

Client lists them and shows their help in the tooltip texts, see = Variables /
Functions window .

Number

{ Comparable, Formatable }

Numbers hold numeric values; internally they are stored as floating-point
numeric values (i.e. doubles). They can be created in engine expressions with the
formats 1867,186.7and 1.867e03 (i.e. scientific notation). Data of other types

can be converted to number by using the number(...) function. The
isnumber (...) function returns true iff the type of its parameter is number.
Boolean

{ Comparable }

Booleans are a binary type, they can either be true or false. They can be
created in engine expressions in the formats true and false, and as a result of
several comparison operators (e.g. “dog” ! ="cat” will result in the value true).
In attributes expecting a boolean value, the forms yes and no can also be used.
Data of other types can be converted to boolean by using the boolean(...)
function; the number 0 will be converted to false and all other numeric values
to true; the text 7~ (i.e. empty string) will be converted to false and all other
textual values to true. The isboolean (.. .) function returns true iff the type
of its parameter is boolean.

Date

{ Comparable, Formatable }

Dates are represented internally as Unix timestamps (i.e. the number of
milliseconds passed since 1st of January, 1970, 0:00 GMT). Data of other types
can be converted to date by the functions date (representing the actual date at
the function call), date (datevalue) and date (datevalue,
formatstring). If the parameteris a text, and no format string is specified, the
format “yyyy-MM-dd” will be used. Besides text values and other dates,
numbers can also be used (and will be interpreted as Unix timestamps). The
isdate (...) function returns true iff the type of its parameter is date.

BinaryData

{ Comparable, Concatable }

Binary data are mainly returned by specific functions. Data of other types can be
converted to binary by the binary(...) function. The isbinary(...)
function returns true iff the type of its parameter is binary.

Null
{ Comparable, Formatable }

Nulls are representing null objects. They can be created in engine expressions by
the token null. The isnull(...) function returns true iff the type of its
parameter is null.

o XML
XMLs represent XML data. They can be created in engine expressions by the
function xmltype: other than other XML data, only text input is supported at
the moment. The isxml (.. .) function returns true iff the type of its parameter
is XML.

8.6.6.2 Extended data types

Some data types in Zagreus are extended ones, which means that they inherit most
of their properties of another Zagreus type. Besides sharing several details, the most
important consequence is that they can also be considered as their basic data type; for
example, since the time data type extends the date data type, the isdate(...)
function will return true for a variable with a type of time as well.

e Time

{ Comparable, Formatable }

Time data types extend over Date. The main difference is that their default format
is of "HH:mm:ss.SSS”. Data of other types can be converted to time by the
functions time (representing the actual time at the function «call),
time (timevalue) and time (timevalue, formatstring). If the
parameter is a text, and no format string is specified, the format
“HH:mm:ss.SSS” will be used. Besides text values and other dates (including
times), numbers can also be used (and will be interpreted as Unix timestamps).
The istime (...) function returns true iff the type of its parameter is time;
furthermore, as time extends the date type, the isdate (...) function also
returns true if its input is of type time.

e PDF
{ Comparable, Concatable }
PDFs represent binary data with a type of PDF. Due to this, they cannot be created
inside engine expressions, they are only returned by specific actions.

e Excel
{ Comparable, Concatable }
Excels represent binary data with a type of Excel workbooks. Due to this, they

cannot be created inside engine expressions, they are only returned by specific
actions.

8.6.6.3 Compound data types

The following, aforementioned data types contain instances of other data types. See
also = Lists, records and tables.

e Record
{ Comparable, Concatable, Formatable, Iterable, Mergeable }

o [jst
{ Comparable, Concatable, Formatable, Iterable, Mergeable }

e Table
{ Comparable, Concatable, Formatable, Iterable, Mergeable }

8.7 Script Logging

In this chapter, the practices for logging inside a script is covered.

8.7.1 job-log file

Script log messages are stored in a file after (and during) execution. These files are
called job-log files, their names are derived from the job ID of the execution, see = Job
properties.

These log files can easily be checked in many ways: double-clicking the job in
Finished jobs window (see = Finished jobs window), checking Active logs (see = Active
logs window) or manually check the logfile in the server subfolder (see - General
properties).

In the job-log file, there are messages from the execution engine itself and also, the
user-initiated log messages are shown here. A typical log file starts with similar
messages as below:

Execution started on script "test"
Zagreus version: 1.5.5.7
Job ID: eae00564-850b-4404-ac31-4bb25772e70e

Job starting variables:

variable name variable value
callerType gui

currentUserId 1
executingUserName admin
executionMode direct

Default encoding: UTF-8
Default locale / country: United States
Default locale / language: English

The Execution Engine is listing the start-up variables of the script (see = Start-up
variables). After the variables and the locale settings, the script execution messages
are listed. For example:

<"1" z:log>

enter log message here
</"1" z:log>

<"2" o z:if>

<"2.1" z:then>

</"2.1" z:then>

<"2.2" z:else>

</"2.2" z:else>

</M"2" z:iif>

<"3" z:list>

</"3" z:list>
Execution finished on script "test"

Per default, the Execution Engine logs all the action entering and exiting events. If
the user does not want to see these messages, a loglevel setting can be changed to
"user’ or ‘error’ or ‘'warning’, see = Logging levels and loglevel.

The job-log messages are meant for being checked by the user who can see them in
the Active Log window and in the Finished Log window in the Zagreus Client (see -
Active logs window and - Finished logs window).

8.7.2 z:log action

The simplest way to log a message is to use the z: 1og action. In the text content of
this action, variables, function calls and complex engine expressions can all be used. In
Figure 54., Action 1 logs a simple message while Action 2 is using the Sdate
variable reference which is resolved into the current date in the resulting log message.

[allt][T][e] [al[t][][e]
a log message Current date is: Sdate

Figure 54 — Examples for the z : 1og action

The z : 1og action can also handle more complex inputs, such as the result of a child
action. Figure 55. shows an example for logging the result of the file:read action,
i.e. the content of sample.txt.

BRG]

al[t][1[c]

filename = fadmin/resources/sampletxt
binary = false
encoding = UTF-8

Figure 55 — Logging the result of a file:read action
8.7.3 log attribute

Since logging the results of an action is a very common use case, Zagreus provides a
simple common attribute for this purpose. Figure 56. shows an equivalent example as
in Figure 55., using the log common attribute instead of a container z: 1og action.

#l (1 filerread
al[t][T][c]

filename = fadmin/resources/sample.tet
binary = false
encoding = UTF-8

log = true

Figure 56 — Logging the result of a file:read action using the log common attribute

8.7.4 Logging levels and loglevel

It is important to distinguish between the concept of logging level and loglevel.

Logging levels are used to categorize log messages based on their severity. Different
logging levels represent different levels of severity or importance of the logged
messages. Zagreus defines the following logging levels:

® user

user-intended messages such as a z : 1og action or the log common attribute.

e error

error messages and the corresponding stack-traces generated by the Zagreus
engine.

e warning

warning messages generated by the Zagreus engine.

e info
normal messages in the Zagreus engine. For example: entering and exiting
actions, starting and finishing processes, opening connections.

e debug
special debug messages.

Loglevel, on the other hand, is the setting which controls which log message
categories will be written into the log file. The value of this setting is one of the logging
level values listed above. Hence the list of the logging levels is a priority list as well, the
loglevel setting works as the following:

e Joglevel=user
Only the user logging level log messages are logged into the logfile.

e Joglevel=error
User and error logging level log messages are logged into the logfile.

e Joglevel=warning
User, error and warning logging level log messages are logged into the logfile.

e Joglevel=info
User, error, warning and info logging level log messages are logged into the
logfile.

e Joglevel=debug
Every log message is logged into the logfile.

The loglevel is set by an execution option called log_level. The default value of this
option is info, but the user can override it by specifying the log_level option, see - List
of execution options).

Inside the script the default loglevel can be changed with the z:1oglevel action
or with the loglevel attribute.

It is important to understand the difference between logging levels and loglevel.
Logging levels are the categories for the messages and loglevel is a filter during
execution that controls which messages are shown in the logfile.

Info: The default logging level of user-logged messages is ‘user’. Only the
z : 1og action can override it with the level attribute. So the user can also
generate log messages on other levels than ‘user’, e.g. ‘error’.

8.7.4.1 z:loglevel action

The z:1loglevel action sets the loglevel of the script from that point of the
execution flow onwards. In Figure 57., the z:1oglevel action switches the default
‘'info’ loglevel to ’user’. This means that, from that point on, only the ‘user’ logging level
messages are shown in the logfile. The message in the z:1og is still visible, because
the default level of z : 1og (and all other user-initiated log messages) is "user’.

= 1 zloglevel
ElRnE ElRniE
| level = user | This log message is stil

shown because its level
is luser!.

Figure 57 — Example for setting the loglevel to ‘user’ with the z:1oglevel action

On the contrary, in Figure 58. the message in the z:1log action is not shown,
because the intended logging level of that is ‘info’, set by the level attribute. The
loglevel is set to ‘user’, which means that the ‘info’ logging level messages are not
shown in the logfile. See - Logging levels and loglevel.

[a][t][T][c] [al[t][T][c]
[level = user | [[tevel = info |

This message is not shown

Figure 58 — Example for a log message that is not shown because of its logging level

8.7.4.2 loglevel attribute

The loglevel common attribute sets the loglevel for a specific action and its child
actions. Unlike the z: 1oglevel action, the loglevel will be reset to the default loglevel
(or the one set in the context) after this action is executed. In Figure 59., the loglevel
of the z:block action is set to 'user’, so only Action 1.2 islogged according to the
priority order of the logging levels (see = Logging levels and loglevel).

[al[t][[e]

| loglevel = user |

[al[t[t[e] [al[t[T[e]
[level = info [[[tevel= user
This message is not shown This message is shown

Figure 59 — Setting the loglevel for a z:block action with the loglevel attribute

8.7.5 z:logfile action

Zagreus job-logfiles are stored in a server subfolder, see - General properties. The
user can redirect the log messages to another file at a certain point during the
execution with a specific action z: 1logfile.

In Figure 60., Action 2 redirects the logging into a new file (newlogfile.txt), so the
log message in Action 3 will be presentin this file. Action 4 resets this redirection
with the empty filename attribute, so the message in Action 5 is present in the
standard job-log file again.

[allt][T][e] [al[t[t[e]

normal message | filename = fadmin/<-filesystern-> /newlogfile.tut |
~ 13 zlog NN~ 4 zlogfle

[allt][T][e] [al[t][1][c [allt][T][e]

redirected message | filename = | message in the original file again

Figure 60 — Redirecting logging to another file temporarily with the z:logfile action

8.7.6 logfile attribute

The special attribute logfile also redirects the logging into another file, but unlike
the z:1logfile action, this attribute applies only for the given action and its sub-
actions (no need to reset this redirection after the action).

In Figure 61., this attribute is set for Action 2, and the logging for z:block and
all of its child actions is redirected to the new logfile (newlogfile.txt).

[al[t[T][e] [al[t[T[e] [al[t[T][e]

normal message |Iugﬁle=fadminf-d-filesystem-:\-,‘newlogfile.txt message in the original file again
[allt][T][e] [al[t[T[E]
redirected message another redirected meszage

Figure 61 — Redirecting logging to another file temporarily with the logfile attribute

8.7.7 log-attributes attribute

The log-attributes attribute is used for logging all name-value pairs of the attributes

of a particular action.

1 fileread
a|[t][T][c]

filename = fadmin/resources/sample.txt
binary = false

encoding = UTF-8

log-attributes = true

Figure 62 — Example for the log-attributes attribute

In the logfile, the attributes are listed like below:

<"1l"™ file:read>

Attribute: filename, value: /admin/resources/sample.txt

Attribute: binary, value: false

Attribute: encoding, value: UTF-8
Attribute: log-attributes, value: true
Reading file "/admin/resources/sample.txt"
</"1" file:read>

8.7.8 log-result-attributes attribute

The log-result-attributes attribute logs all the result attributes (see - Result
attributes) of the action after execution. In Figure 63., the result attributes of the
z: for action (which are: loopcnt and execution_time) are logged into the logfile

shown as below:

al[t][1[c]

loop-counter = |

from = 1
to=10

log-result-atiributes = true

S{sleep(100})}

Figure 63 — Example for the log-result-attributes attribute

<"1" z:for>
[loopcnt:10,execution time:1003]
</"1" z:for>

8.8 XML representation

Scripts are stored in XML format in the embedded MySQL database of the Zagreus
Server. This XML format corresponds to the one shown in the fully-featured Script
Editor, see = Script Editor. The user can check out the XML representation in the
Zagreus Client in the following ways:

e selecting the XML view in the Script Editor, see - XML view

e opening the script by the XML Editor from the Zagreus browser window, see -
Opening resources

ﬁ Warning: It is highly recommended not to manually edit the XML content
of the script. The main purpose of checking out the XML representation is
debugging.

In the next example a simple script is shown:

[al[t][T[c]

ElRNE

| level = user |

This iz a log message

Figure 64 — An action containing another action

The XML representation of the script in Figure 64. is shown in the following snippet:

<z:block z="0" o="1" x="28" y="19" w="231" h="189" v="3">

<z:log z="0" o="1.1" x="20" y="15" w="185" h="128" v="3"
level="user" null-format="">This is a log message</z:log>
</z:block>

Notice the following details in the XML representation:

e Actions are represented by XML elements.
e Action name is represented by the local name of the XML element.
e Action group is represented by the namespace of the XML element.

Child actions are represented by additional XML elements as the content of the
parent XML element (such as the z: 1og child action).

Action attributes are represented by the attributes of the XML element (such as
the level attribute of the z: 1og action).

Textual content of an action is represented by the textual content (PCDATA) of
the XML element (such as the “This is a log message” string).

Attributes of the XML element starting with “_” are strictly for internal usage.

9. Connections

In Zagreus, a connection is the collection of information required to access a
(typically remote) server, such as protocol, Internet address, IP address, port,
username, password, operation folder etc. Using connections is one of the key steps in
creating a Zagreus script. In general, in a Zagreus script the users can access various
kinds of data sources, import data and perform various operations on them. In addition
to gathering, manipulating, and forwarding data, Zagreus can leverage multiple
connections in a single script.

Here are two examples for using different connection types:

e An Excel file, received via e-mail in attachment is downloaded from an e-mail
inbox (IMAP connection). The data stored in the Excel file is read, processed and
changed; this new data is written into a database (SQL) table (database
connection). The new Excel file, containing the modified data, is copied to a
network drive (file connection).

e MicroStrategy (MSTR) reports are collected over the course of a week (MSTR
connection), they are exported and the files are zipped and sent to a remote File
Transfer Protocol (FTP) server (FTP connection). The latest report and its summary
is uploaded to a Confluence page (Confluence connection). Finally, a status report
e-mail is sent to the co-workers (SMTP connection).

By using Zagreus connections, data which is stored on different servers can be
accessed by using different protocols (e.g. IMAP, FTP, SQL). This allows Zagreus users
to automate various types of jobs, and develop multiple workfolws — as demonstrated
in the above examples.

Currently the following connection types are supported by Zagreus:

e confluence:connection: for connecting to a Confluence server and reach
Confluence spaces

e db:jdbc-connection: for connecting to a database server using jdbc database
connection. Supported database environments are: Oracle, Mysqgl, SQL-Server,
Teradata, db2, SQLite, PostgreSQL, Exasol.

e file:connection: points to a file in the Zagreus external file system

ftp:connection: for connecting to an FTP server to manage, upload and download
files

http:connection: for connecting to an HTTP server

jira:connection: for connecting to a Jira server and reach its projects
kafka:connection: for connecting to a Kafka cluster to produce and consume
messages, list topics, etc.

Idap:connection: for connecting to an LDAP server

mail:connection: for connecting to an e-mail server. Can be configured as an
SMTP, IMAP or POP3 connection

msft:connection: for connecting to a Microsoft account in order to access
OneDrive, mails, files, etc.

mstr:connection: for calling MSTR functions with the MSTR Java Web API
mstrrest:connection: for calling MSTR functions via REST API

rest:connection: for connecting to a REST API provider

ws:connection: for connecting to a server in order to execute web service calls

zs:connection: for connecting to a Zagreus server

9.1 Defining connections

Many types of connections are available in Zagreus for making automated processes
— database, FTP, IMAP, SMTP, MSTR, REST, etc. The term connection is used in Zagreus
in two different meanings: as a Zagreus connection action, and as a Zagreus
connection-type resource. In the first sense, the connection action can be handled as
any other Zagreus action: it can be drag-and-dropped from the palette (see - Palette)
to the canvas area of the Script Editor (see = Canvas), its attributes can be edited, etc.
A Zagreus connection resource refers to a special type of Zagreus resource (see =
Resource types), which contains only one action, which is a Zagreus connection action.

Although defining a Zagreus connection is possible as a standalone action (see -
Creating a connection resource) within a Zagreus script, it is recommended to define
each connection as a standalone connection resource; this way, it can be included into
several different scripts. Would some property of the connection change in time (e.g.
changing an expired password), connection management is more straightforward and
easier this way than editing all affected scripts individually.

9.1.1 Creating a connection resource

Perhaps the most straightforward way of creating a Zagreus connection resource in
the Zagreus Client, in the Script editor window (see also = Script Editor = Script
Editor), in the Graph Editor (see = Graph view). Similarly to other actions, connection
actions can be drag-and-dropped from the palette (see = Palette tab), which can be
followed by specifying the content of the action attributes.

To create a Zagreus connection, select the menu item File / New resource... , see
Figure 1.

¥ Zagreus Client
File Edit Window Tools Help

“ Mew resource '—t'eT (G| ﬂo| & /|
Exit -
FEB ~
~ [| Zagreus Demo Server [connected]
% groups
€ users
' admin

= .
B recycle bin

Figure 1 — Creating a new connection resource by using the main menu bar

Alternatively, the user can select the Create new resource... menu item from the
context menu of the containing folder (see - Creating new resources), see Figure 2.

B Zagreus browser 22 = O
3 =
w [[] Zagreus Demo Server [connected]
§% groups
£ users
v _fj;] admin

] administration
] configuration
| connections

L] resources | " Create folder...

T‘ 5ch.edu|E5 “ Create new resource...

| scripts

] templates Uplead local rescurce...

D autorun Search for resources...

£ .sendscripts

E .serverautor Send ’

_@ <-filesystemn

= .
b recucle hin

= Select

Figure 2 — Creating a new connection resource by using the context menu

Next, type of the new resource must be selected. The option connection can be
found in the dropdown list, see Figure 3.

“ Creating new resource O *

Creating new resource on Zagreus Server

Specify new resource parameters:

Resource narme: | Untitled

Resource type: Script (Graph Editor) ~
Script (Graph Editor)
Script (XML Editor)

Temilate (Graih Editor)

Event schedule
Time schedule
File trigger

DB watcher
Mail watcher
Simple text file

Figure 3 — Selecting the connection resource type from the dropdown list

After the new Script Editor tab is opened in the editor area, the particular
connection action can be drag-and-dropped from the palette (- Palette tab), see
Figure 4.

(= db £
db:begin
| dbcall

| dbiclose

| db:commit

i | dbjdbe-
i connection

| db:load

‘ <«

db:jdbc-connection

db:param

Figure 4 — Drag-and-drop the connection action from the palette

Finally, the attributes of the connection action must be filled; for a completed
connection as an example, see Figure 5.

B 1 _dbjdbcconnection N
BIRMIE

name = mysgl-demo

domain = mysql

driver = com.mysgl.jdbc.Driver
server = 192,168, ==
port = 3306

user = demo

password = e
cpassword =

database = sampledb
connection-string =
autccommit = true

nulkvalue =

number-format =
date-format =

time-format =

Figure 5 — An example of a completed connection

9.1.2 General connection attributes

Most of the connection attributes are unique and connection-specific; however,
there are general attributes which are present for most connection actions (for
example name, server, username or password). Next we will discuss the most frequent
ones.

9.1.2.1 name attribute

The name attribute is used in all Zagreus connection action definitions. This will
serve as a reference of the particular Zagreus connection for the other actions of the
action group / namespace. It is recommended to specify it as a short, concise and easy-
to-read expression. The name attribute is required to specify.

In most actions, the connection-name attribute is used to reference the given
connection. As a notable exception, action zs:migrate (used to migrate resources
across Zagreus servers) uses two Zagreus connections at once: source-connection-
name and target-connection-name.

9.1.2.2 server attribute

This attribute is present for most Zagreus connection actions. It stands for the URL
or the IP address of the target server. There are a few exceptions, which connections
do not use the server attribute, such as the Microsoft connection (action

msft:connection), where the authority attribute identifies the target, or the MSTR
REST connection (action mstrrest:connection), which has the url attribute for this
purpose.

From this perspective, the Zagreus Server connection (action zs:connection) is a
special connection. For this particular connection action, the server attribute can be
left blank, which just indicates the actual Zagreus server, i.e. the hostname “localhost”.
However, if the local Zagreus server instance uses a different port than the default one
(i.e. 7323), further configuration steps are required, see also - Connection properties.

9.1.2.3 username, password and cpassword attributes

The first step of a server-client communication is the authentication of the client
who wants to perform some operations. Perhaps the most common way of
authentication process is to use username and password, which values can be specified
with the username and password attributes for most Zagreus connection actions, e.g.
FTP, database, SMTP, etc.

If the user does not want to display the password as a readable data on screen (and
store it in the Zagreus script as plain text), then encrypted password can be generated
with the built-in Password converter tool (see also - Tools menu). In this case the
attribute cpassword must be filled with this encrypted password, while the attribute
password will be left empty.

9.1.2.4 Authenticating with tokens

In some cases user authentication is done by using tokens, i.e. by specific, generated
identifiers, represented as character strings. For example, in the case of the Microsoft
connection (action msft:connection), Client id and Client secret tokens have to be
generated before creating the connection resource, and the values have to be copied
into the attributes client-id and client-secret of the msft : connection action.

9.2 Using connections

The main benefit of using connection resources is the possibility to reuse them:
several scripts can utilize the same connections, and the necessary changes (e.g. port,
new password) have to be corrected in one file only. Zagreus connection resources
have further advantages in terms of maintenance and administration (comparing to
Zagreus connection actions defined inside scripts): the parameters of the connection
can be verified easier, and connections can be drag-and-dropped from the Zagreus
browser onto an action, allowing users to include the correct resource into the script
with only a single mouse movement.

9.2.1 Test connection feature

It is recommended to test a Zagreus connection resource after it has been created,
before using it. This practically means that the Zagreus server attempts to connect to
the given server with the given parameters, defined in the corresponding Zagreus
connection resource. This function can be accessed in the Browser Window of the
Zagreus Client, by right-clicking the given Zagreus connection resource, and choosing
the Test connection menu item from the context menu, see Figure 6.

w || connections
imap-demo
mstr-demo
mysgl ¢
] resource: E
) schedule f] Openin XML editor

[seripts | 2] Open in Simple text editor

Open in Script editor

U temp
] template Test connection
= autorun Connect

Figure 6 — Choosing the Test connection option

The result of a connection test can be successful or failed, and it appears in a pop-
up window, see Figure 7.

¥ Successful d

'0' Testing connection was successful,

Figure 7 — Successful connection test message.

If a connection test fails, a brief error message informs the user about the cause of
the failure; for an example, see Figure 8.

&8 Error occured by
I.-‘ _"‘-.I Testing connection failed!

failed: Re-Authentication Failure

Figure 8 — Failed connection test with a specific error message.

When the server did not respond within 15 seconds during a connection test, the
testing will fail as well (time out). That may indicates that connection definition
contains an error, or the target server is unavailable. For an example, see Figure 9.

&8 Error occured d
I.-"'_"‘-.I Testing connection failed!

15 secs connection timeout ended on server side,

Figure 9 — Failed connection test due to time-out.

It is important to understand that the connection test is performed by the Zagreus
Server module (see = Zagreus Server), while script execution (and therefore, actual
connection usage) is done by a Zagreus Worker (see - Zagreus Worker). The
configuration of these modules might be different, for example the firewall settings
might affect the two differently (if they are installed on different machines), or they
can differ in the SSL certificates installed (in case of secure connections, see - Manage
certificates). If the connection test succeeds, but script execution fails for the same
Zagreus connection resource, the reason is probably related to worker settings (see >
Zagreus Worker configuration).

9.2.2 Referencing to a connection

If a script can use a Zagreus connection action (either because it was defined in the
given script, or because it was included in the script via the z: include action (see >
Includes), the corresponding actions can reference it. Of course, they must belong to
the same action group: it makes no sense to reference an FTP connection from a

MicroStrategy-related action (e.g. mstr:report). Referencing is done by using the
connection-name attribute in the referencing action. Figure 10. shows an example.

al[t][1][c] al[t][1][c]

name = ftp_connection connectien-name = ftp_connection
server = sampleserver.zagreus.com filename = folder/file.pdf

port = 21 binary = true

USEr = yser output = fusers/zagreus_test/out.pdf

password = pass
secure = false

passive = false

Figure 10 — Referencing a connection from another action

In this example, an FTP connection is defined in Action 1 (ftp:connection).
Among the connection parameters, the name attribute has the value
“ftp_connection”, which will be the ID of the given FTP connection. Action 2 (ftp:get)
uses this string in the value of the connection-name attribute to identify which
connection action will be used in the actual FTP step.

Info: As a rule of thumb, a Zagreus connection action is just a definition
of the given connection. Connecting to the specified server is performed
when the first referencing action is executed.

9.2.3 Inserting connections to a script

Instead of manually specifying a z: include action (see = Includes), connections
can be included into a script with only a simple drag-and-drop event. This is done by
dragging the resource in the Zagreus Browser window, and releasing it on the attribute
connection-name of the action which should reference this connection (see Figure 11.
and Figure 12.). This will have two effects: firstly, the Zagreus connection resource will
be included in the given script (by adding a z:include action), and secondly, the
connection-name attribute will contain the identifier of the connection. Connections
are included by their resource ID.

L] Zagreus Client
File Edit View Window Toels Help

82 Edit view Reportview : %5 @ {:‘ol & B LQJ|

. Zagreus browser 2

e R
w [[] Zagreus Demo Server [connected]
£% groups
€ users
v _ﬁI admin

] administration
] configuration
w | connections

8. sample_script
¥ imap-demo
¥ mysgl-demo

| resources

] schedules

| scripts

] templates

[E .autorun

[E .sendscripts

B EBOo E

= B || &b *Untitled [1.0.0.0] (script) &2

~

IEIITIITHE

l connection-name =
T Msdarente

nulk-format = null

SELECT customerMumber, customerName, addressline FROM customers,

Figure 11 — Drag-and-drop event of a connection resource: it is pulled onto the attribute connection name

‘! Zagreus Client

File Edit View Window Tools Help
| B2 Edit view Reportview © 2 & ﬁvl (| @"

5. Zagreus browser £2 =
nE R
w [[] Zagreus Demo Server [connected]
£% groups
€ users
v fj;l admin

7] administration
] configuration
~] connections
& sample_script

mysql-demo
7] schedules
] scripts
B templates

D .autorun
[E .sendscripts

Figure 12 —

B EHBOo 00 | &
O || & “Untitled [1.0.0.0] {script) 2

-

= [1 mysgl-demo
[al[tI[tc]
| filename = id:1a2aa1f3bcBadfaBaddfc10441 5232e|

[|2 db:sql
i e inmiral

connection-name = mysql-demo I
log-=gl = false
nul-format = null

SELECT customerMumber, customerName, addressLine FROM customers;

Result of a connection include

For possible other referencing actions, the value of the connection-name attribute
can be copied from one action to the other, or entered manually. Alternatively, drag-

and-dropping the same connection multiple times also works — the connection
resource will be included only once in this case.

@ Info: The current version of the connection resource is included.

9.2.4 Closing a connection

Some servers are quite sensitive to connections kept open; therefore, it is important
to close a connection after it is used. In Zagreus, there are two ways to close a
connection.

In the first one, the user can manually close a connection by using the appropriate
close action. For example, a MicroStrategy connection (action mstr:connection) can be
closed by the mstr:close action, which will close the connection to the given
MicroStrategy server, when the script execution reaches this action (see - Order of
execution, result flow). Of course, the connection-name attribute of the close action
has to be filled with the name (identifier) of the connection. See Figure 13. for an
example.

®2 fpget
al[t[[e] al[t[[e] [a][t][1][c]
name = ftp_connection connection-name = ftp_connection | connection-name = ftp_connection |
server = sampleserver.zagreus.com filename = folder/file.pdf
port = 21 binary = true
USEr = user output = fusers/zagreus_test/out.pdf
password = pass
secure = false
passive = false

Figure 13 — Closing an FTP connection by the ftp:close action

In the other approach, the user can rely on Zagreus to automatically close the open
connections. This will happen at the end of the execution of the containing block, which
has the connection definition as its direct child. (For script structures, see - Actions,
while for script execution, see - Order of execution, result flow.) See Figure 14. for an
example: the FTP connection is defined in Action 1.1 (ftp:connection), but it is
opened only in Action 1.2 (ftp:get). When script execution reaches the end of the
containing action, i.e. Action 1 (z:block), this connection is closed automatically,
therefore it will already be closed in Action 2 (z:10g).

7 [z:block
[allt][fc] ElRniE
= 11 ﬂp:cunnectiun M The FTP connection is already closed!
a[t][t[c] al[t][t[c]
name = ftp_connection connection-name = ftp_connection
server = sampleserver.zagreus.com filename = folder/file.pdf
port= 21 binary = true
USET = user output = /users/zagreus_test/out.pdf
password = pass
secure = false
passive = false

Figure 14 — Closing an FTP connection automatically, at the end of the defining block

Info: Connections defined or included on the root level will be closed at
the end of Zagreus script execution.

9.2.5 Opening connections in the Zagreus browser

It is also possible to connect and browse directly in some types of connections in the
Browser window of the Zagreus Client. For this, the user has to create a Zagreus
connection resource. To connect to the given server, the user has to right-click on the
given connection resource, and select the Connect menu item from the context menu,
see Figure 15.

T Zagreus browser &2
i ¥
w [[] Zagreus Demo Server [connected]
£% groups
€ users
~ 4 admin
] administration
] configuration
~ || connections
2. sample_script
¥ imap-demo
¥ mysgl-demo
£ re i Openin Script editor
j“] Openin XML editor
sC
B tel =l Openin Simple text editor
= au
= =€
= =€
-é < Send >

=
W recyc g=

Test connection

Connect

Select
Rename resource...

¥ Delete

Figure 15 — Connecting to a database server (via a connection resource) in the Browser window

The browsing functionality is limited to specific connection types, and the
functionality of browsing (i.e. items shown) is limited as well.
Zagreus can connect directly to the following server types:

Connection type

Available features

Database (i.e. SQL)

Get database information, list properties of tables and views,
list table content

Mail (IMAP)

List folders of INBOX and check folder content, show e-mail
information

Mail (POP3)

List e-mail information of INBOX

MicroStrategy

List project objects, list resource information, copy and paste
resource path into the name attribute of mstr actions. Drag-
and-drop MicroStrategy reports and documents onto the
canvas of the graph editor.

9.2.5.1 Database connections

After connecting to a database server (see Figure 15.), listing items of a database
connection can be done in the sub-tree of the opened connection. The browsing tree
goes down to column definition level; for an example, see Figure 16.

T Zagreus browser &3 | il = = 8

w [[] Zagreus Demo Server [connected] A
£% groups
€ users
w _ﬁI admin
] administraticn
] configuration
w _| connections
. sample_script
¥ imap-demo
w B mysgl-demo
] Database info
w || Tables
w] custormers
w T customerMumber
o Primary key: yes
o Type: INT
o Sqltype 4
o Size: 10
o Mullable: no
& addressLinel
& addressline
& city

Figure 16 — Listing column information of a database table

It is also possible to check the content of a database table by right-clicking a table
name and selecting the Show data menu item from the context menu, see Figure 17.

T Zagreus browser &3 i ¥ = 8
v [[] Zagreus Demo Server [connected] A
€% groups
£ users
w _ﬁI admin

] administration
] configuration
w || connections
. sample_script
¥ imap-demo
w B mysql-demo
] Database info
w] Tables
7] customers
1 Show data

=

] joborders
7] offices
7] orderdetails

Figure 17 — Opening the content of a table

The table content will be shown in a separate view in the Zagreus Client; the name

of the window will be the same as the name of the database table. For an example, see
Figure 18.

2 Zagreus Client - %
File Edit Window Tools Help

89 Editview 88 Reportview (82| €@ % | ¢ @ B H H © B iE
#5. Zagreus browser 2 | [v =g = a
v] Zagreus Demo Server [connected] "
13 groups
€ users
| admin

] administration
] configuration
v] connections
. sample_script
imap-demo
v # mysql-demo
] Database info

v [Tables
] customers
71 employees
T et_test
71 joborders
1] offices
71 orderdetails
1 orders
q ;:Dy;i:ﬁies 1 customers 5% | & Active jobs [Zagreus Demo Server] | £ Active logs [Zagreus Demo Server] | # Execution engines [Zagreus Demo Server] FEO-- =0
71 productparts ¢ customerNumber customerNlame contactlastName contactFirstName phone addresslinel addressline? city state postalCode country salesRepEmploy ™
1 products 103 Atelier graphi... Schmitt Carine 403.. 54, rueRoy. null N.. null 44000 France 1370
1 shippers) 112 Signal Gift .. King Jean 7025.. 8489 Stron.. null L. NV 83030 UsA 1166
= supplierproductlines 114 Australizn Co... Ferguson Peter 039.. E365tKild.. Level3 M.. Vic.. 3004 Austr.. 1611
» T suppliers 118 La Rochelle G... Labrune Janine AD6.. 67 ruedes.. null M. null 44000 France 1370
O views 121 Baane Minil.. Bergulfsen Jonas 079.. Erling Skak.. null St. null 4110 Morway 1504
) resourees 124 Mini Gits Dis... Nelson Susan 4155, 677 Stron... nul 5. CA gTse UsA 165
71 customers & | & Active jobs [Zagreus Demo Server] & Active logs [Zagreus Demo Server] %, Execution engines [Zagreus Demo Server] FE 0 *+ ¥ = 0
7 customerMumber customerMame contactlastName contactFirstMame phone addresslinel addressline? city state postalCode country salesRepEmploy ™
103 Atelier graphi.. Schmitt Carine 40.3.. 54, rueRoy.. null M. null 44000 France 1370
12 Signal Gift 5t.. King Jean 7025.. 2489 Stron.. null L. NV 83030 UsA 1166
114 Australian Co... Ferguson Peter 039.. 6365tKild. Level3 M. Vic.. 3004 Austr.. 1611
118 La Rochelle G... Labrune Janine 40.6... 67, ruedes.. null M.. null 44000 France 1370
121 Baane Minil.. Bergulfsen Jonas 07-9.. Erling Skak.. null St null 4110 MNorway 1304
124 Mini Gifts Dis... Melson Susan 4155.. 3677 Stron.. null 5. CA 47562 USA 1165
125 Havel & Zbys... Piestrzeniewicz Zbyszek (26) .. ul Filtrowa.. null W.. null 01-012 Poland null
128 Blauer See Au... Keitel Roland +49... Lyonerstr. 34 null Fr.. null 60328 Germ... 1504
129 Mini Wheels... Murphy Julie 6305.. 5557 North.. Void Space 5. CA 94217 UsA 1163
131 Land of Toys ... Lee Kwai 2125.. 897 Long A.. M. NY 10022 UsA 1163

Figure 18 — Showing the content of a database table
9.2.5.2 Mail connections

It is also possible to connect to a Mail connection in the Zagreus browser, if the type
of the mail connection is IMAP. In this case, the folders of the connection are listed
along with the number of the contained e-mails; for an example, see Figure 19.

5. Zagreus browser 23 = O
AEE ¥
v [Zagreus Demo Server [connected]
€% groups
€ users
~ € admin
1 administration
] cenfiguration
w | connections
w B imap-demo
w INBOX (0/3)
TEST (0/1)
Trash (0/0)
Archived [0/0)
Templates (0/0)
Sent (0/1)
spambucket (0/0)
Dirafts (0/0)
¥ mstr-demo
¥ mysgl-demo

Figure 19 — Folders of a Mail (IMAP) connection are listed along with the number of e-mails

Similarly to the case of the database connections, it is possible to get information
about the objects on the server. In this case, this means getting information about the
mailboxes; for that, the user has to right click on the given mail folder, and select the
Show mail info menu item from the context menu, see Figure 20.

w | connections
w I imap-demo
v lNBTC;; 2% Show mail info
Trazh (0/0)
Archived (0/0)
Figure 20 — Folders of a Mail (IMAP) connection are listed along with the number of e-mails

9.2.5.3 MicroStrategy connections

When a MicroStrategy connection is opened in the Browser window of the Zagreus
Client, it is possible to list MicroStrategy resources of the given connection. It is also
possible to get further information about specific MicroStrategy resources; for this, the
user has to right click on the given resource and select the Show resource information
menu item from the context menu. This will open the MicroStrategy object info
window, which contains basic properties of the given object, see Figure 21.

(L

File Edit Window Tools Help

83 Edit view Reportview : %5 (& {}ol (| Q| EE E :E

B Zagreus browser 3 i

v @ mstr-deme
[Object Templates
(3 Profiles
(L1 Project Builder
(L1 Project Objects
w [_ Public Objects
(L3 AutoStyles
[Consolidations
[Z Custorn Groups
[C3 Documents
(23 Drill Maps
[C Filters
£ Metrics
~ [Prompts
[Z3 System prompts
Choose Custom Group

- = 7

~

@ Choose from a lis]
A Choose from a lis
Choose from a lig
Choose from a ligf Fesource name:
@ Choose from a lis
Choosefromthe| Resourceid:

Choose from the Resource type:

Choose one or m

Contributors Full path:

Customers segmg Description:

b1 MiscroStrategy object info et

Choose Custom Group

0451E0F3413DEDB7468CTFO4D59E231D
prompt

/Public Objects/Prompts/Choose Customn Group

Qualify on Time
MM Select a Cateaorv |

<

0= Outline 2 | Z5 Attributes| @ Breakpi

There is ne active editor that provides an of

Figure 21 — Listing prompts of a MicroStrategy project and displaying object information

It is also possible to drag-and-drop MicroStrategy reports or documents onto the

canvas of the Script Editor, see Figure 22. In this case, the corresponding Zagreus action

(i.,e.mstr:report ormstr:document) will be created, and the used connection will

be included in the script automatically.

T Zagreus browser &3 l = O || *Untitled [1.0.0.0] (script) 2 I

FER ~
[} Zagreus Demeo Server [connected] A
% groups Resource id and connection-
'iﬁ Her mstr-demo .
v € admin name are filled correctly
] administration

] configuration 1

w || connections

¥ imap-demo
v @ mstr-demo id = F204123811D60ADO10008BE30 1 CEEGAL
e D Object Templates connection-name = mstr2021

[] Analysis p—

[Censolidations i

[Z3 Custom Groups mege=

[Dashboards hfstur'_.f-n:tx =

[Documents TERLSTEES

[Z3 Dossiers banding = false

(27 Filters sql = false

£ Metrics async = false

[Z21 Prompts / cache = true

~ [Reports update-cache = true
Blank EMMA Cube Rep history = false
Blank Report graph = false
Call Center Analysis rows =
Customer Analysis encoding =
Default Attribute Form page-by-timeout = D
Employee Analysis page-by-required = false
Intelligent Cube Report fiiter-details-reguired = false
Inventory Analysi sppenc.ter = fase
< >

Figure 22 — Drag and drop a MicroStrategy report from the browser window. Notice that the connection is also included

9.3 Secure connections

For specific connection types in Zagreus (e.g. FTP, MicroStrategy), there is the
possibility to use them in a secure way. To use such a secure connection, the
corresponding certificate(s) must be imported into the keystore file of Zagreus (see -
Manage certificates). Using a secured connection can be set differently in the case of
each connection types. For instance, in the case of an LDAP connection, attribute
protocol has to be set as LDAPS, while in the case of an FTP connection attribute secure
must be set to true. Settings can be checked in the help of the given action, see also -
Action help.

9.4 zs connection

The zs:connection andthe zs action group (standing for Zagreus Server, marked
with green headers in the Zagreus Client) are unique among the connection types
supported by Zagreus.

The user can perform actions on a specific Zagreus server initiated from a Zagreus
script using the actions in the zs action group. This is particularly useful for the
following use cases:

e executing another script from the actual script

e obtaining information about jobs, subscriptions and other queue-related server-
side components

® managing subscriptions

e performing file operations on the server side (see - Embedded MySQL database
and - Local filesystem in the Zagreus Server)

e migrating scripts, users, subscriptions or other resources from one Zagreus Server
toanotherbythe zs:migrate, zs:migrate-user-groupand zs:migrate-
subscription actions

The zs connection is using the http / https communication protocol (i.e. they are
calling webservice functions of the Zagreus Server).

It is a common use case to perform these actions on the local Zagreus Server (i.e.
the one that the actual Zagreus Worker is connected to). To aid this, it is possible to
reference the local Zagreus Server by leaving the connection-name attribute empty in
in all the actions of the zs action group. In such cases, the so-called local Zagreus
connection will be referenced implicitly.

A Warning: The local Zagreus Server runs on its default http / https port and
the local zs connection is counting on these port values. If the Zagreus Server
is not using the default http / https port, the administrator needs to adjust
the worker.serverport property in the configuration of the Zagreus Worker,
see - Connection properties.

9.5 Tips and tricks

This chapter contains some tips for making connection administration and usage
easier. Of course, these practices are merely suggestions, and they are not the only
way of doing the maintenance of connection actions and resources.

9.5.1 Creating standalone connection resources

During the creation of a connection create it as a standalone resource — changes are
easier to make. And changes tend to be necessary from time to time, either due to
different firewall settings, relocated virtual machines or password expiration.

9.5.2 Using subfolders

It is recommended to collect connection resources into a separate folder. It can be
a shared folder for each users or each user can create her/his own connection folder —
depending on the environment.

9.5.3 Using meaningful names

It is advisable to give meaningful names both for the connection resources and for
the connection actions, preferably also containing type of connection in the connection
name, because connections are shown with the same icon in the Zagreus Graph Editor,
and distinguishing them by a meaningful name is easier.

9.5.4 Using resource versioning

Versioning of connection is possible in the same way as, like, script versioning. When
a connection is drag-and-dropped into a script, its current version is included. If the
same connection would be used with minor changes — such as date format or collation
—, then multiple versions of the same connection can be created. This can be a need as
well when the different connection versions refer to the same server, but with
different users (on the remote server). Switching between the connection
configurations can be done easily by setting the current version property of the
connection resource, see also - Resource versioning.

9.5.5 Keeping connections up-to-date

With some simple administrative steps, the usage of connections can be easier and
some problems can be prevented.

Running connection tests periodically — even if the connection is not in use — can
reveal changes in the configuration such as changes in server configuration or in the
user of the connection. In such cases, problems can be revealed before connection
include and script execution, and the necessary steps for fixing the connections can be
performed.

10. Zagreus Client

Zagreus offers an intuitive graphical user interface (GUI - Graphical User Interface),
which allows access to all of the functions of Zagreus Server. The interface of the
Zagreus Client has several main parts, ensuring it is easy to maintain a good overview:

&3 Zagreus Client — 5 6
=0

File Edit Window Tools Help
&9 Editview |53 Reportview (2| @ @5 | ¢ @ & BB o
HEE~ -0

5. Zagreus browser 5
[Zagreus Dema Server [disconnected]

1

= 0
T v

0% Qutline | & Attributes | & Variables/... I | ®g Breakpoints| &3 Watch

3

JL
& Active jobs [not connected] 2 |] Active logs [not connected] | % Execution engines [not connecte
User D Script path Version Begin exec. time

End exec. time

Job ID

Figure 1 — The parts of the Zagreus Client

1) Zagres browser window
Shows the folders and database / server filesystem resources. The user can open,

manage resources as well as administer the server-side settings such as user and

group management, starting and stopping server components.

2) Editor area
Allows the editing of various types of resources.

3) Extension windows for editor area
It is a container for additional windows related to the opened resource that is

currently edited in the Editor area.

4) Monitoring windows
Displays active services and their logging information, the status of execution
engines and job reports.

5) Main menu bar
The main menu bar of the Zagreus Client application.

6) Main toolbar
The main application toolbar containing tools for managing windows, layouts in
the Zagreus Client as well as tools for editing, saving and debugging the resource
being edited.

7) Status bar
Shows information about the ongoing processes.

10.1 Zagreus browser window

The user can navigate through a tree-like structure of database and server
filesystem resources in the Zagreus browser window (for resource types, see =
Resource types).

The root level contains one or more Zagreus Server definition nodes. Once the user
has successfully connected to a server, the server definition node expands and the
content of the server root level is appearing beneath the particular server definition
node.

The Zagreus browser window has its own toolbar for adding, modifying and
removing server definition nodes. This toolbar can be found in the upper right corner

of the browser window, see Figure 2.

i Zagreus Client — m} X
File Edit Window Tools Help

| B Edit view Reportview : %3 @ @ t*°| [IJ;I.I| | B o
. Zagreus browser 32 il ¥ = B8 = B8
v [[] Zagreus Demo Server [connected]
£% groups
€ users
v _ﬁ] admin
] administration
i configuration
£ connections The toolbar of the browser
| resources
] schedules
] scripts
] templates
. Untitled
£ .autorun
2] .sendscripts
D .serverautorun
v {8 «-filesystem-»
] backup
] commen

] images
] pdf
U temp
B recycle bin
9% Breakpoints 22 = B8
Ordering Action Position St
< >
@ Active jobs [Zagreus Demo Server] | B Active logs [Zagreus Demo Server] 52 | % Execution engines [Zagreus Demo Server] & @i | B | & =0

Figure 2 — The location of the Zagreus browser toolbar

Server definition nodes can be opened either by double-clicking on the definition
node or by right-clicking on the node and selecting the Connect to server menu item in
the context menu.

10.1.1 Toolbar

The Zagreus browser window has its own toolbar, which contains necessary server
node management tools.

10.1.1.1 Adding a server definition node

To connect to a Zagreus Server, first a new server definition node needs to be
created in the browser. This can be done by clicking on the Add server definition tool,
see Figure 3.

L] Zagreus Client

File Edit Window Teols Help

B2 Edit view Reportview @ Tz @ B *% y
B Zagreus browser 22 | il ¥ = 0

Add server definition

Figure 3 — The Add server definition tool

The following connection parameters must be specified in the appearing Define
Zagreus Server dialog box, see Figure 4.:

e Connection name: the name of the server definition

e Host: the hostname or IP address of the server

e Port: the port of the server

e Secure: must be checked for secure (SSL) connection

e User: the user name

e Password: the password of the user

e Save Password: if checked, the Zagreus Client will store the password in an
encrypted format. If the password is not saved, it will be required to be typed
every time when the user attempts to connect.

[Define Zagreus Server O >

Define new Zagreus Server connection

Specify a new Zagreus Server connection with the following parameters:

Ceonnection name: | | |

Host: | |
Port:

Secure: Il

User: | |
Password: | |

Save password: |

Test connection

Figure 4 — The Define Zagreus Server dialog box

The connection can be tested by clicking on the Test connection button. The new
server definition node will be created by clicking on the Finish button.

8 Zagreus Client

File Edit Window Tools Help

85 Editview R Reportview (= B % | B E|HE B O
B Zagreus browser 22 FEE®R ~ - O

w [[| Zagreus Demo Server [connected]

§% groups

£ users
_fj;] admin
B recycle bin

Figure 5 — An opened server definition node after a successfully established connection

10.1.1.2 Modifying a server definition node

For modifying an existing server definition node, the user needs to right-click on a
closed server node and select the Modify server definition menu item in the context
menu or select the Modify server definition tool in the browser window toolbar, see
Figure 6.

¥ Zagreus Client
File Edit Window Tools Help

B Editview T3 Reportview | & B % | & B | = B
T Zagreus browser &1 MEE ¥ = O

1 Zagreus Demo Server [disconnected] /

Modify server definition

Figure 6 — The Modify server definition tool

All the aforementioned parameters of the server definition can be changed in the
dialog box, see Figure 7.

(=] Modify Zagreus Server O >

Modify Zagreus Server connection

The following parameters can be modified:

Ceonnection name: | Zagreus Demo Server |

Host: [192.162.50.170 |
Port:

Secure: Il

User: | admin |
Password: | T |

Save password:

Test connection

Figure 7 — The Modify Zagreus Server dialog box

10.1.1.3 Removing a server definition node

For removing an existing server definition node, the user needs to right-click on a
closed server node and select the Remove server definition menu item in the context
menu or select the Remove server definition tool in the browser window toolbar, see
Figure 8. The server definition node will be removed after confirmation.

¥ Zagreus Client
File Edit Window Tools Help

| B Editview 13 Reportview (% & B % | ¢ B = |)]
T Zagreus browser &3 MEERE ¥ = O

1 Zagreus Demo Server [disconnected] /

Remove server definition

Figure 8 —-The Remove server definition tool

10.1.2 Basic navigation

The Zagreus browser represents the files and folders of a Zagreus Server in a tree-
like structure. The user can navigate in this structure by the basic operations described
in the next subchapters.

10.1.2.1 Opening and closing a server definition node

Server definition nodes can be opened either by double-clicking on the definition
node or by right-clicking on the node and selecting the Connect to server menu item in
the context menu. If the password is not saved to the definition node, the user will be
prompted to specify it (see Figure 9.).

[C] Zagreus Demo Server [disconnected]

28 Account info >

Username: | admin |

Password: || |

Figure 9 —The Account Info dialog box

If the connection is successful, the server definition node opens and the base
content of the server root level is appearing under the server definition node (see
Figure 2.). The title postfix of the server definition node is changing from [disconnected]
to [connected].

In addition, the Active jobs, Active logs and Execution Engines windows will change
their respective header postfixes from [not connected] to the [server_node_name] and

show actual information from the server (see - Active jobs window, = Active logs
window and - Execution engines window).

To close an open Zagreus connection, the user needs to right click on the server
definition node and select the Disconnect from server menu item from the context
menu.

10.1.2.2 Expanding and collapsing tree nodes

Once the server connection is established, the user can navigate through the tree-
like folder structure. The first level of an opened server connection contains the users,
groups folders and the admin user home folder (if the dedicated admin user logged in).
If the usage of recycle bin is set (see - Recycle bin and - Miscellaneous properties),
the recycle bin folder also appears at the end of the list.

B5. Zagreus browser 53 i

W T[_| Zagreus Demo Server [connected]
£% groups

€ users
€ admin
B recycle bin

Figure 10 — Base level of a connected server node

These folders arrange the basic structure of the local database files and subfolders.

® groups
This folder contains the available groups for the logged-in user. The group public
is predefined in the shipped Zagreus versions. For group management, see -
Groups in the Zagreus System and - Context menu of a group node.

e users
This folder contains the home folder of the logged-in user (when a non-admin
user is logged in) or the home folders of all the users (when an admin user is
logged in). For user management, see - Users in the Zagreus System and -
Context menu of a user node.

e admin
The admin user home folder is separated from the home folders of other users.
System-wide administrative scripts are mapped under the admin user dedicated
folders, see - Administrative scripts.

e recycle bin
The recycle bin is a system-wide folder that contains the deleted resources. See
-> Recycle bin.

During browsing, the folders can be opened either by double-clicking on the folder
name, or by clicking on the > sign before the folder name. Closing an open folder can
only be performed by clicking on the v sign before the folder name.

Versioned resources behave similarly as folders. Versions are listed under a version
parent resource node, see - Resource versioning.

10.1.2.3 Refreshing tree nodes

The refresh operation can be performed on folders, version parent resources and
other resources as well. In case of refreshing a folder, the content of the folder will be
retrieved from the Zagreus Server. The same applies when refreshing a version parent
node. For other resources, the resource properties are updated.

Info: if a description is set for a resource, a tooltip is showing the
description text when the user hovers the mouse over the resource name.

10.1.3 Common resource management operations

The user can perform specific resource management operations, e.g. creating,
deleting and copying selected resources.

10.1.3.1 Creating new resources

Creating new resources can be initiated by right-clicking on a particulat folder tree
node and selecting either the Create folder... or the Create new resource... menu item
from the context menu, see Figure 11. The latter can also be done by clicking on the
Create new resource... icon on the main toolbar, see - Create new resource.

] schedules

v] scrim-
Badt] Create folder...

o 57 Create new resource...

Figure 11 — Create new resources menu items

Selecting the Create folder... menu item, a New Folder dialog box appears. The name
of the new folder has to be entered, see Figure 12.

23 Mew folder O >

Please specify the name of the folder

Mew folder name

Figure 12 — The New folder dialog box

Selecting the Create new resource... menu item opens the Creating new resource
dialog box, see - Create new resource.

10.1.3.2 Deleting resources

In order to delete a resource, the user has to do one of the following operations:

e right-click on the particular resource and select the Delete menu item from the
context menu

e press the Delete key when the selection is on the resource to be deleted, or

e select the Delete menu item from the main Edit menu.

& leng-running script with variables
L. sample_script_1
L sample_scrie+ 7

Z sample_scri Open in Script editor
i sample_scri Open in XML editor
k- sample_scri Open in Simple text editor
template_1
E .autorun Set script variables...

£ .sendscripts %5 Runin debug mode

D senverautorun

_@ <-filesystem-=
@ recycle bin

Run script
Script subscriptions...
Send ¥

Select

Rename resource...

¥ Delete

Copy path

Figure 13 — Deleting multiple resources

The delete operation is then performed after clicking OK on the confirmation dialog
box.

If the usage of the recycle bin is configured (see - Miscellaneous properties), the
deleted resource is first moved into the recycle bin. In this case, permanent deletion is
only accessible from the recycle bin context menu (see - Recycle bin).

10.1.3.3 Copying and moving resources

Copying and moving are performed in two steps in the Zagreus browser window.
First, the resource (or resources) have to be selected, see Figure 14. In case of selecting
multiple resources, the selected resources must be siblings (they must be within the
same folder).

~ || resources

;Il—lhsadm Open resource on client side
schedu
1 scripts = Open in Simple text editor
%I temp Download resource...
templal .
DI tp Upload new versien of resocurce...
.autoru
El sendsc Send >
=l servera
J‘g <'ﬁ|E5}' = Select

Figure 14 — Selecting a resource to be copied or moved

Then the user needs to click on the target folder (either on the same or on another
connected Zagreus server), and select the Copy selected resources or Move selected
resources menu item to perform the respected operation, see Figure 15.

O scripts
) ter .
jt _ 7 Create folder...
er
B .au 1 Create new resource...
g e Upload local resource...
= =e
y 3, Search for resources...
[<A
W recyd Send >

Select
Rename resource...
Copy selected resources

Muove selected resources

Figure 15 — Performing the copy resources operation

The behaviour of both operations depends on the settings which can be found in
the Copy tab in the Options dialog box. It can be accessed by selecting the Options...
menu item from the Tools main menu, see also - Copy tab.

Info: only scripts, folders and simple files are allowed to be copied or
moved from the embedded database to the local filesystem. The script
content will be a simple xml file in this case.

10.1.3.4 Renaming resources

In order to rename a resource, the user has to do one of the following operations:

e Right-clicking on the particular resource and selecting the Rename resource...
menu item from the context menu.

e Pressing the F2 key when the selection is on the resource to be renamed.

e Selecting the Rename resource... menu item from the main Edit menu.

The user then needs to type in the new name of the resource, see Figure 16.

v [templates
. example-script
. leng-running script with variables
. sample_script_1
fi. sample_script_2
. sample_script_3
. sample_script_4

¥ Rename resource O *

Please specify the new name
@'- sample_script_3
template_1 |
|:| .autorun
[E .sendscripts
|:| serverautorun

& <-filesystem->
i recycle bin

Figure 16 — The Rename resource dialog box

10.1.3.5 Uploading and downloading resources

Resources can be uploaded from an external source into the Zagreus embedded
database or into the server filesystem. The Upload local resource... menu item is
accessible for folders only, see Figure 17.

w [termp
Bo O Create folder...

w] tem| =9 Create new resource...

G e

. e Uplead local resource..,

% s & Search for resources...

Figure 17 — The Open dialog box for selecting a resource to upload

The user can select a resource in the Open operating system dialog box. After
clicking on Open button, the local resource will be uploaded into the selected target
folder, see Figure 18.

8 Open X
T « Local Disk (C:) » Programme » zagreus » gui-zagreus-docs v (¥ Search gui-zagreus-docs
Organise « Mew folder ==« [o
I Desktop ~ MName Date medified Type
@ OneDrive - Etixpert GmbH configuration . 11:09 File folder
@ OneDrive - Personal p2 7.14:51 File folder
& plugins 7. 14:51 File folder
B This PC repasitory 7. 14:51 File folder
workspace . 14:5 ile folder
ksp 14:51 File fold
§ 3D Objects | | connections.dat 7. 14:43 DAT File
I Desktop [] werkbenchxmi 8, 10:43 XMI File
= Documents 4| zagreus 26, 11:47 Configuration sett...
4 Downloads & zagreus-gui L1011 Application
J‘l Music
&=/ Pictures
B Videos
“am Local Disk (C:)
v o€ >
File name: || v| *E ~

Figure 18 — The Open dialog box for selecting a resource to upload

Simple file resources can be downloaded into the operating system local filesystem
from Zagreus Server. This can be performed by selecting the Download resource...
menu item from the context menu, see Figure 19. The user first select a target folder
in the appearing operation system Save as... dialog box.

~v] temp
£ 01_sparta_mst
w] templates
Z example-scrip [£| Open in Simple text editor
& long-running
& sample_script,
& sample_script,
Figure 19 — The Download resource... menu item

Open resource on client side

Download resource...

Upload new version of resource...

Also, a new version of a selected simple file resource can be uploaded by right-
clicking on the simple file resource and selecing the Upload new version of the
resource... menu item in the context menu. After selecting a resource in the operating
system Open dialog box, just like in case of simple upload operation, the user needs to
specify the new version number for the resource, see Figure 20. In this dialog, the
description of the new version can also be specified as well as the possibility to set it
to the current version, see = Current version.

Set resource version ot

This version can be saved as a new version of this resource.

Set resource version: 1.0.01

Current version

Description:

This is the new version of the resource

Saved versions:

1.0.0.0

Save Cancel

Figure 20 — The Set resource version dialog box

After clicking the Save button, the new version will be uploaded and merged to the
existing version in the Zagreus browser list.

10.1.3.6 Resource information

A comprehensive set of resource properties can be displayed by right-clicking on the
selected resource and selecting the Show resource information menu item from the

context menu, see Figure 21. For the list of resource properties, see - Resource
properties.

~ 4 admin

. A i

__| administration Resource infe X

| configuration

;l cannections Resource name: @I example—script

] resources

] schedules Resource id: 88406034661440c49674fdd7e078c7al

o scripts Version: 1.0.0.0, current

Tt

- j tzmilates Resource type: script

. example-script Full path: /admin/templates/sample_script_5
i leng-running script with variables Sizes 1953 byte(s)

. sample_script_1
. sample_script_2 Owner name: admin
. sample_script_3

&), sample_script_4 Created: 16.03.2023, 09:45:40
) sample_script_5 Last medified: n/a
= template_1

[E .autorun Created by: admin

B sendscripts Description:

[E .serverautorun
{3 <-filesystem-» & script showing a dependency
B recycle bin

Figure 21 — The Resource info dialog box
10.1.3.7 Copying the resource path

The Copy path operation is accessible for all the resource types in the Zagreus
browser. This operation allows the user to copy the resource full path into the Script
Editor in a two-step manner: first, the user needs to select the Copy path menu item
from the context menu (see Figure 22.), then the Paste path operation has to be
performed in the Script Editor (see = Paste path).

Eﬁ monitor-custemer-changes 1.0.0.0] (script)
& sample_script
&osamp T %l 4 zsrunscript H
) script %) Open in Script editor Q aianie =
@ script] Open in XML editor connection-name = B
& script [£] Open in Simple text editor i script-ir = — "
. script z:if scriptr <7 Undo Move 1[4 zs:runscript
Set script variables... al[t][1[c]
el variak EELIE Redo connection-name =
] template %5 Run in debug mode sync-i Paste el + script-id = Jadmin/scripts/sample_script
B =tonin @ Run script e s script-name =
ne 2| T A Script subscriptions... Find in seript.. async = true
x=
. T — Edit attributes... 1| sync-timeout =
= Sele
] o zsvar Encode password
} i:i:g N Rename resource... — pa:h Ell
. Delete ==
1zlist Show path in status line
2Ty B I}) . . zs:variable
- — X View attribute as child e
cript runtime information...

Figure 22 — The usage of the Copy path menu item

10.1.4 Opening resources

Resources can be opened in the editor area with their respective editor type. There
are the following editor types in Zagreus:

Script editor
The default editor for scripts, templates and connections

o XML editor
An alternative editor for XML-based resources (i.e. scripts, templates and
connections)

e Simple text editor
The default editor for simple text files, and an alternative editor for XML-based
resource

e Cron Time editor
The editor for time schedules

e Fvent editor
The editor for event schedules

e File Trigger editor
The editor for file triggers

e DB Watcher editor
The editor for database watchers

e Mail Watcher editor
The editor for mail watchers

The resource is opening in the default editor by simply double-clicking on it. An
alternative way of opening the resource in the default editor is right-clicking on the
resource and selecting the first menu item, i.e. Open in <editor type>, see Figure 23.

v] event schedules
FE] Sample event schedule

~ [file triggers] Openin Event editor
& check-new-pdf

N) Subscriptions...
~ | mail watchers P

Figure 23 — Opening a resource in its default editor

For those resources that have an alternative editor, the user can select among
multiple menu items, see Figure 24.

v [templates
L. example-script
& leng-running s
Z sample_script_1 x| Open in XML editor
i sample_script_: [Open in Simple text editor
. sarple_script_2
. sample_script_<

Open in Script editor

Set script variables...

Figure 24 — Opening a resource in an alternative default editor

Furthermore, for simple file resources there is an option to open them in a selected
external application, configured in the Options dialog, see - Download / upload tab.
It can be performed by clicking on the Open resource on client side menu item, see
Figure 25.

2 sampletst

] schedule Open resource on client side
) scripts [E Open in Simple text editor
O temp

Figure 25 — Opening a simple file resource in an external application

10.1.5 Searching for resources

It is possible to search for resources by clicking on the Search for resources... menu
item from the context menu. This menu is accessible only for folders. Then the Search
for resources dialog box appears, see Figure 26.

Q, Search for resources on server: Zagreus Demo Server X

Search for: | |

Parent path | fadmin/scripts |

(C) Resource ID
(®) Resource name, description
(O) Resource content
[searchin filesystern(s) as well
Only in xml resources in metadata (scripts, connections, templates)

There is no result of this search.

Resource path Resource D Current Resource description

Search | Open results in text editor Close

Figure 26 — Search for resources dialog box

The available search options in the dialog box are as follows:

e Search for
The search filter. Can be applied for the ID, name, description or content of the
resource; these options can be selected by selecting one of the radio buttons in
this dialog box (see below).

e Parent path
The path where the search will take place. It is the selected folder path by default.

e Resource ID
When selected, the search filter will be applied for resource IDs.

e Resource name, description
When selected, the search filter will be applied for resource names and
descriptions.

e Resource content
When selected, the search filter will be applied for resource content. Only XML-
based (scripts, connections, templates) and/or textual files are included in the
search, see the last setting in this list below-

e Search in filesystem(s) as well

the search will take place in the reachable filesystem as well (see - User rights
and = Administrator user rights). It is switched off by default.

e Only in xml resources in metadata (scripts, connections, templates)
it limits the content search for resources for XML-based resources: scripts,
templates and connections in the embedded database

After clicking the Search button, the result is shown in the table at the bottom of the

dialog box. If there is no result, a There is no result of this search message shown above
the table and the table remains empty.

The result table colums display the following information, see Figure 27.:

Resource path: the full path of the searched resource
Resource ID: the ID of the searched resource

Current: if the resource is a current version

Resource description: the description of the resource

Q. Search for resources on server: Zagreus Demo Server *,

Search for: | zin |

Parent path | fadmin/scripts |

(") Resource ID

) Resource name, descripticn
(®) Resource content

[]Search in filesystemn(s) as well

Only in xml resources in metadata (scripts, connections, ternplates)

Resource path Resource ID Current Resource description
0 /admin/scripts/Zagreus monit.. ff7ece10f173443bbb3355b29ff4685¢] . yes
. /admin/scripts/script_include d5232f(9ee79480973be0621d160135|... yes
Search | Open results in text editor Close

Figure 27 — The results shown in the table

@ Info: Double-clicking on the table row of a resource opens the selected
resource in the default editor.

By clicking the Open results in text editor button, the result can be saved in the folder
specified in the Path where to save these files field in the Options dialog (see =
Download / upload tab), using the export-result-<timecode>. txt file name.

10.1.6 Drag-and-drop operations

There are some very useful functions that can be performed by drag-and-drop
operations from the Zagreus browser window into an open script in the Editor area.

Source Target Key Action
. the selected id is copied as the
all attribute CTRL+SHIFT . P
attribute value
. . z:include action created with
script editor area - L
the script id
. . :block action created with the
script editor area CTRL z oc .
contents of the selected script
. . z:include action created with
connection editor area - L
the connection id
connection editor area CTRL the connection action is inserted
the connection action is inserted to
. connection-name the script as the first action, and
connection . - . .)
attribute the connection-name attribute is
filled properly
z:include action is created and
template editor area - the template is displayed on the
palette bottom
template editor area CTRL the template action is inserted
simple file editor area A file:read action is created
P with the path of the selected file

As it is displayed in the table above, the simple drag-and-drop operation creates a
z:include action when it makes sense in terms of script execution (XML-based
actions: script, connection, template), and for simple files it creates a file:read
action.

The Control key + drag-and-drop operation makes a direct inclusion of the XML-
based content. In case of a script, it is wrapped into a z :block action, because there
can be several siblings of its root level.

10.1.7 Script-specific operations

There are several operations that can make only sense when a script is selected in
the Zagreus browser tree.

10.1.7.1 Running a script

A manual script execution can be initiated by the Run script menu item in the context
menu.

w [templates
i example-scrint

% long-run %) Open in Script editor
g sample s] Open in XML editor
. sample_s Open in Simple text editor
. sarnple s
. sarnple s Set script variables...
fi. sample s %5 FRunin debug mode
template Run script
2 .autorun - —
[sendscripts Script subscriptions...

Figure 28 — Running a script manually

For different script execution modes, see = Job properties. This menu item initiates
a script execution on the server side, in an asynchronous way. The script then goes into
the queue that can be monitored in the Active jobs window, see - Active jobs window.
Once the script execution has begun, the currently running script is displayed in the
Active jobs and Execution Engines windows (see - Active jobs window and -
Execution engines window), and the log messages are shown in the Active logs window,
see - Active logs window.

After clicking on this menu item, a Running has started on server message appears
in the status bar.

The following windows shows monitoring information about the running (or
queued) script.

e Active jobs window: (see also = Active jobs window)

@ Active jobs [Zagreus Demo Server] 2 |) Active logs [Zagreus Demo Server] | - Execution engines [Zagreus Demo Server] | 2 Skipped jobs [not connected]
Job D User D Script path Version Begin exec. time End exec. time Status Priority Exec. mo..

6f44c740-7f38-487c-bdBb-629d8268675b 1 /admin/templates/example-script 1.00.0 16.03.2023, 09:46:06 n/fa Running 10 direct

Figure 29 — A job appears in the Active jobs window

e Active logs window: (see also - Active logs window)

cn Active jobs [Zagreus Demo Server] | & Active logs [Zagreus Demo Server] &2 #, Brecution engines [Zagreus Demo Server] | =l Skipped jobs [not connected]

fadmin/templates/example-script [1.0.0.0]

Time

16.03.2023, 09:46:45
16.03.2023, 09:46:45
16.03.2023, 09:46:45
16.03.2023, 09:46:45
16.03.2023, 09:46:46
16.03.2023, 09:46:46
16.03.2023, 09:46:46
16.03.2023, 09:46:46
16.03.2023, 09:46:46

Script path

fadmin/templates/example-script [1.0.0.0]
fadmin/templates/example-script [1.0.0.0]
fadmin/templates/example-script [1.0.0.0]
fadmin/templates/example-script [1.0.0.0]
fadmin/templates/example-script [1.0.0.0]
fadmin/templates/example-script [1.0.0.0]
fadmin/templates/example-script [1.0.0.0]
fadmin/templates/example-script [1.0.0.0]
fadmin/templates/example-script [1.0.0.0]

Message
<"2.3" zlog»
loop-counter=38variablel=39start value=start value
</"2.3" zlog>
<"2.1" mtext>
</"2.1" text>
<"2.2" rblock>
</"2.2" zhblocks
<"2.3" zlog>
loop-counter=3%variablel=40start value=start value

Figure 30 — Job-logs are displayed in the Active logs window

e Execution engines window: (see also - Execution engines window)

(" Active jobs [Zagreus Demo Server] | £ Active logs [Zagreus Demo Server] | % Execution engines [Zagreus Demo Server] &2

Worker information Worker-controller logs

Worker Controller

~ Worker Controller 1

Worker id Status Enabled Started CPU cores Jobid Script Job status
Running 02.03.2023, 15:15:40
1 Idle yes 14.03.2023, 16:59:23 6
s arc
I 3 Busy yes 06.03.2023, 10:25:06 13 b35156b3-2739-4232-adc4-09bb82d4abTbb /admin/templates/example-script [1.0.0.0] Running I
T TaTe Ve TEOT2023, T ¢

Figure 31 — A job appears in the Execution engines window

Further details of the finished scripts are available in the Finished jobs window (see

also = Finished jobs window).

10.1.7.2 Running a script in debug mode

In order to run the script in debug mode (see - Debugging in the Zagreus Client),

the user needs to select the Run in debug mode menu item from the context menu in

the Zagreus browser.

v [scripts

i cancel-handling

@ check-repert

Sy cli

. debuggin-example-script

% error-hanc) Open in Script editor

. error_hanc)
fi. example-s

gﬁ renitor-c
Bl script vers
@ script-for-

. script_incl
Wil cerint tno

e
o

Open in XML editor
Open in Simple text editor

Set script variables...
Run in debug mode I}

Run script

Figure 32 — The Run in debug mode menu item

For further information of running the script in debug mode, see - Debugging

concepts and terms

10.1.7.3 Script subscriptions

Clicking on the Script subscriptions... (see Figure 33.) context menu item opens the
Subscriptions dialog box, see = Subscriptions. Subscriptions for scripts can be created,
modified and deleted here.

w [templates
. example-script
. long-running script with variables

. sarnpli

& sampl Open in Script editor
%l sampl (] Open in XML editor
%l sampli 2] Open in Simple text editor

. sarnpl
temple
[E .autorun %% Runin debug mode
E sendserip 2 Runscript
2 .serveraut
v (B < -filesyst
] backu
Figure 33 — The Script subscriptions... context menu

Set script variables...

Script subscriptions...
Send >

For understanding how subscriptions work, see = Subscriptions.

10.1.7.4 Setting script variables and options

By clicking on the Set script variables and options... context menu item (see Figure
34.), the Script variables and options dialog box will open (see Figure 35.).

i sample_script with variable

@ sample_script_1 Open in Script editor

. sarple_script_2 %] Openin XML editor

L. sample script_3 El Openin Simple text editor
. sample_script_4

. sample_script_5 Set script variables and options...

L. sample_script_6 %5 Runin debug mode

Figure 34 — The Set script variables... context menu

There are two separated tabs in this dialog box. The first one is the Script variables
tab that is showing the script variables currently set for the particular script resource.
For understanding variables and variable scopes, see - Variables.

The table is editable by double-clicking on the proper cells (Name or Value column)
and entering the name or value respectively:

e A new name / value pair can be specified by double clicking on a cell in the first
empty row in the table, entering the text then pressing Enter key.

e An existing name / value pair can be edited by double-clicking on an already filled
cell, modifying the text and pressing the Enter key.

e Arow can be deleted by simply deleting its Name entry, pressing Enter key. This
name / value pair will not be saved after clicking the OK button.

L] Script variables and options X

Script variables Executing and queuing options

Script variables: T|| &

MName Walue
status finished
type script \

Up and down arrows for
changing variable orders

Variables and their values

Figure 35 — The Script variables tab of the Script variables and options dialog

When there are multiple variables, they can be re-ordered by using the arrows in
the top right corner of the tab. Variable order might be important for human readibility
reasons e.g. adding a new important variable can be in the first place in the list this
way.

After clicking OK, the changes will be saved.

L] Script variables and options

Execution parameters:

Script variables Executing and queuing options

MName

Value

running_timeout
maximurm_parallel_execution
log_level

executing_user_name

C?euing options:

Values can be

MName

Value

set here

queuing_timeout
maximurm_parallel_queuing
priority

gqueue_group_id
jeb_maonitoring
execute_script_on_error

execute_script_on_cancel

Jadmin/scripts/error-handling

fadmin/scripts/cancel-handling

execute_script_on_cancel_source gui,monitor
Predefined lists Cancel

Figure 36 — The Executing and queuing options tab of the Script variables and options dialog

On the Executing and queuing options tab, two sets of predefined options are
available. These options play a role when the script is being executed or queued,
respectively. For a list of execution options, see = List of execution options.

@ Info: When the mouse cursor is moved over the options, additional help
information will be shown in the tooltips.

10.1.7.5 Script runtime information

The Script runtime information... context menu item (see Figure 37.) opens the Script
runtime info dialog box (see Figure 38.), which displays details on the finished jobs of
the selected script. This function is similar to the functionality of the Finished jobs
windows, but limited to the selected script.

. long-r.
&b long

. long-r. Open in Script editor
%l long-r] Open in XML editor

. script Open in Simple text editor
. action-atti
@ admin_tas Set script variables...

%l cancel-hai %% Runin debug mede
iy check-rep 2 Runscript

Sy cli : -
Script subscriptions...

. debuggin- P P
. error-hanc S ’
&l error_hanc 2 Select
2 Ex_amPlE-E Rename resource...
L. migrate-p
L. migrate-q Delete
i monitor-c Copy path

. |
. sample sc Script runtime information...
. sample_sc

B script vers Show dependents...

@ script-for- ¥ Show resource information
i 5cr!pt_|nc! &
@. script_to_l
. variables

Figure 37 — The Script runtime information... menu item

Refresh

8 Script runtime info *
Runtime information for scrip*: exarmple-script (1.0.0.0) | o
| S Z
Status Begin exec. time End exec. time \ Begin queue time End queue time Result message
Finished 16.03.2023, 09:47:20 16.03.2023, 09:42:11 \16.03.2023, 08:47:20 16.03.2023, 09:47:20
Finished 16.03.2023, 09:46:06 16.03.2023, 09:46:57 1§,03.2023, 08:46:06 16.03,2023, 09:46:06

\ Runtime info

properties tool

The script name with

The finished jobs the version number

for the script

Figure 38 — The Script runtime info dialog box

It also gives the option to open one of the finished logs in the Finished logs window.
The user needs to double-click one of the jobs to do this.

In order to change the selected columns for the displayed jobs that will be shown in
the dialog box or change the condition filters for the result, the user needs to click on
the Runtime info properties tool (the 3¢ icon at the top-right corner). It opens another
dialog, the Runtime info properties, see Figure 39.

}:D Runtime info properties >

'Show’ checkboxes

A
Status User ID /E@ exec.. Endexec.t.. Exec.mode Beginque.. Mumberof..
Show [show Show Show [Jshow Show Show
[~]
| Conditions v
< >
Relationship between columns: |AND ~ | rows: |OR

™~

Relationship between columns

Figure 39 — The Runtime info properties dialog box

A Show checkbox located beneath each column header determines which columns
will be shown from the pre-defined list of possible columns:

e Status: the status of the finished job

e User ID: the id of the user who initiated the execution of the script, see = Users
in the Zagreus System

e Begin execution time: the timestamp when the execution of the script was started

e End execution time: the timestamp when the execution of the script ended

e Execution mode: the mode of the script execution.

e Begin queue time: the time when the script was queued

e Number of lines: the number of log lines of the job-log file, see = job-log file

e End queue time: the time when the script was removed from the queue and
handed over for execution

e Result message: the output message of the script after the execution has finished.
For further information, see - result-message of the script

e Job ID: the id of the job, this is always shown

For more details about job-related properties, see - Job properties .

The user has to click on one of the blank fields under the Show checkbox to specify
a condition for a parameter. The Condition parameter window will appear after clicking
on the Add/modify condition option. Based on the column where the user has clicked,
a condition for the particular property can be set, see Figure 40. By clicking one of the
conditions, the condition can be deleted by choosing the Delete condition option.

¥ Condition parameter X

Status: | |n v Finished <= | Finished v
Error
Cancelled =
Running timeout
Cueue timeout

Figure 40 — The Condition parameter dialog box for the column 'Status'

The relationship between the condition columns and rows can be set under the
table, see Figure 39.

This feature set is similar to the one that the Finished jobs report parameters
provides, see —.Finished job report parameters dialog.

10.1.8 Connection-specific operations

There are several operations that can make only sense when a connection is
selected in the Zagreus browser tree.

imap-demo
@ mstr-demo @ Openin Script editor
¥ mysgl-deme] Openin XML editor

TI resources Open in Simple text editor
__| schedules

] scripts Test connection

0 temp Connect

Figure 41 — The context menu of a connection resource

e Test connection
It performs a connection testing on the server side, depending on the specific
connection type, see - Test connection feature.

e Connect
There are several connection types which support custom connection browsing
inside the Zagreus browser window, see also - Opening connections in the
Zagreus browser.

10.1.9 Operations for event-type resources

There are some specific operations for managing the event-type resources.

10.1.9.1 Subscriptions... menu item

As it was mentioned in the = Script subscriptions section, the Subscriptions dialog
box can be opened by selecting the Script subscriptions... menu item for a selected
script. The same dialog is can be opened by the Subscriptions... menu item for trigger-
based resources (time schedule, event schedule, file trigger, mail watcher and
database watcher), but with limited funcionality. The list in the dialog box displays the
subscriptions related to the given trigger-based resource.

w] time schedules
U end-of-every-we '
T every-10-minute FU Openin Cron Time editor

BN E\r‘er}r—milnute Subscriptions...
U skipped-job . Send N
U weekdays-15-mii

Figure 42 — The Subscriptions... menu item for trigger-based resources

10.1.9.2 Evaluate watcher condition... menu item

This menu item appears only for mail watchers and database watchers. They have a
specific condition set up by the user who created them. This condition can be checked
manually by the Evaluate watcher conditions... menu item from the context menu, see
Figure 43. It performs the evaluation of the condition for the selected watcher, and
shows the result in the Evaluation results dialog box, see = Evaluate watcher condition

and = Evaluate watcher condition.

~] db watchers
E. credit-below-230000
] event schedules [2 Openin DB Watcher editor
] file triggers
1 mail watchers
7] time schedules
o] scripts Send >

Subscriptions...

Evaluate watcher condition...

Figure 43 — The Evaluate watcher conditions... menu item for watchers

10.1.10 Showing dependent resources

This menu item lists all the resources that depend on the currently selected
resource, see Figure 44. That is, such XML-based resources will be listed which contain
the id or path of the selected resource in their content. So a resource has a dependent,
if its id or path is present in the content of another XML-based resource.

&, Show dependents d

Dependants of fadmin/scripts

Rescurce path Resource ID Resource description

i Jadmin/ternplates/list_content a26532ae73cd461581a33cccbbfbalbl|&1.0... lists resources under this folder

Close

Figure 44 —The Show dependents dialog box

The Show dependents dialog box shows the following information:

e Resource path: the full path of the resource
e Resource ID: the ID of the resource
e Resource description: the description of the resource

By double-clicking on the resource, it can be opened in the Editor area.

10.1.11 Send context submenu

This context menu item is only accessible when the . sendscripts configuration
file is set for the currently logged-in user, in the root of its home directory. In this
configuration file, scripts can be specified for which certain parameters of a selected
script can be sent for processing, see also - Execution with the .sendscripts file.

10.1.12 Context menu of the server definition node

For performing administrative tasks, the administrator user has several additional
menu items shown in the context menu of the server definition node.

w [] Zagreus Demo Server [connected]
% groups E] Discennect from server

ﬁ USErs

- - Administrator options * - Group management...
€3 admin P P g

m recycleb Meodify server definition S SO

- Cancel all jobs...
Remove server definition .

Stop/start server components...,

Get li inf tion... -
% ICENEE Intarmation Manage certificates...

Server information . .
Moniter watchers, triggers...

Cenfiguration testing...

Figure 45 — The server context menu

e Get licence information...
For checking and managing the licence information installed on the server, see -
Licencing. This menu item is also shown when the server definition node is
disconnected, see = Opening and closing a server definition node.

e Server information
Displays the Server information dialog box, showing information about the server
version and uptime, see = Server information.

Administrator options sub menus:

e Group management...
It opens the Group management for administrators dialog box to manage groups,
see - Group management.

e User management...
It opens the User management for administrators dialog box to manage users,
see - User management.

e Cancel all jobs...
It opens a Cancel jobs dialog box for cancelling jobs by status, see - Cancel all
jobs.

e Stop / start server components
It opens the Server component control dialog for starting and stopping server
components, see = Stop / start server components.

e Monitor watchers, triggers...
It opens the Monitoring watchers and triggers dialog box for monitoring, see -
Monitor watchers, triggers.

e Configuration testing...
It executes the self-testing function on the server side, then opens the Self-test
result dialog to show the results, see - Configuration testing.

10.1.13 Context menu of a user node

For performing user-related administrative tasks, the administrator user has several
additional menu items shown in the context menu of the user home folder, see Figure
46.

v & users
_fj;] Demo User
M Test User - 9 Createfolder...
' admin 1 Create new resource...
B recycle bin

Modify user...
Delete uzer...

Change password...

Set user variables...

Figure 46 — The user context menu

e Modify user...
It opens the User management for administrators dialog box, with the pre-
selected action (Modify existing user...) and user, see - Modify existing user

e Delete user...
It opens the User management for administrators dialog box, with the pre-
selected action (Delete existing user...) and user, see - Delete existing user

e Change password...
It opens the Change password dialog for the selected user, see - Changing
password

e Set user variables and options...
It opens the User variables and options dialog for the selected user. The dialog
works identically as the Script variables and options dialog, see - Setting script
variables and options

There is one more menu item which appears only in the users folder context menu
(it only makes sense on that level): the Create new user... menu item (see Figure 47.).
It opens the User management for administrators dialog box, with the pre-selected
action (Create new user...), see - Create new user.

A ﬁ UsErs

v U Create folder...

7 Create new resource...

Create new user...

—— |

nn

Figure 47 — The users context menu

10.1.14 Context menu of a group node

For performing group-related administrative tasks, the administrator user has
several additional menu items shown in the context menu of the group home folder,

see Figure 48.
v % groups
_f} public
ﬁ shared & 7] Create folder...
€ users 7 Create new resource..,
_fj;] admin s
B recycleb reate new group...
< Modify group...
Delete group...

Set group variables...

Figure 48 — The group context menu

e (Create new group...
It opens the Group management for administrators dialog box, with the pre-
selected action (Create new group...). This option is for creating a sub-group, see
- Create new group.

e Modify group...
It opens the Group management for administrators dialog box, with the pre-
selected action (Modify existing group...) and group, see - Modify existing group.

e Delete group...
It opens the Group management for administrators dialog box, with the pre-
selected action (Delete existing group...) and group, see = Delete existing group.

e Set group variables and options...
It opens the Group variables and options dialog for the selected group. The dialog
works identically as the Script variables and options dialog, see = Setting script
variables and options.

There is one more menu item which appears also in the groups folder context menu:
the Create new group... menu item (see Figure 49.). This option is for creating a base-
level group. It opens the Group management for administrators dialog box, with the
pre-selected action (Create new group...), see - Create new group.

~v {2 groups
v & public - "1 Create folder...

O] Tul =7 Create new resource...
-
_f}ﬁarec Create new group...

Figure 49 — The groups context menu

10.1.15 Recycle bin

The recycle bin is for storing the deleted resources temporarily. The resources can
be restored or permanently deleted from the recycle bin.

B, Zagreus browser &1

v [[] Zagreus Demo Server [connected]
€% groups

€ users

€ admin

= .
~ @ recycle bin

fell. test

Figure 50 — A deleted resource in the recycle bin

By right-clicking on the recycle bin, a new menu item appears in the context menu:
Empty recycle bin. By selecting this menu item, all the resources in the recycle bin will
be permanently deleted.

Moreover, by right-clicking on one of the deleted resources in the recycle bin, the
following menu items are available in the context menu:

e Delete permanently: deletes the selected resource(s) permanently
e Recover resource: restores the selected resource(s) to the location where it was

deleted from

To check how to switch on/off the recycle bin, see > Miscellaneous properties.

10.2 Editor area

Various types of editors will open in the Editor area. The editor type corresponds to
the type of the resource that the user wants to edit. The different editor types will be
discussed in details in this chapter . All editors open on a tab in the editor area. Multiple
editors can be open at the same time, they take as many editor tabs right next to each
other as needed.

10.2.1 Script Editor

Zagreus scripts are developed by using the Script Editor. There are two main views
of the Script Editor: the Graph View and the XML View. The contents of these two views
are always synchronized with each other. Switching between the two views can be
done by clicking on the correponding tab at the bottom of the Script Editor, see Figure
51. Whilst there is no functionality that is not covered by the Grapth View of the Script
Editor, it can sometimes be useful to directly edit the XML code on the XML View tab.

10.2.1.1 Graph view

8 Zagreus Client

5. Zagreus browser &%

€% groups
€ users
~ £ admin

] administration
] configuration
] connecticns
] resources
7 schedules
2 scripts
] templates
& Untitled
B .autorun
[E) .sendscripts
[.serverautorun
{8 <-filesystem->

& recycle bin

9 Breakpoints i3

File Edit View Window Tools Help
83 Editview 3 Reportview (|% &' 3 % | ¢ R 2| HE B

Bo

i 100% | @ G

|) = = B || Untitled [1.0.0.0] (script) 2

~ [[] Zagreus Demo Server [connected]

= 0

Ordering Action

<

Position Susp

>

Job ID

User D Script path

1]
[

z:alias

Canvas

-~

Palette

L4
Graph View | XML View

= Namin Camarl ’:::‘; Fuwarmtimm ane

Graph View | XML View

& Active jobs [Zagreus Demo Server] 22 |) Active logs [Zagreus Demo Server] %, Execution engines [Zagreus Demo Server]

Version

Begin exec. time

End exec. time

Status

L+ Palette 3
[;; Selection

=z %
il zalias
il zarray
il zblock
£ zbreak

=

(= Confluence .
(= db

(= excel

o file

=ftp

(= http

= Jira

(= kafka

= ldap

(= mail

(= Microsoft

(= MSTR Reporting
(= pdf

(= REST

(= xslt

(=zip

=z

FlB v=10

Priority Exec. mo..

Figure 51 — The Graph View of the Script Editor

The Graph View is the default view when the user opens a script resource type. All
functions of the Script Editor are present in the Graph View.
The functionality of the Script Editor is fully covered in a separate chapter, see -

Script Editor.

10.2.1.2 XML view

The XML View can be selected by clicking on its tab at the bottom of the Script Editor
right next to the Graph View tab. Basic text editing functions can be used like search
(Ctrl+F), copy (Ctrl+C), paste (Ctrl+V), cut (Ctrl+X) and undo (Ctr/+Z).

To see the detailed description of the XML structure of a script, see - XML

representation.

¥ Zagreus Client - m} e

File Edit View Window Tools Help
B3 Editview 1 Reportview (%@ B% (¢ R D | HE EB O 0 = == w0 | & &

% Zagreus browser 5% | 56 B ¥ = O |8 Untitied [1000) (scrip) 52 | =0
w [[] Zagreus Demo Server [connected] <2xml version="1.8" encoding="UTF-8"2»
<z:root
3 s oo/ e con/
. xmlns:file="http://zagreus.com/file"
v & f’dm‘” xmlns:mail="http://zagreus.com/mail”
»] administration amlns:excel="http://zagreus.com/excel”
»] configuration smlns:mstr="http://zagreus.com/mstr"
5] connections smlns: "http://zagreus.com/mstrrest”
s B resources xmlns:bo="http://zagreus.com/bo"
N xmlns:fop="http://zagreus.com/fop”
> [schedules xmlns:kafka="http://zagreus. com/kafka"
» [scripts smlns: ttp://zagreus.com/ldap"”
>] templates xmlns: ttp://zagreus.com/xs1t"”
i, Untitled sanlns: ttp://zagreus.com/http"
[.autorun xmlns: http://zagreus.com/ftp”
xmlns:zip="http://zagreus.com/zip"
[E) ssendscripts smlns: ttp://zagreus.com/ws"
[E) serverautorun xmlns:db="http://zagreus.com/db"
> B <filesystem-> smlns wdx="http: //zagreus . com/mdx"
> B recycle bin xmlns;:jsol ttp://zagreus.com/json”
amlns:msft="http://zagreus.com/msft"
xmlns:pdf="http://zagreus.com/pdf"
xmlns: nce="http://zagreus.com/confluence™
smlns:ji ttp://zagreus.com/jira"
— xmlns: ttp://zagreus.com/rest”
Se Breakpoints & = smlns:zs="http://zagreus. com/zs">
Ordering ‘Action Position Susp. <z:alias name="var_name" menitor="false” scope="local™\ z="8" _o="1" _x="38" _y="35" _w="57" _h="78">value</z:
</z:root>
. Script Editor (XML View) .
< [> || Graph View | XML View

& Active jobs [Zagreus Demo Server] &2 Active logs [Zagreus Demo Server]| %, Execution engines [Zagreus Demo Server]‘ céh ‘ :==:> v = 0
Job ID UserID Script path Version Begin exec. time End exec. time Status Priority Exec. mo..

Figure 52 — The XML View of the Script Editor

10.2.2 Simple text editor

The Simple text editor serves to edit files with textual content. Basic text editing
functions can be used like search (Ctrl+F), copy (Ctrl+C), paste (Ctrl+V), cut (Ctr/+X) and
undo (Ctrl+2).

¥ Zagreus Client 1.5 — a x
File Edit Window Tools Help

B Editview 8 Reportview (% @ B % (¢ B O| [E E B O iE
5. Zagreus browser 51| [B ¥ = 8 ||B testpy[1.000 file) 2 =7
~ [| Zagreus Demo Server [connected] ~ import sys
€% groups
© users print{"Number of arguments: ", len(sys.argv), "arguments.”)
v @ dmin print{"Argument List: ", str(sys.argv))

] administration

] configuration

J connections

] resources

] schedules

] scripts

1 temp

] templates

B .auterun

B sendscripts

5 serverautorun

[<-filesystem->
B recycle bin

B0 |%maA|%&V %B fFw | = 8

There is no active editor that provides an outline.

@ Active jobs [Zagreus Demo Server] 22 | {) Active logs [Zagreus Demo Server] %, Execution engines [Zagreus Demo Server] e Finished jobs [localhost] o§° | :==:> ¥ = 8
Job ID UserID Script path Version Begin exec. time End exec. time Status Priority Exec.m
< >

Figure 53 — The Simple text editor

10.2.3 Other editors

When the user creates a new resource or opens an existing one, a corresponding
editor type opens in the editor area.
The following editor types are covered in details in other chapters:

e Event schedule editor: see - Event schedule
e Time schedule editor: see - Time schedule
e File trigger editor: see - File trigger

e DB watcher editor: see - Database watcher
e Mail watcher editor: see - Mail watcher

10.3 Extension windows of the Script Editor

There are a group of windows showing additional details about the script that is
currently open in the Script Editor (and its tab is the currently the selected tab in the
Editor Area if there are more than one script open). These windows are for overviewing
the element structure of the whole script, the attributes, variables, etc. These windows
only have content when any script is opened.

¥ Zagreus Client — [m] *
File Edit Window Tools Help
| B3 Edit view Reportview | 2 @& B 33.‘ e | Ql (= &,
. Zagreus browser 2 i) - = 7 ==
w [[] Zagreus Demo Server [connected] ~
€% groups
€ users
~ ¢ admin
] administration
] configuration
] connections
] resources
] schedules
J scripts
] templates
¥il. sample_script

prmm

0= Outline &2 | 5. Attributes| ©5. Variables/Fun... | ®g Breakpoints |61 Watch| = O]

There is no active editor that provides an outline. \

Extension windows for the Script Editor

@ Active jobs [Zagreus Demo Server] 52 |] Active logs [Zagreus Demo Server] % Execution engines [Zagreus Demo Server] q§*'| > v =0

Job ID UserID Script path Wersion Begin exec. time End exec. time Status Priority Exec. mo...

Figure 54 — Extension windows

10.3.1 Outline window

The Outline window makes it easier to view large scripts with deeply nested action
structure. If this window is not shown, it can be opened by clicking on the Outline
window option on the Window main menu bar. In the Outline window, the actions of
the script are listed under each other sorted by the action order number. The actions
listed here are expandable if there is any content of the particular action: text element
or other child actions. So the action hierarchy of the original script is mapped in a tree-
like structure in the Outline window, see Figure 55.

The Outline window is synchronized with the Script Editor: the selection in the
Outline window is corresponding with that of the Script Editor. A context menu appears
by right-clicking on one of the actions. This is the same context menu that is displayed
by right-clicking on the same action in the Script Editor.

0= Outline 2 | B=. Attributes| B5. Variables/Functions| 9 Breakpoints | 82 Watch

[1] zleg
v & (2] zif
w [2.1] zthen

[21.1] zlog
[2.2] zelse

= [Blzlist

Figure 55 — The Outline window

10.3.2 Attributes window

The Attributes window displays the attributes of the selected action. If this window
is not shown, it can be opened by clicking on the Attributes window menu item on the
Window main menu bar. The attributes can be edited by double-clicking on the
attribute name. If the currently selected action has no attribute at all or none of the
actions are selected, there will be no attributes shown in the Attributes window.

0= Outline | 5. Attributes &2 | 5 Variables/Functions | S Breakpoints | £ Watch

loop-counter = i

from =1

to =20

step=1
monitor-counter = false

Figure 56 — The Attribute window

10.3.3 Variables / Functions window

The Variables/Functions window displays the generally usable engine system
variables and functions (see = Function calls), the script starting variables along with
the variables defined in the script. If this window is not shown, it can be opened by
clicking on the Variables window item on the Window main menu bar. The items in this
window are categorized into groups, and all these groups are expandable.
Furthermore, tooltips help to give information about the usage of functions and
variables.

Groups:

e System variables
The user can check the list of the predefined system variables

e System functions
The list of the predefined engine system functions. If the category toggle button
is set to Categories presentation, the list of the functions are arranged into further
categories (see below).

e Script starting variables
The list of the variables for the script defined in the Script variables and options
dialog box (see also = Setting script variables and options). When a script is
running, other variables are actually reachable for the script, but because this
window belongs to the Script Editor itself (so the script is likely not currently
running), it can only know the closest scope of variables at this point in time,
which is the script scope.

e Script variables
It shows the variables defined in the script (see also = Start-up variables). It
shows these variables according to the current point of selection. So if a variable
is defined later than the actual selection, the variable is not shown in the list. This
list also takes the variable scope (local or global) setting into account. For variable
scopes, see - Variable scopes

0= Outline | % Attributes | B Variables/Functions 52 | ©g Breakpoints| & Watch

w [l zroot

System variables

Date functions
Complex type functions
Mumeric functions
Data type functions
System functions

~ Script starting variables
starting_var

~ Script variables
variablel

Figure 57 — Variables/Functions window, the categories of the engine system functions

It is possible to display the engine functions in categories or in flat (simple list)
presentation. To switch between presentations, the user needs to click on the icon &
located in the upper right corner of this window, or select the corresponding tool menu
item right next to the icon.

The categories presentation lists the following categories:

e String functions

e Date functions

e Complex type functions
e Numeric functions

e Data type functions

e System functions

Variables and functions can be added to the textual content of an action in the Script
editor by drag and dropping the particular element onto the text content of that action.
For this, the textual content of the target action should not be empty, see Figure 58.
and Figure 59.

w System variables = :
date date o _ - ' EE
jebld T T = enter log message here
callerMame 0T ==l ->
callerType
callerlP
currentfcticnMumber

currentUserld

Figure 58 — The date engine system variable is started to drag to the z: 1og action...

w System variables

date
. [al[t][T][e]

jobld enter log message here 3{date}
callerMame .

callerType

callerlP

currentctionMumber

currentUserld

Figure 59 —...and after dropping onto the text element of the z: 10g action

10.3.4 Breakpoints window

The Breakpoints window is designed for the case when the script is running in debug
mode. This sort of running makes sense only if the script is opened in the Script Editor
(debug mode) as long as the script is being executed. The Breakpoints window is linked
to the debug mode Script Editor. Therefore, the usage of this window is described in
details in the chapter about the debug mode, see - Starting a debug session

10.3.5 Watch window

The Watch window is designed for the case when the script is running in debug
mode. This sort of running makes sense only if the script is opened in the Script Editor
(debug mode) as long as the script is being executed. The Watch window is linked to

the debug mode Script Editor. Therefore, the usage of this window is described in
details in the chapter about the debug mode, see = Starting a debug session.

10.4 Monitoring

Monitoring is an important part of the workflow in Zagreus. The monitoring options
include the ability to follow script execution, checking the logs of the running script as
well as seeing the actual states of the execution engines and the Worker Controller.

The monitoring windows are located at the bottom of the Zagreus Client in the
default Edit view. The monitoring windows are the following:

e Active jobs

e Active logs

e [Execution engines
e Finished jobs

e Finished logs

e Skipped jobs

8 Zagreus Client - o X

File Edit Window Tools Help
& Edit view |03 Reportvien (% €0 % | ¢ & &
er

=

windows for monitoring specific tools for the windows

by
il sc
2 ter
= Outline 3 | %5. Attributes| %5. Variablef/Functions| ® Brealipoints| 5 Watch

There is no active editor that provides afl outline.

@ Active jobs [Zagreus Demo Server] |] Active logs [Zagreus Dema Server] | ¥ Execution engines [Zagreus Demo Server] | & Finished jobs [Zagreus Demo Server] &2 | 3 Skipped jobs [Zagreus Dema Server]| () Finished logs, \handhng[mo.u},[zEgreusDemusew =0
Stal <l ~
ini /
in
i

JobID
7201 d58f-8abf-48f0-8117-6b8F56¢561ad
d5584dd2-1013-421d-a67-11b6925b 877

Begin exec.time End exec.time Beginqueuetime Number of lines Workerid Worker controller id
02.03.2023,15:16:00 0203.2023, 15:16:00 02.03.2023, 15:16:00 11 1
02032023, 15:14:40 0203.2023, 15:14:40 02032023, 15:14:40 11
b2b0200a- 1c2c-431c-8327-4316d3016bd2
2¢1f13da-Te3
26520851 dlet
dc8d49fd-302a-44ad-bA33-0d08b3cba%e
2ffeBaab-6bad-4e10-8209-11ccd00bA426
75¢1a¢5-0ba5-43e0-bf24-381£ab211205
20b09b01-187f-Abc5-Bee-32¢800Fa 7603

02.03.2023,15:14:30 0203.2023, 15:1430 02.03.2023,15:1430 11
02.03.2023,15:14:20 0203.2023, 15:1420 02.03.2023,15:1420 11
02.03.2023,15:13:20 0203.2023, 151321 02.03.2023,15:1320 11
02.03.2023,15:13:20 0203.2023, 151320 02.03.2023, 151320 11
02.02.2023,15:13:10 0203.2023, 151311 02.03.2023, 151310 11
02.02.2023,15:13:10 0203.2023, 151310 02.03.2023, 151310 11
02.03.2023.15:13:00 0203.2023. 151301 02.03.2023.15:1300 11

cb-08fe-5ead5c3blibe
2 -0e30-0012aefdbae

B w B W=

Figure 60 — The monitoring windows and their tools

10.4.1 Active jobs window

The jobs that are currently queued or running can be found in the Active jobs
window. For the lifecycle of a job, see - Job lifecycle

The header of the Active jobs window has a postfix (the part in [...]). It shows the
connected server name when there is an active open server connection (e.g. Zagreus
Demo Server in Figure 61.). If there are multiple open connections, it shows the active

one which is selected by clicking on any of the tree sub-nodes of the particular server
in the Zagreus Browser window, see = Zagreus browser window

& Active jobs [Zagreus Demo Server] 2

%
b
q
i
al

Job D UserID Script path Version Begin exec. time Endexec.time Status Priority Exec. mode

0273409-281f-4317-bd7b-45dcf552c06d 1 /admin/templates/sample_script 3 1.0.00 n/a n/a Queved 10 direct
365f9c9b-ddea-443e-8c23-9edfeleafod 1 /admin/templates/sample seript 1 1.0.00 n/a n/a Queved 10 direct
42812160-b037-4128-b168-67ebTadd387e 1 /admin/templates/sample_script .3 1.0.00 n/a n/a Queued 10 direct
569f0064-4066-4415-8871-af714123d7d9 1 /admin/templates/sample_script 2 1.0.00 n/a n/a Queved 10 direct
T9ff6050-5b3b-43c9-a6b7-2c9da%06dda2 1 /admin/templates/sample seript 2 1.0.00 02.03.2023, 17:19:48 n/a Running 10 direct
aB1fedc7-6237-4143-87¢6-41b174283410 1 /admin/templates/sample_script_1 - 1.0.00 02.03.2023, 17:19:48 n/a Running 10 direct
aad63f04-8f51-4a9d-3783-0614c8007403 1 /fadmin/templates/sample_script 4 1.0.00 02.03.2023, 17:19:43 nia Running 10 direct
d182124d-1bcd-43f4-81e7-96299f7097a5 1 /admin/templates/sample_script 3 1.0.00 02.03.2023, 17:19:48 nfa Running 10 direct

Figure 61 — The Active jobs window

The columns that are shown in the Active Jobs window are:

e JobID
The ID of the job

e UserID
The ID of the user who initiated the execution of the script

e Script path
The full path of the script

e Version
The version number of the script, see - Resource |D and version

e Begin exec. time
The begin execution time of the job.

e End exec. time
The end execution time of the job.

e Status
The current status of the job.

e Priority
The priority number of the job. The smaller the number, the higher the priority
is. The default priority number is 10, if is not set otherwise in the priority
execution option, see - List of execution options

e [Exec. mode
The execution mode of the job.

e Script name (not shown by default)
The name of the script.

e Begin queue time (not shown by default)
The begin queue time of the job.

e Number of lines (not shown by default)
The full number of log lines.

For the list of job properties, see = Job properties
Specific tools for the Active jobs window:
e Refresh View
The Active jobs window updates its content every 5 seconds by default. It can be

refreshed manually with this tool.

e Active jobs window preferences 5
It opens the Active jobs window preferences dialog box, see below.

10.4.1.1 Active jobs window preferences dialog

This dialog allows the user to select the property columns which will appear in the
Active jobs window, see Figure 62.

:'=:=> Active jobs window preferences b

Further possible columns: Selected colurmns:
Script name Job 1D A
Begin queue time User ID
MNumber of lines Script path
Version

Begin exec. time
End exec. time
Status

Pricrity ~
[[]Use sorting:
Sort result by Direction &3
]
From server: Zagreus Demo Server (192.168.50.170:7323) A
Refresh table by seconds: |5 &
0K Cancel Rezet to defaults

Figure 62 — The Active jobs windows preferences dialog box

The sections of the dialog are the following:

e Selected columns
The list of the column names displayed in the Active jobs window. The order of
the columns can be modified by selecting a column name and using one of the
arrows to the right of the list box (up and down arrows).
Removing a column is also possible by selecting a column name and using the left
arrow icon, located to the left of the list box.

e Further possible columns
The list of the column names which are not in the Selected columns list box, but
possibly selectable.
To select a possible column, select a column name and click on the right arrow
icon, located to the right of the list box.

e Use sorting
When this option is checked, the listed job results can be sorted by the specified
column names. To specify such a sorting column, the user needs to select the
column name from the dropdown box which appears by clicking on the first
empty cell of the first column (Sort result by). The direction of the selected column
(ascending or descending) can be set in the same manner in the second column
(Direction), see Figure 63.

[~] Use sorting:

Sort result by

Begin exec. time

W

Direction

ascending

Job D

User ID

A Script path
Script name
AVersion

Begin exec. time
End exec. time
Status

Pricrity

Exec. mode
Begin queue time
MNumber of lines

r (192.168.50.170:7323)

K|

Figure 63 — Defining a sorting column name in the Active jobs window preferences dialog box

e From server

If there are multiple open server connections, the target server can be selected
from this dropdown list. After changing the server, by clicking on the OK button,

Cancel

the header of the Active jobs window changes correspondingly.

e Refresh table by seconds

This is the polling rate that is used to retrieve data periodically from the target

server. Default is 5 seconds.

The changes are applied after clicking on the OK button. In order to reset all the

settings, the user has to click on the Reset to defaults button.

10.4.2 Active logs window

The Active logs window displays the actual real-time logging output during the
execution of scripts, see Figure 64. If more than one script is running, multiple job-log

outputs are displayed simultaneously in this window in different tabs.

8 Active logs [Zagreus Demo Server] 52

fadmin/templates/sample_script_1 [1.0.00] /admin/templates/sample_script 2 [1.0.0.0]

Time

02.03.2023, 17:22:16
02.03.2023, 17:22:16
02.03.2023, 17:22:16
02.03.2023, 17:22:16
02.03.2023, 17:22:16
02.03.2023, 17:22:16
02.03.2023, 17:22:16

Script path
Jadmin/templates/sample_script_1 [10.0.0]
Jadmin/templates/sample_script_1 [10.0.0]
/admin/templates/sample_script_1 [10.0.0]
Jadmin/templates/sample_script_1 [10.0.0]
Jadmin/templates/sample_script_1 [10.0.0]
/admin/templates/sample_script_1 [10.0.0]
Jadmin/templates/sample_script_1 [10.0.0]

Message
Zagreus version: 1.55.7
Job ID: 61f7bac2-d4d-42f5-a376-f31af66e2daS

Job starting variables:variable_namevariable_valuecallerlPcallerTypeguicurrentUserld1doku...

Default encoding: UTF-8

Default locale / country: United States

Default locale / language: English
<"1" ziblock>

Figure 64 — The Active logs window

Job ID

61f7bael-d94d-42f5-a5f6-fo1afbbe2das
61f7bae2-d94d-42f3-a5f6-f91af6he2das
61f7Tbae2-d94d-42f5-a5f6-f91afbbe2das
61f7bael-d94d-42f5-a5f6-fo1afbbe2das
61f7bae2-d94d-42f3-a3f6-f91afbbe2dad
61f7Tbae2-d94d-42f5-a5f6-f91afbbe2das
61f7bae2-d94d-42f5-a5f6-f91afbbe2das

The log tabs are automatically opened when the first log message arrives from a job
and stay open for ten more seconds after the last message.
The columns that are shown in the Active logs window:

e Time
The timestamp of the log message in a <dd.MM.yyyy, HH:mm:ss> format.

e Script path
The full path and version number of the script.

e Message
The job-log message, see logging - job-log file

e JobID
The ID of the job.

e User name (not shown by default)
The user ID who initiated the script execution

e Job status (not shown by default)
The status of the job.

Specific tools for the Active logs window:

e Close all log tabs “&
Immediately closes all log tabs.

e Scroll lock =
It stops the automatic scrolling down.

e Show log result in text editor &
The content of the log tab will be opened in a Simple text editor. Only the selected
tab content will be displayed and it will not be refreshed.

e Active logs window preferences
It opens the Active logs window preferences dialog box, see below.

10.4.2.1 Active logs window preferences dialog

This dialog allows the user to select the property columns which will appear in the
Active logs window, see Figure 65.

2 Active logs window preferences *
Further possible celumns: Selected columns:
User name Tirne
Job status Script path
Message
Job ID

Cancel Rezet to defaults

Figure 65 — The Active logs window preferences dialog

The sections of the dialog are the following:

e Selected columns

The list of the column names displayed in the Active logs window. The order of
the columns can be modified by selecting a column name and using one of the
arrows to the right of the list box (up and down arrows).

Removing a column is also possible by selecting a column name and using the left
arrow icon, located to the left of the list box.

e Further possible columns

The list of the column names which are not in the Selected columns list box, but
possibly selectable.

To select a possible column, select a column name and click on the right arrow
icon, located to the right of the list box.

The changes are applied after clicking on the OK button. In order to reset all the
settings, the user has to click on the Reset to defaults button.

10.4.3 Execution engines window

The Execution engines window displays the current status of all the Zagreus Workers
(see = Zagreus Worker).

There are two tabs in this window: the Worker information tab and the Worker-
controller logs tab. In the first one, worker controllers and workers are displayed while
in the second one, the logs are shown from the Zagreus Worker Controller, see -

Zagreus Worker-Controller.

10.4.3.1 Worker information tab

The Worker information tab is selected by default in the window. This tab offers a
real-time monitoring about execution processes. The Zagreus Workers are shown in a
table widget that has collapsable nodes (Zagreus Worker Controllers) apart from the
usual table rows (Zagreus Workers). So the Zagreus Workers are batched together
under a Worker Controller, see Figure 66. The number of workers is determined by the
number of execution engines included in the license (see = Licencing).

Zagreus provides the usage of multiple Worker Controllers, though in most of the
cases only one Worker Controller is configured in the Zagreus System.

e Ucores Jobid Script Jobstatus Freemem. Totslmem. Max
6 <020771b-3540-4dc8-af39-d203d9bb271b /admin/templates 11000 i 2183M8 256MB 4
6 423 0f 42 79-1 1! f (adminy plates/ 0] ning 2128Mm8 256 MB
6 15¢96 Adec-b2f 611 /admin/templ nin: 223M8 25%MB
23, 15:15: 6 93¢42 o ple_script_ 4 {1.0.0.0]

4133-92d2-23580) 2123MB 256MB

9. Execution engines [Zagreus Demo Server] ©

Window tool

Worker controller Listed workers

Figure 66 — The Execution engines window

The columns for the Worker information tab of the Execution engines window are:

e Worker Controller
The Worker Controller instance with its ID, see = Zagreus Worker-Controller

o Worker id
The id of the worker, see - |D of the Zagreus Worker

Status

The status of the Worker Controller or Worker (depending on the row). The status
can be Idle, Busy, Starting and Shutting down in the case of Workers, and Running,
Starting, Suspended and Shutting down in the case of the Worker Controller.

Enabled
Shows whether the Zagreus Worker is enabled or disabled

Started
Showing the timestamp when the Zagreus Worker has started.

CPU cores
The number of CPU cores of the host the Zagreus Worker JVM runs on.

Job id
The ID of the job that is currently executed on the given Zagreus Worker

Script
The name and version number of the script associated with the job that is
currently executed on the given Zagreus Worker

Job status
The status of the job.

Free mem.

The currently free memory that the Zagreus Worker JVM can use. However, it
does not mean this is the maximum available memory because the JVM allocates
memory incrementally. So, if free memory is too small, JVM will allocate more
memory until it reaches the maximum memory.

Total mem.

The actual memory that the Zagreus Worker JVM is using. It can be higher than
expected even when the JVM is in idle status. JVM-s are using their own garbage
collector mechanism to free up memory when it is needed. The total memory for
a worker can be specified with the -xms setting in the Zagreus Worker
configuration (see also - Worker startup properties).

e Max mem.
This is the maximum memory that the Zagreus Worker JVM can use. The total
memory for a worker can be specified with the -xmx setting in the Zagreus
Worker configuration (see also - Worker startup properties).

e Last updated
The timestamp when all information was last updated.

Right-clicking on one of the Worker Controllers will open a context menu, see Figure
67.

Worker infermation Worker-centroller logs
Worker Controller Worker id Status Enabled

v Worker Controller 1
Enable worker

Disable worker
Stop worker
Restart worker
Cancel job
Cancel all jobs...

Start new worker...

Open script in debug editor...

Figure 67 — The context menu of the Worker Controller node

Here, the user can perform one of the following operations:

e Cancel all jobs...
It opens the Cancel jobs dialog box. This is the same dialog box that the
Administrator options / Cancel all jobs... menu item opens by the server definition
node context menu in the Zagreus browser window, see = Cancel all jobs.

e Start new worker...
It opens the Start new worker dialog box, see Figure 68. A new worker can be
started with the specified worker id. The worker id must be a unique number
which is not among the currently running workers, see - |D of the Zagreus
Worker.

23 Start new worker >

Worker controllerid 1

Worker id | 5

Figure 68 — The Start new worker dialog box

Right-clicking on one of the Workers opens another context menu, see Figure 69.

Worker infermation Worker-controller logs

Worker Controller Worker id Status Enabled Started CPU cores Job id
~ Waorker Controller 1 Running 19.07.2023, 15:30:24
1 Busy ves 1007 2032 153035 A d207dfac-dfd4-4c0d-9655-48393b5337a9
2 Idle Enable worker
3 Idle Disable worker
4 Idle Step worker
Restart worker
Cancel job

Cancel all jobs...

Start new worker...

Open script in debug editor...

Figure 69 — The context menu of a Worker node

Here, the user can perform one of the following operations:

Enable worker

It enables the selected worker

e Disable worker
It disables the selected worker

e Stop worker
It stops the selected worker. After stopping, the selected worker is removed from
the worker list. If there was a running job, this operation cancels the job first.

e Restart worker
It restarts the selected worker. First, the selected worker is removed from the
worker list, but shortly it appears again.

e Cancel job
It cancels the currently executed job on the worker, see - Cancellation.

e Cancel all jobs...
It opens the Cancel jobs dialog box. This is the same dialog box that the
Administrator options / Cancel all jobs... menu item opens by the server definition
node context menu in the Zagreus browser window, see = Cancel all jobs.

e Open script in debug editor...
This menu item is only enabled when the status of the currently executed job is
Debugging. It opens the currently executed job in a Script Editor (debug mode),
see - Debug Editor.

For further information about Zagreus Worker management, see - Managing
Zagreus Workers

There is one tool available for the Execution engines window: the Engine status
windows properties 5t icon. This opens the Engine status window preferences dialog,
see Figure 70.

}—:D Engine status window preferences >

From server: | Zagreus Demo Server (192.168.50.170:7323) e

Warning time | 60 =

Figure 70 — The Engine status window preferences dialog

Here, the user can adjust the following parameters:

e from server
If there are multiple open server connections, the target server can be selected
from this dropdown list. After changing the server, by clicking on the OK button,
the header of the Execution engines window changes correspondingly

e Warning time
When the content of the Worker information tab is not updated within a time
threshold (e.g. the connection is lost, the Last updated column is not changing

any more), the affected rows become red. This threshold can be set here,
specified in seconds.

10.4.3.2 Worker-controller logs tab

This tab displays direct log messages from the Worker Controller, see Figure 71.

Worker information Worker-controller logs

Time Worker Controller Message

03.08.2023, 15:03:57 Worker Controller 1 Worker 2 killed

03.08.2023, 15:04:02 Worker Controller 1 Starting werker 2

03.08.2023, 15:04:02 Worker Controller 1 Commandline: [/home/zagreus_docs/java/epenjrell/bin/zagreus-worker, -cp, /home/zagreus_docs/worker-..,
03.08.2023, 15:04:04 Warker Controller 1 Warker 2 started

03.08.2023, 13:11:28 Worker Controller 1 Cancelling job cclef5aa-2453-4481-8466-203c341d9130 on worker 4

03.08.2023, 13:11:28 Worker Controller 1 Killing werker 4

03.08.2023, 15:11:28 ‘Warker Controller 1 Warker 4 killed

03.08.2023, 13:11:32 Worker Controller 1 Starting worker 4

03.08.2023, 15:11:32 Worker Controller 1 Commandline: [fhome/zagreus_docs/java/openjrell/bin/zagreus-worker, -cp, fhome/zagreus_docs/worker-...
03.08.2023, 15:11:34 ‘Warker Controller 1 ‘Worker 4 started

Figure 71 — The Worker-controller logs tab of the Execution engines window

The columns of this table are the following:

e Time: the timestamp of the log message.
o Worker Controller: the ID of the Worker Controller.
e Message: the message from the Worker Controller.

10.4.4 Finished jobs window

The Finished jobs window displays report-like information about completed jobs,
see Figure 72. This window is not opened by default, it can be opened either by clicking
on the Open new Finished jobs window tool in the main toolbar (see also = Open a
new Finished jobs window), or pressing the Alt+J key combination, or accessed by
selecting the Finished jobs window option from the Windows main menu bar.

[y Finished jobs [Zagreus Demo Server] &2 q;""’ :==:> ¥ =0
Job ID Status Script path Version Begin queuetime Begin exec. time End exec. time Mumber of lines Worker controllerid Workerid =~ *
3ddfad93-ae08-46f1-8f99-b1fdff23a74d Finished /admin/templates/sample_script 5 1.0.0.0 02.03.2023, 17:25:42 02.03.2023, 17:26:01 02.03.2023, 17:26:22 10 1 3
93¢4294-3353-4122-92d2-235a0acdb3fd Finished /admin/templates/sample_script4 1.0.0.0 02.03.2023, 17:23:41 02.03.2023, 17:25:42 02.03.2023,17:26:02 10 1 4
43898cdb-0b31-42ca-ab79-1a0651538d3f Finished /admin/templates/sample_script_3 1.0.0.0 02.03.2023, 17:25:41 02.03.2023, 17:25:41 02.03.2023, 17:26:02 10 1 2
0a0771b-3540-4dc8-3f39-dB03d9bb271b Finished /admin/templates/sample_script 2 1.0.0.0 02.03.2023, 17:25:41 02.03.2023, 17:25:41 02.03.2023, 17:26:01 10 1 1
15¢965da-bad8-4dec-b2fb-dbf03bdd1611 Finished /admin/templates/sample_script_1 1.0.0.0 02.03.2023, 17:23:41 02.03.2023, 17:25:41 02.03.2023, 17:26:01 10 1 3
Bee7fe42-5dal1-478f-97ca-a071alb2d06a Finished /admin/templates/sample_script 5 1.0.0.0 02.03.2023, 17:2457 02.03.2023, 17:25:16 02.03.2023, 17:25:37 10 1 4
2ec96d46-1736-46dd-abad-29287b080bE0 Finished /admin/templates/sample_script4 1.0.0.0 02.03.2023, 17:24:57 02.03.2023, 17:2457 02.03.2023,17:23:17 10 1 2
da41385d-069a-4e40-2b7b-13¢T6fbabbb2 Finished /admin/templates/sample_script 3 1.0.0.0 02.03.2023, 17:24:56 02.03.2023, 17:24:56 02.03.2023,17:23:17 10 1 1
ffada226-feld-4c28-b918-847e932dbf31 Finished /admin/templates/sample scriot 2 1.0.0.0 02.03.2023 17:24:56 02.03.2023 17:24:56 02.03.2023 17:25:16 10 1 3 a

Figure 72 — The Finished jobs window

The columns that are shown in the Finished jobs window are:

e JobID

The ID of the job

Status
The status of the job

User ID (not shown by default)
The ID of the user who initiated the execution of the script

Script path
The full path of the script

Script name (not shown by default)
The name of the script

Version
The version number of the script, see - Resource versioning

Begin exec. time
The begin execution time of the job

End exec. time
The end execution time of the job

Exec. mode (not shown by default)
The execution mode of the job

Begin queue time
The begin queue time of the job

End queue time (not shown by default)
The end queue time of the job

Result message (not shown by default)
The result message of the job, see - result-message of the script

Caller (not shown by default)
The caller of the job

e Caller type (not shown by default)
The caller type of the job

e Number of lines
The full number of log lines of the job-log file, see - job-log file

o Worker id
The ID of the Zagreus Worker where the job was executed on (see also = D of
the Zagreus Worker)

e Worker controller id
The ID of the Zagreus Worker Controller which control the Zagreus Worker where
the job was executed on (see also - Zagreus Worker-Controller)

e Priority (not shown by default)
The priority number of the job. The smaller the number, the higher the priority
is. The default priority number is 10, if is not set differently in the priority
execution option, see - List of execution options

Specific tools for the Finished jobs window:

e Refresh View &
Clicking on this icon tool refreshes the content of the Finished jobs window
according to its report parameters. The content of the window can also be
refreshed by clicking on the window header if the Auto refresh window by clicking
on its header setting is checked in the Options dialog box, see - Options dialog
e Setting report parameters... 3¢
It opens the Finished job report parameters dialog box, see = Finished job report
parameters dialog . This tool is also accessible from the tool menu opened by
clicking the down-arrow icon right to the icon of this tool.

e Setting log columns... (accessible from the tool menu opened by clicking the
down-arrow icon right to the Setting report parameters... icon)
This menu item opens the same Finished log report parameters dialog that the
Setting log columns... tool opens in the Finished logs window, See = Finished logs
window

A context menu appears when the user is right-clicking on a job in the result list, see
Figure 73.

Script path Version Begin e

fadmin/scripts/admin_tasl evamnls 1000 n203.20
Open script

Open executed script version

Get logs of this job

Figure 73 — The context menu of a job in the Finished job window

The following menu items are accessible:

e QOpen script
It opens the actual script content from the local database that is associated with
the job in the Script Editor.

e Open executed script version
It opens the script content that was actually executed by the associated job (so it
is a cached script version for the job) in the Script Editor.

e Get logs of this job
Opens a new Finished logs window with the log messages of the selected job.

Info: It is also possible to open the associated log messages for a job by
double-clicking on a selected row. It either opens the Finished logs window,
or opens a Simple text editor with the log messages. The behaviour of this
can be controlled with the appropriate setting in the Options dialog.

10.4.4.1 Finished job report parameters dialog

This dialog allows the user to set the job report parameters for the Finished jobs
window, see Figure 74.

—+,

s Finished job report parameters >

Job ID Status User ID Script path Script name Version Begin exec.. Ende
Show Show [show Show [show Show Show Sho

In

£ >

Relationship between columns: | AND rows: |OR

Limit rows:

(] Show hidden jobs

[] Use sorting:
Sort result by Direction
Job 1D descending

From server: | Zagreus Demo Server (192.168.50.170:7323) ~

Cancel Reset to defaults

Figure 74 — The Finished job report parameters dialog box

In the table located in the upper-half of the dialog, the user can select the columns
which will be displayed in the Finished jobs window. This can be done by checking the
corresponding checkboxes (with the label Show) under the column names.

In this table the user can also specify conditions on the selected columns. The user
has to click on one of the blank fields under the Show checkbox to specify a condition
for a parameter. The Condition parameter window will appear after clicking on the
Add/modify condition option. Based on the column where the user has clicked, a
condition for the particular property can be set; for an example, see Figure 75. By
clicking one of the conditions, the condition can be deleted by choosing the Delete

condition option.

8 Condition parameter >

Status: || v Finished = Finished ~
Error
Cancelled =

Queue timeout
Running timeout

Figure 75 — The Condition parameter dialog box for the Status column

Based on the column type, the following operators are available:

e For numeric types (columns User ID, Number of lines, Priority):
=, <, >, <=, >=, <>, In, Between

e For date types (columns Begin exec. time, End exec. time, Begin queue time, End

queue time):
=, <, >, <=, >=, <>, Between

e For string types (columns Job ID, Script path, Script name, Version, Result
message):
=, <>, In, Between, Contains

e For pre-defined sets (columns Status, Caller type, Exec. mode):
=, <>, In

When the chosen operator requires two operands (like the Between operator), the
dialog box changes its layout correspondingly.

Multiple conditions can be specified even for the same column. In this case the
conditions have to be defined in separate rows under each other in the table.

Exec. mode Beginque.. End queue.. Result mes.,
[show Show] Show] Show
> <

s
Figure 76 — Multiple conditions specified for Begin queue time
Under the table, the logical relationship between columns and rows can be

specified, see Figure 77. The selectable values are AND and OR. These settings are
evaluated in the following way: first the conditions of each separate row are grouped

(according to the columns setting), then the different such row-level conditions are
grouped (according to the rows setting).

Relationship between columns: | AND rows: |[OR ~

Figure 77 — The Relationship between columns and rows setting

The user can also set the maximum number of listed jobs by using the Limit rows
setting, see Figure 78.

Lirnit rows:

Figure 78 — The Limit rows setting

By checking the Show hidden jobs checkbox, the user can include the hidden jobs in
the result list, see --> .

When the Use sorting option is checked, the listed finished job results can be sorted
by the specified column names. To specify such a sorting column, the user needs to
select the column name from the dropdown box which appears by clicking on the first
empty cell of the first column (Sort result by). The direction of the selected column
(ascending or descending) can be set in the same manner in the second column
(Direction), see Figure 79.

[Use sorting:
Sort result by Direction

Job ID ¥ descending

Status

Uzer ID
Script path
Script name
Version 0.170:7323)
Begin exec. time
End exec. time
Exec. mode
Begin queue time

Eng quqeuetime Cancel
Result message
Caller

Caller type kime End exec. time MNumber of li

Mumber of lines
Worker id 2:31:27 22022023, 12:31:30 13

Worker controller id
Pricrity

[

Figure 79 — Defining a sorting column name in the Finished job report parameters dialog box

If there are multiple open server connections, the target server can be selected from
the From server dropdown list, see Figure 80. After changing the server, by clicking on
the OK button, the header of the Finished jobs window changes correspondingly.

From server: | Zagreus Demeo Server (192.168.530.170:7323) ~

Figure 80 — The From server dropdown list

The changes are applied after clicking on the OK button. In order to reset all the
settings, the user has to click on the Reset to defaults button.

10.4.5 Finished logs window

The Finished logs window displays the logging output for a certain completed job.
This output can be accessed by using the Get logs of this job menu item in the Finished
jobs window, see Figure 81. Also, it can be done by double-clicking on the selected job
in the Finished jobs window, if the appropriate setting in the Options dialog allows this
behaviour, see also > General behaviour tab.

@& Finished jobs [Zagreus Demo Server] 52 | & Finished logs, test_6 [1.0.0.0], [Zagreus Demo Server] v:éh :,"=:i> ¥ = 8
Job 1D Status Script path Version B
66b09704-7190-4a05-b32d-ddbed31acfT1 Finished /admin/scripts/test & 1.0.0.0 1.
2246c879-588e-4f0a-90b3-6b4a2d49bb3c Open script 1 1.0.0.0 1
fbefeac2-D0de-4575-b285-d951548edb%d 1 1.0.0.0 1.

Get logs of this job B

Figure 81 — Opening the log of a finished job in the Finished jobs window

2 Finished logs, debuggin-example-script [1.0.0.0], [Zagreus Demo Server] &3 Iah :: ¥ = O

Time Message ~

{06.03.2023, 10:25:19 Execution started on script "debuggin-example-script”
06.03.2023, 10:25:19 Zagreus version: 1.5.5.7
06.03.2023, 10:25:19 Job ID: TaabeGd5-0eca-4166-8b58-6c215F7c59c9
06.03.2023, 10:25:19 Job starting variablesivariable_namevariable_valuecallerlP callerTypequicurrentUserld 1doku...
06.03.2023, 10:25:19 Default encoding: UTF-8
06.03.2023, 10:23:19 Default locale / country: United States
06,03.2023, 10:25:19 Default locale / language: English

R L LR T L T

Figure 82 — A Finished logs window

The columns that appear in the Finished logs window:

e Time
The timestamp of the log message.

e Action
The fully qualified action name which created the log message, see - Action

groups and action name

e Action number (not shown by default)

The action ordering number which created the log message, see - Ordering
numbers

e Thread id (not shown by default)

The ID of the thread in which the log message was created, see - Parallel threads
in the z:foreach action

e Message
The log message.

e level

The logging level of the message, see - Logging levels and loglevel
Specific tools for the Finished logs window:

e Show log result in text editor %2
Displays the logging results in a Simple text editor in the Editor area.

e Finished log report parameters i
Opens the Finished log report parameters dialog, see Figure 83. The user can
select the visible columns with the checkboxes in the dialog.

o Finished log report parameters d

] Time

[+] Action

[Action number
[Thread id

[~] Message

] Level

Figure 83 — The Finished logs report parameters dialog

10.4.6 Skipped jobs window

The Skipped jobs window displays all scripts with skipped execution in a specific time
period. For more information about skipped jobs, see - Skipped jobs.

@ Active jobs [Zagreus Demo Server] | £ Active logs [Zagreus Demo Server] | % Execution engines [Zagreus Demo Server] | El Skipped jobs [Zagreus Dema Server] &4 o =8

Script path Subscription id Schedule path Skipped scheduled time
~ /admin/scripts/script-for-counting-average

16 Jadmin/schedules/time schedules/skipped-job 02.03.2023, 15:14:50

16 Jadmin/schedules/time schedules/skipped-job 02.03.2023, 15:15:00

16 Jadmin/schedules/time schedules/skipped-job 02.03.2023, 15:15:10

16 Jadmin/schedules/time schedules/skipped-job 02.03.2023, 15:15:20

16 Jadmin/schedules/time schedules/skipped-job 02.03.2023, 15:15:30

16 fadmin/schedules/time schedules/skipped-job 02.03.2023, 15:15:40

16 Jadmin/schedules/time schedules/skipped-job 02.03.2023, 15:15:50

Figure 84 — The Skipped jobs window

This window is not open by default, it can be opened either by clicking on the
Open/close Skipped jobs window tool in the main toolbar (see also - Open/close the
Skipped jobs window), or accessed by selecting the Skipped jobs window option from
the Windows main menu bar.

The results of the skipped job report appears as grouped elements by a certain
criterion, see = Skipped jobs in the Zagreus Client. The parent nodes are expandable
to see the individual skipped jobs.

The columns that are shown in the Skipped jobs window are:

Script path
The full path of the script associated with the skipped job

e Subscription id
The id of the subscription associated with the skipped job, see = Subscriptions

e Schedule path
The full path of the time schedule associated with the subscription above

e Skipped scheduled time
The timestamp when the script should have been executed.

Specific tools for the Skipped jobs window:

e Refresh view "

It refreshes the content of the window according to the Skipped jobs window
preferences dialog settings.

o Skipped jobs window preferences tool ¢

It opens the Skipped jobs window preferences dialog, see = Skipped jobs window
preferences dialog

10.4.6.1 Skipped jobs window preferences dialog

This dialog allows the user to set the job report parameters for the Skipped jobs
window, see Figure 85.

:{:> Skipped jobs window preferences x
From server: | Zagreus Demeo Server (192.168.50.170:7323) w
Range from: |2023.03.01. [~ | |16:22:44 .

Rangeto: [2023.03.02. [F | [16:20:4[2

[J Use always current time as 'to’

Figure 85 — The Skipped jobs window preferences dialog

The sections of the dialog are the following:

e From server
If there are multiple open server connections, the target server can be selected
from this dropdown list. After changing the server, by clicking on the OK button,
the header of the Skipped jobs window changes correspondingly

e Range from
It contains two widgets: a calendar for the date and a widget for the time setting.
Both settings together specify the starting time for the skipped job report.

e Range to
It contains two widgets: a calendar for the date and a widget for the time setting.
Both settings together specify the end time for the skipped job report.
Also, there is a checkbox Use always current time as ‘to’. It automatically sets the
current time as the end time for the skipped job report.

e Group result
The skipped jobs can be grouped by different columns: script, subscription and
schedule. For an example, see Figure 86.

X skipped jobs [localhost] &2

Script path Subscription id Schedule path Skipped scheduled time
w fadmin/administration/delete logs
3520 fadmin/administration,/schedules/delete jo... 02.08.2023, 07:00:00
3520 fadmin/administration/schedules/delete jo... 03.08.2023, 07:00:00
w Jadmin/administration/backup_metadata
5620 Jadmin/administration/schedules/backup ti... 02.08.2023, 03:00:00
5620 fadmin/administration/schedules/backup ti... 03.08.2023, 03:00:00
w fadmin/administration/delete jobs
3519 fadmin/administration/schedules/delete jo... 02.08.2023, 07:00:00
3519 fadmin/administration/schedules/delete jo... 03.08.2023, 01:00:00

Figure 86 — The Skipped jobs window grouped by script path

10.5 Main menu bar

The main menu bar can be found at the top left corner of the Zagreus Client.

a Zagreus Client
File Edit Window Tools Help

Figure 87 — The Main menu bar

The menu bar contains several menus with logically grouped menu items. Some of
them can be accessed in another way as well but a few of them can only be accessed
from the menu bar.

10.5.1 File menu

e New resource
It creates a new resource. It is only active if there is an open Zagreus Server
connection.

e [xit
Terminates the Zagreus Client application. When there are open resources in the
Editor Area, first, the Zagreus Client offers saving them before closing the main
window.

10.5.2 Edit menu

e Undo
Performs an undo operation for the script being edited in the currently opened
Script Editor, see = Script Editor.

e Redo
Performs a redo operation for the script being edited in the currently opened
Script Editor, see - Script Editor.

e Delete
This operation depends on the active selection in the main application window.
It deletes the selected resource(s) if the Zagreus browser window is active, or the
selected action(s) in the Script Editor if the focus is on the editor.

More than one resource can be selected by holding down the Ctrl or Shift buttons
while selecting resources in the Zagreus browser window (see - Zagreus browser
window) or actions in the Script Editor (see - Selecting multiple actions).

e Rename resource
Performs the same operation as the Rename resource... menu item in the Zagreus
Browser window, see - Renaming resources.

10.5.3 Window menu

e Zagreus browser
To open or close the Zagreus Browser window (see - Zagreus browser window),
the user needs to use this menu item or use the Ctr/+Alt+Z key combination. This
option is also accessible by selecting the Zagreus browser icon tool from the main
toolbar.

e Active jobs window
To open or close the Active jobs window (see - Active jobs window), the user
needs to use this menu item or the Ctrl+Alt+J key combination. This option is also
accessible by selecting the Active jobs window icon tool from the main toolbar.

e Active logs window
To open or close the Active logs window (see = Active logs window), the user
needs to use this menu item or the Ctrl+Alt+L key combination. This option is also
by selecting the Active logs window icon tool from the main toolbar.

e Engine status window
To open or close the Execution engines window (see -> Execution engines
window), the user needs to use this menu item tool or the Ctrl+Alt+E key
combination. This option is also accessible by selecting the Execution engines
window icon tool from the main toolbar.

e Finished jobs window
To open a new instance of the Finished jobs window (see - Finished jobs
window), the user needs to use this menu item or the Ctr/+J key combination.
Multiple Finished jobs windows can be opened simultaneously. This option is also
accessible by selecting the Finished jobs window icon tool from the main toolbar.

e Finished logs window
To open a new instance of the Finished logs window (see — Finished logs
window), the user needs to use this menu item or the Ctr/+L key combination.
Multiple Finished logs windows can be opened simultaneously. This option is also
accessible by selecting the Finished logs window icon tool from the main toolbar.

e Skipped jobs window
To open or close the Skipped jobs window (see = Skipped jobs window), the user
needs to use this menu item. This option is also accessible by selecting the
Skipped jobs window icon tool from the main toolbar.

e OQOutline window
To open or close the Outline window (see - Outline window), the user needs to
use this menu item or the Ctrl+Alt+0 key combination.

e Attributes window
To open or close the Attributes window (see - Attributes window), the user
needs to use this menu item or the Ctr/+Alt+A key combination.

e Variables window
To open or close the Variables window (see = Variables / Functions window), the
user needs to use this menu item or the Ctrl+Alt+V key combination.

e Breakpoints window
To open or close the Breakpoints window (see - Breakpoints window), the user
needs to use this menu item or the Ctrl+Alt+B key combination.

e Watch variables window
To open or close the Watch variables window (see - Watch window), the user
needs to use this menu item or the Ctrl+Alt+W key combination.

10.5.4 Tools menu

e Password converter
The user can convert passwords from plain text to a Zagreus-specific encrypted
format. Encrypted passwords can be inserted in the cpassword attribute in
several actions (see = username, password and cpassword attributes), mostly in

connection actions. In the Script Editor, the value of the password attribute can
also be encrypted into a cpassword attribute by the Encrypt password menu item
in the attribute context menu, see - Encrypt password.

8 Password encryption X

Original (password): | [TYTTT) |

T P 00302042302 126256267274 |

Encrypt Close

Figure 88 — The Password encryption dialog box

e Options...
It opens the Options dialog box. There are a lot of settings for the Zagreus Client
which are described in a separated chapter, see - Options dialog.

10.5.5 Help menu

e About
It opens the About Zagreus Client dialog box. The version number can be seen at
the upper part of the dialog.

Note: the Installation Details button opens another Zagreus Client Installation
Details dialog which shows information on the Eclipse RCP (Rich Client Platform)
application level. This is the underlying window manager framework for the Zagreus
Client application, the details here are very technical and not directly related to the
Zagreus System installation structure.

10.6 Main toolbar

The main toolbar provides quick access to tools and dialogs for some of the most
common tasks in the Zagreus Client. It is located directly under the main menu bar, see

Figure 89.
55 Edit view Reportview © 2 & 3 g:%l (| @l B EBO CET00% | @& &)
Figure 89 — The main toolbar
10.6.1 Views

Views are specific layouts for particular tasks. A view defines a structure of graphical
placeholders for windows, areas, groups of other elements. A view can be treated as a
comfortable arrangement of the different parts in the Zagreus Client.

10.6.1.1 Edit view

The default view in the Zagreus Client is the Edit view, which contains the following
windows and areas:

Default:

e Zagreus Browser window, see - Zagreus browser window

e FEditor area, see - Editor area

e Active jobs window, see = Active jobs window

e Active logs window, see - Active logs window

e Execution engines window, see - Execution engines window
e QOutline window, see - Outline window

e Attributes window, see - Attributes window

e Variables window, see - Variables / Functions window

e Breakpoints window, see - Breakpoints window

e Watch window, see - Watch window

Optional:
e Finished jobs window(s), see = Finished jobs window

e Finished logs window(s), see - Finished logs window
e Skipped jobs window, see = Skipped jobs window

These are all the possibly displayable window types and the main editor area. This
view is intented to use for the common browsing and editing operations.

The remaining space is used for the editors. The user can switch between the views
by selecting the proper menu item from the main Window menu, or by clicking on the
proper toggle-button on the main toolbar.

£Z) Edit view
Figure 90 — The Edit View button in the toolbar

8 Zagreus Client
File Edit Window Tools Help
82 Editview 03 Reportview (% @ B | ¢ @ &

5. Zagreus browser &4 I v = 8 = 0
~ [_| Zagreus Demo Server [connected]

% groups

€ users

€ admin

B recycle bin
5% Outline 2 | 5 Attributes| %5 Variables/Functions | ® Breakpoints &% Watch = B8

There is no active editor that provides an outline.

@ Active jobs [Zagreus Demo Server] | {8 Active logs [Zagreus Demo Server] | % Execution engines [Zagreus Demo Server] F % v =0

Job ID User D Script path Version Begin exec.time End exec. time Status Priority Exec.mo...

Figure 91 — The Edit View in the Zagreus Client

10.6.1.2 Report view

The Report view is a more comfortable arrangement of windows for monitoring job

execution. The editor area is not present in this view, leaving more room for all the
other windows.

The Report view in the Zagreus Client contains the following windows and areas:

Default:

e Zagreus Browser window, see - Zagreus browser window
e Active jobs window, see - Active jobs window
e Active logs window, see - Active logs window

e Skipped jobs window, see - Skipped jobs window
e Execution engines window, see - Execution engines window

Optional:

e Finished jobs window(s), see = Finished jobs window
e Finished logs window(s), see - Finished logs window

The view can be switched by clicking on the proper toggle-button on the main
toolbar, or selecting the proper menu item from the Window main menu.

Report view
Figure 92 — The Report View button in the toolbar

¥ Zagreus Client 1.5 - m| ®
File Edit Window Tools Help
&% Editview [Reportview | & BN | C R E|LE EB O s
#5. Zagreus browser 3 i ¥ = O ||@ Active jobs [Zagreus Demo Server] 12 &) v =08 |a
~ [£] Zagreus Demo Server [connected] Job ID UserID Script path Version Begin exec| T[]
% groups
€ users
~ Y admin
1 administration
1 configuration
] connectiens
| resources a 5
1 schedules
1 scripts B Active logs [Zagreus Dem... | =l Skipped jobs [not connect... | % Execution engines [Zagre... 52 | Finished jobs [Zagreus De.. | — O
1 temp
] templates
Bl autorun
[El sendscripts Worker Contreller Worker id Status Enabled Started CPU cores Jobid
D .serverautorun ~ Worker Controller 1 Running 19.07.2023, 15:30:24
v [<filesystem-> 1 ldle yes 19.07.2023, 15:30:25
1 backup 2 Idle yEs 19.07.2023, 15:30:42
] common 3 Idle yes 19.07.2023, 15:30:44
] images 4 ldle yes 19.07.2023, 15:30:47
1 pdf
2 temp
2 newlogfilebct
& recycle bin

B
4

Worker information Worker-controller logs

@ oo

Figure 93 — The Report view in the Zagreus Client

10.6.2 Open/close the Zagreus browser window

To open or close the Zagreus Browser window (see = Zagreus browser window), the
user needs to use this toggle button or the Ctrl+Alt+Z key combination. This option is
also accessible by selecting the Zagreus browser menu item from the Window main
menu.

=

Figure 94 — The Open/close Zagreus browser window icon tool

10.6.3 Open/close the Active jobs window

To open or close the Active jobs window (see = Active jobs window), the user needs
to use this toggle button or the Ctrl+Alt+J key combination. This option is also
accessible by selecting the Active jobs window menu item from the Window main

menu.

Figure 95 — The Open/close Active jobs window icon tool

10.6.4 Open/close the Active logs window

To open or close the Active logs window (see - Active logs window), the user needs
to use this toggle button or the Ctrl+Alt+L key combination. This option is also by
selecting the Active logs window menu item accessible from the Window main menu.

Figure 96 — The Open/close Active logs window icon tool

10.6.5 Open/close the Engine status window

To open or close the Engine status window (see - Execution engines window), the
user needs to use this toggle button tool or the Ctrl+Alt+E key combination. This option
is also accessible by selecting the Engine status window menu item from the Window
main menu.

e

Figure 97 — The Open/close Engine status window icon tool

10.6.6 Open a new Finished jobs window

To open a new instance of the Finished jobs window (see = Finished jobs window),
the user needs to use this tool or the Ctrl+J key combination. Multiple Finished jobs
windows can be opened simultaneously. This option is also accessible by selecting the
Finished jobs window menu item from the Window main menu.

Figure 98 — The Finished jobs window icon tool

10.6.7 Open a new Finished logs window

To open a new instance of the Finished logs window (see - Finished logs window),
the user needs to use this tool or the Ctrl+L key combination. Multiple Finished logs
windows can be opened simultaneously. This option is also accessible by selecting the
Finished logs window menu item from the Window main menu.

Figure 99 — The Finished logs window icon tool

10.6.8 Open/close the Skipped jobs window

To open or close the Skipped jobs window (see - Skipped jobs window), the user
needs to use this toggle button. This option is also accessible by selecting the Skipped
jobs window menu item from the Window main menu.

=

Figure 100 — The Open/close Skipped jobs window icon tool

10.6.9 Save resource to the server

When the developing of the resource is finished the resource can be saved by
clicking on the Save resource button or by pressing the Ctr/+S hotkey.

Figure 101 — The Save resource onto the server icon tool

If the resource has not been saved yet, Zagreus will offer to save the resource by
displaying the Save resource as dialog box (see below); otherwise, the resource will be

overwritten without any warning.
10.6.10 Save as... resource to the server
This tool allows the user to perform one of the following operations:

e Save the resource for the first time if it is not saved yet.
e Save a copy of the currently edited resource to a different location / with different

name.

=)
Figure 102 — The Save as... resource icon tool
The tool is also accessible by pressing the Ctr/+Alt+S hotkey .

The tool opens the Save resource as dialog box, allowing the user to specify the
location and name of the resource.

¥ Save resource as *

Server: Zagreus Demo Server (192.168.50.170:7323) i

I_:S'

List of resources

). cancel-handling

| g cli

. debuggin-example-script
&l error-handling

#itl. monitor-customer-changes

&l script-for-counting-average

Up one level and Create new
folder buttons

Current folder /yl Selected folder: fadmin/scripts I

File name: | sample script |

Figure 103 — The Save resource as dialog box

Information related to the location is also shown in the dialog box, see Figure 103.:

e Server: the currently selected server (if there are multiple connected servers, the
user can select a different server by going upward to the server level in the dialog
and choose another one)

e List of resources: contains all of the resources in the selected folder

e Selected folder: the path of the currently selected folder

The selected folder is set in the dialog box depending on various conditions:

e If the resource is not saved yet, and there is a folder or resource selected in the
Zagreus browser window (in the embedded database, not in the server
filesystem), then the folder itself or the parent folder of the selected resource is
set by default.

e |f the resource is not saved yet, and there is no selection in the Zagreus browser
window (or a filesystem resource is selected), then the server root node is
selected by default in the dialog box.

e If the resource is already saved, the original parent folder is selected here.

The user can use the Up one level button to navigate upwards in the folder structure,
and the Create new folder button to create a new folder, see Figure 103.

The user has to specify the resource name in the File name field and then click on
the OK button to save it.

10.6.11 Save a new version of the resource

The user can create a new version of the currently opened resource by using this
tool &t or pressing the Ctrl+Shift+V key combination. Saving a new version creates a
copy of the original resource with the same id but with a different version number, see
- Resource versioning. The tool opens the Set resource version dialog box to set the
parameters of this operation, see Figure 104.

1, Set resource version =

Specify a new version.

Set resource version: ||‘I.D.D.D

Current version

Description:

Saved versions:

1.0.0.0

Save Cancel

Figure 104 — The Set resource version dialog box

e Set resource version
The user needs to enter the new version number for the resource. The text box

is filled with the version of the edited resource, this must be changed in order to
save a new one.

e Current version
The newly created resource will be set as the current version. For more
information about current version, see - Current version.
Setting the current version can also be done by selecting the Set to current version
option from the context menu in the Zagreus browser window. The user has to
right-click on one of the versions grouped under a resource version parent node.

e Description
Allows the user to specify a description for the newly created resource version. A
resource description can also be specified by right-clicking on a resource, and
select the Show resource information menu item from the context menu in the
Zagreus browser window. Then, in the Resource info dialog box, the description
can be added or changed.

e Saved versions
The list of the available versions of the resource

It is recommended to use the version format specified - Version format. After
saving the new resource, the new version is listed In the Zagreus browser, see Figure
105.

2. errer-handling
2. errer_handling
2l example-script
Sh_rnonitor-customer-changes

~ [il] script versioning
2. script versioning (v1.0.0.3) current
2. script versioning (v1.0.0.0)
2. script versioning (v1.0.0.1)
2. script versioning (v1.0.0.2)

aily script-tfor-counting-average
2. script_include
B script_to_include

Figure 105 — Versions of a script

10.6.12 Save and run resource

It runs the resource after saving. The Save resource as dialog box will appear when
the resource that is newly created has not been saved yet. After it has been saved,
Zagreus initiates the execution of the resource, see = Initiating script execution.

“a

Figure 106 — The Save and run resource icon tool

10.6.13 Run script

It runs the script that is currently opened and active in the Editor Area. If the script
has not been saved yet, Zagreus will show a warning message that the script must be
saved before running it.

o

Figure 107 — The Run script icon tool

10.6.14 Resume

This icon tool is only enabled for the debug mode of the Script Editor, see = Starting
a debug session.

O

Figure 108 — The Resume icon tool

10.6.15 Step to the next action

This icon tool is only enabled for the debug mode of the Script Editor, see = Starting
a debug session.

.

Figure 109 — The Step to the next action icon tool

10.6.16 Stop debugging

This icon tool is only enabled for the debug mode of the Script Editor, see = Starting
a debug session.

Figure 110 — The Stop debugging icon tool

10.6.17 Create new resource

It creates a new resource. By clicking on this icon (see Figure 111.), the dialog box
Creating new resource appears, see Figure 112. The resource name can be set (the
default is Untitled) and the resource type must be selected. After clicking on the OK
button, the proper editor based on the resource type will appear in the Editor Area.

Figure 111 — The Create new resource... icon tool

1 Creating new resource O d

Creating new resource on Zagreus Server

Specify new resource parameters:

Resource name: | sample script

Resource type: Script (Graph Editer) ~

Figure 112 — The Creating new resource dialog box

The following resource types are listed:

e Script (Graph Editor)
Creates a script resource that opens in a Script Editor, see also = Script Editor.

e Script (XML Editor)
Creates a script resource that opens in an XML Editor, see also - Opening
resources.

e Template
Creates a template resource that opens in a Script Editor, see also = Script Editor.

e Connection
Creates a connection resource that opens in a Script Editor, see also - Script
Editor.

e Fvent schedule
Creates an event schedule resource that opens in an Event editor, see also -
Event schedule.

e Time schedule
Creates a time schedule resource that opens in a Cron Time editor, see also -
Time schedule.

e File trigger
Creates a file trigger resource that opens in a File trigger editor, see also - File
trigger.

e DB watcher
Creates a database watcher resource that opens in a Database watcher editor,
see also - Database watcher.

e Mail watcher
Creates a mail watcher resource that opens in a Mail watcher editor, see also >
Mail watcher.

e Simple text file
Creates a simple text resource that opens in a Simple text editor, see - Simple
text editor.

The created resource is stored only in the memory until it is saved properly to a
Zagreus Server.

10.6.18 Zoom display

Zooming in and out of the Script Editor area is possible by selecting a percentage
value from a predefined list or by typing in a unique value.

100%

Figure 113 — The Zooming predefined list

The default setting is 100%. To select from one of the predefined sizes, the user
needs to use the down arrow next to the number which is currently set. Apart from the
pre-defined values, the option Page, Width and Height are also available in the list.

e Page: It resizes the content to fit the currently visible Script Editor area.

e Width: It resizes the content to fit the currently visible Script Editor area based on
the width of the canvas.

e Height: It resizes the content to fit the currently visible Script Editor area based
on the height of the canvas.

An accurate size can also be set manually by clicking on the displayed number and
overwriting it.

10.6.19 Zoom in and Zoom out

These tools allow resizing the Script Editor area. The zoom steps come from the
predefined list available in the zoom display. A more accurate size can be specified in
the Zoom display tool, see above.

|-i-'| =)
=l
Figure 114 — The Zoom in and Zoom out icon tools

10.7 Options dialog

The Options dialog box can be opened by the Options... menu item from the Tools
menu in the main menu bar. It provides a lot of settings that are grouped in different
tabs. The settings are saved by clicking the Ok button at the bottom of the dialog and
they are persisted after the Zagreus Client is closed and reopened.

10.7.1 Graph Editor tab

e Element mode after double-clicking on an iconized state
This option sets the default element view mode after double-clicking on the
iconized mode in the Script Editor, see = Iconized view mode.

Element mode after double-clicking on an iconized state
(®) Default mode (attributes are not displayed)

(O Only filled mode (only filled attributes are displayed)
() Full mede (all attributes are displayed)

Figure 115 — The Element mode after double-clicking... setting

o Default mode
This sets the view mode when the attributes are not displayed for the action
in the Script Editor. This is the default setting. This option can also be
accessed in the Script Editor by right-clicking on one of the actions and
selecting the Default menu item.

@- *example-script [1.0.0.0] (script) &2

ERINIE;

Figure 116 — Example for the default view mode of an action

o Only filled mode
This sets the view mode when only the attributes with filled values are

displayed for the action in the Script Editor. This option can also be accessed
in the Script Editor by right-clicking on one of the actions and selecting the
Only filled menu item.

i example-script [1.0.0.0] (script) 22

[al[t][T][c]

[status = finished |

Figure 117 — Example for the only filled view mode of an action

o Full mode
This sets the view mode when all the attributes are displayed for the action
in the Script Editor. This option can also be accessed in the Script Editor by
right-clicking on one of the actions and selecting the Full menu item..

i example-script [1.0.0.0] (script) &2

al[t][1][c]

message =

status = finished

Figure 118 — Example for the full view mode of an action

e Jcons
The user can select if the new icons, old icons or a combination of the two should
be used in the palette in the Script Editor. The old icons were designed for each
individual actions, the new ones for only each action groups.

lcons
() 0ld icons (legacy)
(®) Mew icons (one for all action groups)

() Mixed (New icons except for z and zs action group)

Figure 119 — The Icons settings

o Old icons
The legacy icons will be shown in the palette

= excel]
) exceldata
E excelinfo
Excel:read
& excel:workbook

Figure 120 — Old icons in the palette

o New icons
The new icons will be shown in the palette, one different icon for each
action groups.

(= excel]
1 excel:data
0 excel:info
0 excel:read
0 excelwerkbook

Figure 121 — New icons in the palette

o Mixed
The new icons except for z and zs action groups will be displayed in the
palette in the Script Editor

e Siblings
The user can select the behavior of sibling arrows in case of reordering the
affected actions.

o Keep sibling arrows after reordering actions
If the sibling link arrows are displayed among several sibling actions (see -
Showing sibling links), reordering the actions (see - Changing the order of
execution) can keep the arrows displayed or make them disappear
according to this setting.

e Resizing
The user can select the behavior of the automatic parent action resizing.

o Auto-resize the parents (if needed) when a new element inserted
when an element is inserted to the content of an action, the size of the
parent action is adjusted accordingly when this option is set.

W—

loop-counter = i Ia Iﬂmltﬂ —
Fome1 fDDFFBDI.II'\ er=|
=1 trnm =1l
step=1 Dt_ 1_ .
monitor-counter = false . eprt- ter = fal
meniter-counter = false
4
name = variablel a|[t][T][c]
monitor = false name = variablel
scope = local moniter = false
Sgnumber(1)} scope = local
S{number(1})}
= -—
T2 zexit EE Sl
[al[t][1][c] T[Tl
‘ ‘ message = test message = test
‘ | status = finished status = finished

Figure 122 — Auto-resize the parent when a new child action is inserted

o Auto-resize the parents (if needed) when a child element moved inside
when the position of a child element is changed inside the content of the

parent action, the size of the parent action is adjusted accordingly if this
option is set.

a|[T][[c] a|[t][[c]

loop-counter = | loop-counter = |

from= 1 from=1

to=10 to=10

step=1 step=1

monitor-counter = false monitor-counter = false
alC[le]) alC[le]
name = variablel &] name = variablel .
monitor = false [a][E][T][c] monitor = false exrl =
scope = local message = test | |

‘ scope = |ocal message = test
tatus = fini
T status = finished | | S{number(1)} status = finished

Figure 123 — Auto-resize the parent when a new child action is moved inside the content of the parent action

o Prevent resizing parent smaller when its content would be covered

if this is set, the parent action cannot be resized to the point where any of
its child actions are hidden or partially coverd

a|[][1[c]

loop-counter = i

from =1

to=1

step=1
monitor-counter = false

[al[t][TI[E]

message = test

status = finished

7 [l zfor
al[F][T[c]

loop-counter = j

monitor-counter = false|

BiRinm

) message = test|
status = finished|

T A zfor =[]

al[+][1][c]

loop-counter = j
from =1

to=1

step =1

monitor-counter = false

a|[][T[e]

message = test

=tatus = finished

Figure 124 — When this option is not set, the parent can be resized smaller than its content

e Transparency
The transparency of the elements that overlap can be specified here in
percentages.

o When the value is set to 100, there is no transparency, see Figure 125.

|7 2 zfor

_ — el
a|[t][T][c]

name = variablel
monitor = false
scope = local

S{number(1})}

ounter = false

[fe]
5(1000}}

_

Figure 125 — No transparency for overlapping actions

o When the value is set to 50, there is 50% transparency, see Figure 126.

© [1 zvariable
al[t][T][c]

name = variablel

monitor = false

scope = local

ber(1) IE

nitor-|:ounter = falce

il zted
al [T|[[E]
275l 3(1000)}

Figure 126 — 50% transparency for overlapping actions

e Minimum sizes
Minimum height of the non-iconized element content area (resizing is not
allowed for a smaller height value).

o When the value is set from 100 to 40, see Figure 127.

= [1 zvariable
al[t][][c]
name = variablel
monitor = false — :
= =
scope = local | ek

a[H[T[e]

S{number(1}} name = variablel

monitor = false
scope = local

S{number(1)}

Figure 127 — The minimum height is changed from 100 to 40
e Scroll

Reveals non-visible actions when clicked on its name in the Outline window

a[t][t][c]

loop-counter = §

from =1
fo=20
step=1

monitor-counter = false

|~ [ztext
BIRINIE

S{slecp(1000}}

5= Outline 51 | B Attributes
D [1] =for
=R (2] mexit
ke

Figure 128 — Revealing a covered action when clicked on its name in the Outline window

10.7.2 Download / upload tab

e Opening downloaded resources on client side
When a program path is set for a specific extension of a simple file, the
downloaded resource will be opened after downloading, see - Uploading and
downloading resources.

o Program path for opening .pdf files
The path to the program for opening .pdf extension files can be specified
here.

o Program path for opening .xml files
The path to the program for opening .xml extension files can be specified
here.

o Program path for opening .xsl files
The path to the program for opening . xs1 extension files can be specified
here.

o Program path for opening .xls, .xIsx files
The path to the program for opening .x1s and .x1sx extension files can
be specified here.

o Program path for opening .txt files
The path to the program for opening . txt extension files can be specified
here.

o Path where to save these files
The temporary saving folder for the Zagreus Client. The files are
downloaded here in two cases:

A. When the user clicks on the Open resource on client side menu item in
the context menu in the Zagreus browser window (see - Opening
resources). The file is first downloaded in the temporary saving folder,
then opened by the external editor set in the previous settings.

B. When the user clicks on the Open results in text editor button in the
Search for resources dialog box, see - Searching for resources. The
opened search result file is saved to this temporary saving folder.

e Uploading:

o Consider file extensions for uploading resources
Zagreus will save the uploaded resources as follows in its database if this
setting is checked:

A. A file with the .scr extension is being saved as a script resource after
uploading.

B. A file with the .tmp extension is being saved as a template resource
after uploading.

C. A file with the .con extension is being saved as a connection resource
after uploading.

D. Other files that have no extension listed above will be saved as simple
text files.

10.7.3 Copy tab

e QOverwriting
The overwrite type for the copy operation can be set here.

o Automatically (overwrite with source)
The resource with the same name in the target folder will be overwritten
with the copying resource. Zagreus will overwrite the target resource
without warning.

o Use Copy of ... prefix and numbering
If a resource with the same name already exists in the target folder, the
copying resource will be prefixed with Copy of. If it is copied more than
once, an ordering number will appear in addition to the prefix.

o Skipping (leave the target resource)
A resource with the same name is left unchanged in the target folder.

e Versions
The version copy options can be set here.

o Copy only the current version
When a resource has multiple versions, only the current version is copied.

o Copy all versions together
All versions are copied together no matter which one was selected first.

e To another server
o Use the same id, name and version
this setting is for updating or merging different systems in different servers.
Overwriting is done automatically, and all versions are copied together (the
overwrite and version settings are ignored in this case). When it is checked
the following options are available:

A. Preserve current target version
If the resource with the same id already exists in the target site, it will
not be overwritten by the resource on the source side.

B. Preserve current source version
If the resource with the same id already exists in the target site, it will
be overwritten by the resource on the source side.

10.7.4 General behaviour tab

e Finished jobs window
These settings are related to the Finished job window (see also = Finished jobs
window):

o Auto refresh window by clicking on its header
By checking this setting, the finished jobs will be refreshed in the Finished
jobs window by clicking on its header; otherwise, the 'Refresh view' tool "
should be used for refreshing the content of the window.

o Double-click on job opens logs for jobs in text editor without log view window
This setting controls the behavior of the opened job-logs for a finished job.
When the option is checked, the logs are opened in a simple text file in the
Editor area (see = Simple text editor), otherwise they will be opened in a
Finished logs window (see = Finished logs window).

o Automatic scroll-down to the end of the finished logs when opened by
double-clicking (see above)
This setting also controls the behaviour of the opened job-logs for a finished
job. If the job-log file is configured to be opened in a simple text file in the
Editor area (see setting Double-click on job opens logs for jobs in text editor
without log view window above) and this setting is also checked, the job-log
will automatically scroll to the end of the job-log when opening.

e Scaling
If there is font scaling in the operating system, this setting can help to properly
set the dialog sizes accordingly to the OS scale setting.

10.7.5 Palette tab

e Action groups visibility
Action groups that will be visible on the Palette in the Script Editor can be selected
from this list. Scripts must be reopened for the changes to take effect.

Action groups visibility:

common attributes
z

[Business Objects
Confluence

db

excel

file

wiile

http
Jira
json
kafka
Idap
mail

Microsoft

MSTR Administration
MSTR Reporting
MSTR REST

pdf

REST

Web Service

xslt

Figure 129 — The Action groups visibility list on the Palette tab

10.8 Keybindings

By pressing the Ctrl+Shift+L key combination, the keybindings preferences page can
be accessed, see Figure 130.

Active logs window Ctrl+Alt+L ~
Attribute window Ctri+Alt+A

Backward History Alt+Left

Breakpoint Window Ctrl+Alt+B

Build All Ctrl+B

Change element text Ctrl+T

Close Ctrl+F4

Close All Ctrl+Shift+F4

Collapse All Ctrl+ Shift+Numpad_Divide

Figure 130 — The keybindings preferences page

11. Zagreus Monitor

The Zagreus Monitor is a standalone client application for monitoring script
execution including finished and active jobs as well as scheduled estimations. The
Zagreus Monitor can be started from the Zagreus root folder by the
$ZAGREUS_HOME/startmonitor.bat file.

Like the Zagreus Client, see—> Zagreus Client, the Zagreus Monitor user interface is
also split into sections as shown in Figure 1.

B zagreus Monitor 1.5 — [u] X
File Tools Help

Zagreus Server Connections Search Jobs Time Range Status Execution mode

[l = on Server: Unit: |1 hour © Mselectall Hrmunnin g timeout it [select all
Zagreus Demo Server v

& &
Conned t Name From: [2023/03/31 07:0000 [finished [queue timeout
retis DemoSelver [connected] o
Sele

by Script Name:
[l debugging
|® To: [2023/03/31 10:00:00

M queued [suspended A fired
Refresh!

A runnin: HAtuture riggere
o Flrunning [Af [triggered
Gt/ M lled [Askipped
] Zagreus Demo Server [connected]
192.168.50.170:7323 (v1.55.7)
Show Al |Centrol Components | Show users| (4] Show Engines [7] Show hidden jobs [Merge lines by seript name [] Group manual and subscribed runs [] Highlight Cells | 2023/03/31 (Fri) | Show Current Date| | + | -
Script Name Version Subs.. LastStotus LastBegin Exec Time 7:00 8:00 9:00
1000 17 finished 2023/03/31 00:05:03 1]
on t 1000 finished 2023/03/3107:54:50]
long t with variables 1000 finished 2023/03/31 07:55:02 i}
long-running script with variables try 2 1000 finished 2023/03/31 07:55:04 m
seript 1000 cancelled 2023/03/31 08:11:18 I |
Worker Controller Workerid Status Enabled Started Available proc. Jobid Jobstatus Freemem. Totalmem. Maxmem. Lastupdated
~ Worker Controller 1 Running 28032023, 11:08:03 31.03.2023, 09:19:09
1 Idle yes 20032023, 154558 6 - 2158MB 256MB 4GB 31.03.2023, 09:19:08
2 Idle yes 28032023, T:0817 6 - 269MB 256 M8 468 31.03.2023, 09:19:08
3 Idle yes 28032023, T1:0819 6 2186MB 256MB 468 31.03.2023, 09:19:08
4 Idle yes 31032023, 081146 6 2264MB 350MB 468 31.03.2023, 09:19:07

Figure 2 — Zagreus Monitor and its main sections

The sections are the following:

1) Zagreus Server Connections
The area for administrating connections to one or more Zagreus servers, see =
Zagreus Server.

2) Timeline window
Graphical representation of scripts and their executed jobs, see - Queuing and
jobs.

3) Filter area
It contains various filters for the jobs shown in the timeline window.

4) Execution Engine window
It shows the Worker Controller and its workers of the active server connection.
This window is almost identical to the Execution Engines window in the Zagreus
Client (see - Execution engines window).

11.1 Main menu bar

The main menu bar can be found at the top left corner of the Zagreus Monitor. The
following menu items are available:

e File / Exit
This menu item exits from the Zagreus Monitor application

e Tools / Options
This menu item displays the Options... dialog with the server polling parameters
(see Figure 2.).

Options... d

Server Polling Parameters

4k

Refreshing rate in sec:

4k

4k

Future hours shown at startup

[
Past hours shown at startup: E
[

Auto chift table:

Apply | | Cancel

Figure 2 — Options dialog box

o Refreshing rate in sec
It sets the rate at which the jobs and scripts in the Timeline window are
refreshed (specified in seconds).

o Past hours shown at startup
The number of hours prior to the startup time that are shown in the Timeline
window. The setting takes effect after restarting the Zagreus Monitor.

o Future hours shown at startup
The future hours after the startup time that are shown in the Timeline
window. The setting takes effect after restarting the Zagreus Monitor.

o Auto shift table
It shifts the Timeline window based on the current time in each hour.

e Help /About
This menu item shows the Zagreus Monitor version and logo.

11.2 Sections of the Zagreus Monitor

Next, the aforementioned sections of the Zagreus Monitor application are described
in details.

11.2.1 Zagreus Server Connections

The connections to the Zagreus servers can be specified here. Multiple Zagreus
Server connections can be defined and opened at the same time. When a connection
is established, all jobs and their associated scripts are displayed in the Timeline
window. A host and port combination is allowed only once in the list of servers.

Warning: Only users with administrator rights can use the Zagreus Monitor
application. The non-admin users get a Permission denied error message
when trying to connect.

The three icons on the toolbar allow to manage server connections:

Zagreus Server Connections
) |) | I

Figure 3 — The toolbar of the Zagreus Server Connections section

=

e Add Server Connections -
By clicking on this icon, the Add Server Connection dialog box will be shown, see
Figure 4.

Add Server Connection *

Name: || |

Host: | |

Secure: Il

User Mame: | |

Password: | |

0K Cancel

Figure 4 — The Add Server Connection dialog box
The following connection parameters must be specified:

Name: the (human-readable) name of the remote connection
Host: the hostname or IP address of the server

o
o

o Port: the port of the server

o Secure: if the connection uses a secure protocol (i.e. SSL)
o User Name: the user name

o

Password: the user's password

e Modify Server Connection]
By clicking on this icon, the Modify Server Connection dialog box will be shown,
see Figure 5.

Modify Server Connection *

Mame: |Zagreu5 Deme Server |

Host [192.168.50.170 |

Securer [
User Name: | admin |
Password: | T |

0K Cancel

Figure 5 — The Modify Server Connection dialog box

e Delete Server Connection £
It removes a server connection.

11.2.2 Timeline area

The Timeline area allows jobs and their associated scripts to be monitored. Each
active server connection has its own separated Timeline area identified by the
connection name and the server host:port in the corresponding tab header. Figure 6.
shows one active server connection.

[C] Zagreus Demo Server [connected]
192.168.50.170:7323 (v1.55.7)

Show Al | Contrel Compenents| | Show users | []Show Engines [] Show hidden jobs [JMerge lines by script name [] Group manual and subscribed runs [Highlight Cells [2023/04/03 (Mon) 09:00:00 | Shows Current Date | |+ | | -
Script Name Version Subs.. LastStatus Last Begin Exec Time %00
check-repart 1000 17 finished 2023/04/03 08:50:03

long-running script 1000 runnin g 2023/04/0308:5417 [
ng-running script with variables 1000 finished 2023/04/03 08:47:46]
long-running script with variables try 2 1000 cancelled 2023/04/03 08:48:04 [—
script 1000 Jemer 2023/04/03 08:47:53]
< >

Figure 6 — The Timeline area
11.2.2.1 Left side of the area

The left side of the Timeline area shows the list of the monitored scripts, see Figure
/.

Script Mame Version Subs.. LastStatus Last Begin Exec Time
check-report 1.0.0.0 17 finished 2023/04/03 08:50:03
leng-running script 1.0.0.0 running 2023/04/03 08:54:17
leng-running script with variables 1.0.0.0 finished 2023/04/03 08:47:46
leng-running script with variables try 2 1.0.0.0 cancelled 2023/04/03 08:48:04
script 1.0.0.0 error 2023/04/03 08:47:53

Figure 7 — List of scripts

In this area, the following columns are displayed:

e Script Name
The name of the script. Unchecking the checkbox before the script name removes
the script from the list temporarily. It can be useful for specific monitoring
purposes, e.g. too many scripts are shown in the list. For listing all the scripts
again, the user needs to click on the Show all tool button, see - Additional
options.

e Version
The version of the script.

e Subscription id
The subscription ID of the currently running or lastly executed job of the script (if
any).

e [ast Status
For an actively running job, it is the current status (e.g. running, debugging,
suspended); otherwise it is the status of the last job of the script (e.g. finished,
error, cancelled).

e [ast Begin Execution Time
The last begin execution time of the script.

By double clicking on any of the lines in this list, the Job properties dialog box for the
currently running or last executed job appears, see = Job properties dialog.

11.2.2.2 Right side of the area

The right side of the Timeline area shows an actual graphical representation of a
timeline for the jobs that have been executed, are running or can be expected to be
executed in the future (i.e. scheduled). The different lines correspond to the particular
scripts listed in the left side of the Timeline area. Jobs are represented as rectangles
over time: the width of the rectangle indicates the duration of execution. If the jobs
are executed in a very short period of time or the timeline is zoomed out, the
representation of the particular job can be seen as a simple vertical line.

When the time range does not fit to the currently displayed timeline, a horizontal
scroll bar appears at the bottom of this window. See - Time Range filter.

Furthermore, to see the details of a job, clicking one of them opens the Job
properties dialog box, see - Job properties dialog.

Script Name Version 5. Last Status Last Begin Exec Time 8:00 8:00
check-report 1.0.00 17 finished 2023/04/03 09:50:03 —— |
lang-runnin g script 1.00.0 cancelled 2023/04/03 09:22:29
long-running script with variables 1.0.00 queuetimeout 2023/04/03 09:22:30
long-running script with variablestry 2 1.0.0.0 queuetimeout 2023/04/03 09:22:32
script 1.0.0.0 queuetimeout 2023/04/03 09:23:17

L

mﬂDD4
==

YYVYyYy¥Y

Figure 8 — Timeline for each script

Different colors represent the current status of the particular job:

e green: finished

e gray: cancelled

e red: error

e light blue: running
e brown: starting

e purple: debugging
e blue: queuetimeout

Zagreus Monitor also shows estimations in two further cases:

e Scheduled scripts:
These are scripts that are subscribed to a time schedule, see = Subscriptions. If
there are expected time events in the displayed time frame, they are shown as
orange triangles in the Timeline, see Figure 9.

e Skipped jobs:
A job is considered a skipped job if it had been scheduled but was not queued
due to server shutdown or error, see = Skipped jobs. As Figure 10. shows, they
are represented by red triangles.

[] Zagreus Dema Server [connected]
192.168.50.170:7323 (v1.5.5.7)

Show All | |Control Components | Show users | []Show Engines [] Show hidden jobs [Merge lines by scrip

Script Name Version Subscr.id. Last Status Last Begi 15:00 16:00 17:00 18:00
admin task example 1000 5

Figure 9 — Scheduled jobs

E Zagreus Demo Server [connected]
192.168.50.170:7323 (v1.5.5.7)

Show All | | Control Components| | Show users| []Show Engines [] Show hidden jobs [Merge lines by scrip

Script Name Version Subscrid. Last Status Last Begi

{5 admin_task_eample 10083 finished aggga | | ||| wEEEEEEEERERER] |||

Figure 10 — Skipped jobs
Double-clicking on these virtual jobs also shows the Job properties dialog box with

the corresponding information of the scheduled or skipped job.

11.2.2.3 Job properties dialog

This is the main dialog of the Zagreus Monitor application, showing lots of
information of a selected job. The header of this dialog box displays the job id.

B 540f265d-9ab6-4379-8a35-868f36c32028 X

Job Properties

Script Mame: admin_task_example
Scriptld: c6a21427eTb943168a4f00c561 eeTh2f|821.0.0.0
Script Path: fadmin/scripts/admin_task_example
Script Version: 1.0.0.0
Jobld: 540f265d-9abb-4379-8a35-868f56c32028
Status: finished
Worker Id: 1.1
Execution Mode: scheduled
Begin Queue Time: 2023/04/25 18:40:30
End Queue Time: 2023/04/25 18:40:30
Begin Execution Time: 2023/04/25 18:40:30
End Execution Time: 2023/04/25 18:40:31
Schedule path: /admin/schedules/time schedules/every-10-minutes
Scheduleid: bc1a7730089f44e2bef033128f7d1683|811.0.0.0
Subscription id: 22
Result Message:
Caller Type: scheduler
Caller: fadmin/schedules/time schedules/every-10-minutes

Parent Job Id:

Cancel job Show parent job Getlog Close

Figure 11 — The Info tab of the Job properties dialog box

There are three tabs on the pane of the Job properties dialog box: Info, Starting
variables and Monitoring variables. The Info tab displays the general properties of the
selected job:

e Script Name: the name of the script

e Script Id: the fully qualified id of the script (see = Resource ID and version)

e Script Path: the full path of the script

e Script Version: the version number of the script

e Job Id: the job id

e Status: the status of the job, using the same color codes as the Timeline window
o Worker Id: the id of the worker that executed the job

e Execution Mode: the execution mode of the job

e Begin Queue Time: the begin queue time of the job

e End Queue Time: the end queue time of the job

e Begin Execution Time: the begin execution time of the job

e End Execution Time: the end execution time of the job

e Result Message: the result message of the job, see = result-message of the script

e Caller Type: the caller type of the execution

e Caller: the additional caller information of the execution

e Parent Job Id: the parent job id, if the script execution was initiated by another
script (i.e. by the zs: runscript action)

For detailed descriptions about job properties, see - Job properties

The following properties are shown if the script execution was initiated by an event-
type resource:

e Schedule path: the full path of the corresponding trigger
e Schedule id: the id and version of the corresponding trigger
e Subscription id: the id and version of the corresponding trigger

The bottom of the Info tab offers several buttons for the following functionalities:

e Cancel job
Cancels the currently running job. Only available if the job status one of the
following: running, debugging, suspended, starting. See also - Cancellation

e Show parent job
This button switches the Job properties dialog to the parent job. Only available if
the script execution was initiated by another script (i.e. by the zs: runscript
action)

e Getlog
This button displays the log messages of the currently selected job in a new dialog
Finished Log (see Figure 12.).

B Finished Log for job check-report >

t25.04.2tl23, 17:05:03 =z:root Execution started on script "check-report"™
25.04.2023, 17:05:03 z:root Zagreus wersion: 1.5.5.7

25.04.2023, 17:05:03 z:root Job ID: e27008cc-lde3-45cf-alfi-0dabk52eafdld
25.04.2023, 17:05:03 zZ:root Job starting wariables:variable name variable w

LinuxzagreusVersion 1.5.5.7

25.04.2023, 17:05:03 z:root Default encoding: UIF-8

25.04.2023, 17:05:03 z:root Default locale / country: United States

25.04.2023, 17:05:03 z:root Default locale / language: English

25.04.2023, 17:05:03 z:root <"1"™ z:log>

25.04.2023, 17:05:03 =z:log (1) <102bd56f-ched-e2f0-4£27-cf02512956béRetixpert.a
25.04.2023, 17:05:03 =zZ:root </f™1" z:log>

25.04.2023, 17:05:03 z:root Execution finished on script "check-report™

£ >

Figure 12 — Log messages of the selected job

e (Close
Closes the Job properties dialog

The Starting variables tab displays the starting variables of the selected job, see
Figure 13. The Advanced mode checkbox shows the same list with the fully-qualified
variable names according to their scopes, see also = Prefixes.

B 3c96485f-e04a-4442-9646-a4c823642044 X
Info Starting variables Monitoring variables
[]Advanced mode

Marme Value

bankholidays

callerlP

callerMame admin

callerType gui

dokuwikiurl

executingUserMame admin

executionMode direct

general-server-variable general-server

parallelLocps 10

queueTimeout G0000

gueueingTime 60000

runTimeout 3600000

runningTime 3600000

scriptDesc

server05s Linux

serverPort 7323

serverWorkingFolder /heme/zagreus_docs/server

starting_var start value

zagreusVersion 1557

< >

Figure 13 — Starting variables tab

The Monitoring variables tab displays special monitoring variables (see -
Monitoring variables) of the selected job, see Figure 14.

B | lacbabd2-20c6-4deB-961d-bEB3bfE2ELF *
Info Starting variables Monitoring variables

MName Value Declared in actor

sUrm_var 13 1

currentfcticnMumber 2.1 root

Figure 14 - See the changes in the value of the sum_var variable in the Zagreus Monitor

These are script variables with the attribute monitor=true, see Figure 15. Also, there
is a built-in specific variable currentActionNumber, which is monitoring the ordinal
number of the currently executed action, see also - Ordering numbers.

Aside from the name and value of the monitoring variables, the third column
Declared in action shows the action ordinal number of variable declaration.

a|[1][m[e]

name = sum_var

manitor = true

scope = local

S{number(1)}

Figure 15 - Set monitor attribute to true for the sum_var variable in the Zagreus Client

Info: The content of the Job properties dialog box can be switched to
another job either by clicking on the corresponding job in the right side
of the Timeline window or double clicking on one of the listed scripts.

11.2.2.4 Additional options

In this part of the area, additional options are available for managing server
components, changing timeline view and sorting scripts.

[Zagreus Demo Server [connected]
192.168.50.170:7323 (v1.5.5.7)

Shew Al |Control Components| | Show users | []Show Engines [] Show hidden jobs [IMerge lines by script name [] Group manual and subscribed runs [] Highlight Cells | 2023/04/04 (Tue) 03:00:00 EShow Current Date] | + | | -

Figure 16 - The additional options of the Timeline window

The name of the connection, the hostname, the port and the server version are
displayed in the header of the Timeline window.

Ci Zagreus Demo Server [connected]
192.168.50.170:7323 (v1.3.5.7)

Figure 17 — The header of the Timeline window

On the toolbar of the tab, the following options are available:

e Show All button
displays all scripts and their jobs that are executed within the time range
specified. After removing some scripts from the list with the checkbox before the
script name, it is the way to list them all again.

e Control Components button
the Server control dialog box for the selected Zagreus server will appear,
displaying the components:

o Scheduler

It starts / stops the Quartz scheduler of the Zagreus System, see > Quartz
scheduler.

o Queue
It starts / stops the Zagreus job queue, see - Queue.

o Direct running

It starts / stops the possibility of manual job execution, see - Manual script
execution.

o Filetriggers running

It starts / stops the file trigger functionality of the Zagreus server, see - File
trigger.

o Watchers running
It starts / stops the mail watcher and database watcher functionality of the
Zagreus server, see - Mail watcher and - Database watcher

o Priority algorithm
It starts / stops the priority management of the Zagreus job queue, see >
Priority and priority algorithm

All components can be enabled or disabled by right-clicking on the proper
component, see Figure 18.

B Server Compenent Centrol (Zagreus Demo Server) *

Component Enabled

: Scheduler L= :

Queve yes Start / Stop Component
Direct running yes

Filetriggers running yES

Watchers running yes

Priority algorithm n

Figure 18 — The Server control dialog box

e Show users button
The Logged in users dialog box will appear, displaying a list of currently logged-in
users, see Figure 19.

B Logged in users X
User name Connection type Last login Last activity Legin address
admin maonitor 2023-04-26 11:37:54 2023-04-26 11:37:36 127.0.01
admin GUI 2023-04-26 11:33:55 2023-04-26 11:37:51 127.0.0.1
Refresh! 0K

Figure 19 — The Logged in users dialog box

e Show Engines checkbox
This checkbox displays the Execution Engines window, see = Execution Engines
window

e Show hidden jobs checkbox
Displays all hidden jobs as well, see - Hidden jobs

e Merge lines by script name checkbox
When a script is executed both manually and by a triggered subscription, Zagreus
Monitor displays them in separate lines in the script list of the Timeline window.

Furthermore, when the same script is executed by multiple subscriptions, they
are also shown in separate lines. Using this checkbox, these lines are merged into
a single line in the timeline.

e Group manual and subscribed runs checkbox
It categorizes jobs based on whether they were executed manually or by a
subscription. If set, the manually executed jobs are at the upper part of the script
list.

e Highlight Cells checkbox
If this checkbox is set, the hourly regions of scripts which have any job (including
skipped and scheduled jobs) in the given region will be highlighted.

e Date and Time display
It shows the date and time of the displayed starting position of the timeline.

e Show Current Date button
It jumps to the current date and time on the timeline. This button is only available
if the current date and time are within the range specified in the Time Range
filter, see > Time Range filter.

e Zoom In and Zoom Out buttons
These buttons allow the user to zoom in and out on the timeline.

11.2.3 Filter area

This area contains various filters for fine-tuning the displayed content of the
Timeline window. It has four main parts. This is useful when the number of the
executed scripts is relatively large, making the list of scripts hard to handle.

11.2.3.1 Search Jobs filter

By this filter the user can filter for script name or for a specific event-type resource
associated with the scripts, see Figure 20.

Search Jobs

on Server:

Zagreus Demo Server ~

by Script Mame:

Figure 20 - Filtering by script name or schedules

e on Server dropdown
The Zagreus Server for which the filter will be applied can be selected here (in
case when multiple server connections are open).

e by Script Name textbox
By selecting this option with the radio button to the right to the textbox, and by
specifying the script name filter, only the scripts that contain the specified string
will be shown in the script list of the Timeline window. Substrings can also be
used, e.g. a value ”script” will result in showing the scripts sample_script and
example_script, but hiding the script sample_request.

e by Schedule dropdown menu
By selecting this option with the radio button to the right to the dropdown menu,
and by choosing the full path of the event-type resource from the dropdown, the
content of the Timeline window will be limited to the scripts that are subscribed
to this event-type resource and were executed by those subscriptions.

The options above take effect after clicking on the Go! button.

11.2.3.2 Time Range filter

The user can use the Time Range filter to set the time range of the timeline displayed
in the Timeline window, see Figure 21.

Tirne Range

Unit: |1 hour ~

From: | 2023,/04,/04 15:00:00 | |Select
To: | 2023/04/04 17:00:00 Select

Refresh!

Figure 21 — The Time Range filter

e Unit
the unit that the time range uses can be specified here. The available values are
as follows: 1 hour and1l day.

e From
the starting date and time can be specified here. A calendar with the current date
appears after clicking the select button. Only hourly precision can be used here
since the Timeline window units are hourly-based.

Select 'From' date *
1 2023, aprilis 4

H P S0 WV

27 11 2 |:
3 7 8 9|50 (0 =

10 14 15 16

17 21 22 23

24 28 29 30

1 5 6 7

Figure 22 - Calendar for the starting date

e To
The ending date and time can be specified here. A calendar with the current date
appears after clicking the select button. Only hourly precision can be used here
since the Timeline window units are hourly-based.

Select 'To' date *

1 2023, aprilis g

) 31 1 2

28 29 30

Figure 23 - Calendar for the ending date

Clicking the Refresh! button applies the changes on the Timeline.

11.2.3.3 Status filter

This filter selects the status of the jobs that will be displayed in the Timeline window.
See = Job lifecycle

Status
[select all [running timeout

[finished [] queue timeout
[error [/] debugging
queued suspended

[running [+] future

[cancelled [skipped

Figure 24 — The Status filter

Aside from the selectable statuses, the select all checkbox behaves as a toggle
button, the user can select or deselect all statuses at once.
The timeline is updated right after any of the checkboxes has changed.

11.2.3.4 Execution mode filter

This filter selects the execution mode of the jobs that will be displayed in the
Timeline window, see = Job properties.

Execution mode

[+] select all
[+ direct

[+ scheduled
[fired

triggered

Figure 25 - Execution mode filter

Aside from the selectable execution modes, the select all checkbox behaves as a
toggle button, the user can select or deselect all execution modes at once.
The timeline is updated right after any of the checkboxes has changed.

11.2.4 Execution Engines window

It displays the current status of all Execution Engines (i.e. Zagreus Workers) shown
in a tree-table. The Zagreus Workers are located under the Worker Controller they
belong to. The Worker Controller tree node is expandable and collapsable either by
clicking on the arrow right next to the Worker Controller name or by double-clicking
on the Worker Controller name. When a script is being processed, its job will be
displayed under the Job id column next to the worker who is executing it. Furthermore,
the job status will be displayed in the Job status column, allowing the current status of
the job to be tracked. See the details of the columns below.

e Worker Controller (expandable node)
Shows all Worker Controllers.

o Worker id
The ID of the particular Zagreus Worker.

e Status
The status of the Worker Controller / Zagreus Workers.

e Enabled
Shows if the Zagreus Worker is enabled or disabled.

e Started
Shows the date when the Zagreus Worker was started.

e Available processors
The number of CPU cores in the Zagreus Server, reported by the JVM.

e Jobid
The identifier of the actual job (if there is a running job).

e Job status
The current status of the job (if there is a running job).

e Free memory
The currently free memory that the JVM can use, reported by the JVM, see -
Memory handling

e Total memory
The actual memory that the JVM is using, reported by the JVM, see - Memory

handling

e Max memory
This is the maximum memory that the JVM can use, reported by the JVM, see -

Memory handling.

e Last updated
The most recent time all information was updated.

12. Other Zagreus clients

Besides the Zagreus Client, there are further custom clients provided with Zagreus,
which offer much more limited functionalities, but which are light-weight and simple
to use. Both the Zagreus Command-line tools and the Zagreus HTML application are
shipped with the Zagreus installation and work out-of-the-box. Additionally,
command-line tools can be installed as a standalone package on other machines as
well. In contrast, the Zagreus html application requires to be hosted on a Zagreus
server. Both clients allow the user to initiate script execution and to fire event
schedules. These clients improve the accessibility of the Zagreus infrastructure because
the Zagreus server can be accessed from:

e a machine without a graphical user interface,
e a machine that does not have an installed Zagreus Client,
e or even from mobile devices (smartphones, iPads, etc.).

12.1 Command-line tools

The Zagreus command-line tools, shipped along with Zagreus installations as a
standalone package, consist of a collection of simple executable files. To support both
Windows and Unix platforms, there is a .bat and an . sh script file available for every
functionality supported. There are batch files and shell scripts for administrative tasks
as well as for running scripts and firing events.

The command-line package for the Windows environment consists of the following
files: backupdatabase.bat, configtester.bat, connectedusers.bat,
fireevent.bat, restoredatabase.bat, runscript.bat. Of course, the same
files are provided with . sh extension, adapted for Unix environment.

The main purpose of the command-line package is to allow the user to initiate script
execution, but it can also be used for administrative purposes. It can be useful when it
is not possible to install a Zagreus Client application on the client machine, or when the
particular administrative task has to be performed from another application.

12.1.1 Executable files

There are six executable files with the extension of .bat or . sh (Windows and Unix
environments, respectively). Since they are batch files / shell scripts, they can be
copied and edited according to the actual use case.

12.1.1.1 backupdatabase script

This command-line tool creates a backup file of the database instance of the Zagreus
Server. By default, the output of the backup process will be saved in the backup folder
within the Zagreus Server home folder (e.g. c: \Programme\zagreus\server\ or
/home/zagreus/server/). The output file will be assigned the name backup-
<yyyy-MM-dd hhmmss>.sql, where <yyyy-MM-DD hhmmss> stands for the
current timestamp (for example, backup-2023-07-01 121314.sql).

12.1.1.2 configtester script

This command-line tool checks the content of the configuration files of the Zagreus
Server, Zagreus Worker and Zagreus Workercontroller components. It sends feedback

about property keys without value definition, and marks property keys which are
deprecated.

12.1.1.3 connectedusers script

This command-line tool returns information about the users who are currently
connected to the Zagreus Server. This data is displayed in a table format, for example:

User Connection type Last login Last activity Login address
admin GUI 2023-06-07 2023-06-07 127.0.0.1
13:02:23 13:22:41

12.1.1.4 fireevent script

This command-line tool triggers the given event schedule, specified by its resource
ID or by its resource path. The result can be checked in the Zagreus Client or in the
Zagreus Monitor applications.

12.1.1.5 restoredatabase script

This command-line tool restores the Zagreus Server meta database from a backup
file (created by e.g. the backupdatabase command-line tool).

12.1.1.6 runscript script

This command-line tool initiates the execution of the given script, specified by its
resource ID or by its resource path. The result can be checked in the Zagreus Client or
in the Zagreus Monitor applications.

Note: In a Windows environment, the command line window closes automatically
after the end of the process.

12.1.2 Examples for Windows

Next we present some use-case examples for executing command line files and
configuring their input parameters in a Windows environment. In these examples, the

folder path of the command linetoolsis c: \Programme\ zagreus\command-line\
(i.e. the home folder of the Zagreus Server is c: \Programme\zagreus).

12.1.2.1 Initiating script execution

Initiating script execution without parameters:

C:\Users\DemoUser> cd C:\Programme\zagreus\command-line
C:\Programme\zagreus\command-line> runscript.bat h=my.zagreus.server
-p=7323 -u=admin -pass=******** d0a26bbdl10194bf69460£770b3d8d9ff

Initiating script execution with the parameter secure, passing script variables and
using encrypted password (i.e. cpassword):

C:\Users\DemoUser>cd C:\Programme\zagreus\command-line
C:\Programme\zagreus\command-line>runscript.bat -h= my.zagreus.server
-secure -p=7443 -u=admin -cpass=#-3#6T7#-40f—F*xx*xx*xx
-param=x:my-input-param -param=y:123 e275a121e9304a3290c00bfcbafcc756

General pattern for initiating script execution:

runscript.bat -h=host -p=port -u=user [-pass=password or -cpass=cpassword]
[-secure] [-param=name:value [-param=name:value ...]] <script id>

12.1.2.2 Triggering an event schedule resource

Triggering an event schedule resource with the parameter secure, and using
encrypted password (i.e. cpassword):

C:\Users\DemoUser>cd C:\Programme\zagreus\command-line
C:\Programme\zagreus\command-line>fireevent.bat -h= my.zagreus.server -
p=7443 -u=admin —cpass=#-3#6T7#-49# - FFxHxxxKxx -secure
7529d6d7efeb4160ab0d8cc5084b6d7£

General pattern for triggering an event schedule resource:

-h=host -p=port -u=user [-pass=password or -cpass=cpassword] [—-secure]

Info: When using the -secure command-line parameter, the port must
be changed to the Zagreus SSL port.

12.1.3 Examples for Linux

Next we present some use-case examples for executing command line files and
configuring their input parameters in a Linux environment. In these examples, the
folder path of the command line tools is /home/zagreus/command-1line (i.e. the
home folder of the Zagreus Server is /home/zagreus).

12.1.3.1 Initiating script execution

Initiating script execution on localhost without parameters:

/home/zagreus/command-line/runscript.sh -h=localhost -p=7323 -u=admin -
pass=*x******x 22753121e9304a3290c00bfcbafcc756

Initiating script execution on localhost with the parameter secure, passing script
variables and using encrypted password (i.e. cpassword):

/home/zagreus/command-line/runscript.sh -h=127.0.0.1 -secure -p=7443
—u=admin -cpass=#-3#6T7#-49#-—*x*F*kkxxk¥kk _param=x:my-param
-param=y:456 e€275a121e9304a3290c00bfcbafcc756

General pattern for initiating script execution:

/home/zagreus/command-line/runscript.sh -h=host -p=port -u=user
[-pass=password or -cpass=cpassword] [-secure] [-param=name:value
[-param=name:value ...]] <script id>

12.1.3.2 Triggering an event schedule resource

Triggering an event schedule resource with the parameter secure, and using
encrypted password (i.e. cpassword):

/home/zagreus/command-line/fireevent.sh -h= my.zagreus.server -secure
-p=7443 -u=admin
—cpass=#-3#67#-49f* *xFxHkxx*x*xkx T529d6d7efebd160ab0d8cc5084bod7f

General pattern for triggering an event schedule resource:

/home/zagreus/command-line/fireevent.sh -h=host -p=port -u=user
[-pass=password or -cpass=cpassword] [-secure]

Info: When using the -secure command-line parameter, the port must
be changed to the Zagreus SSL port.

12.2 Zagreus HTML application

The Zagreus HTML Application is a user interface for initiating script execution,
triggering event schedules and get information about jobs. It is shipped with each

Zagreus installation and

This client can be accessed directly via a web browser. When defining the URL in the
browser, it is necessary to define the port where the Zagreus Server publishes the
HTML application. It is possible to reach Zagreus server on the standard or on the SSL

hosted by the Zagreus Server.

port, see - General properties and = SSL properties.
Sample URL for reaching Zagreus HTML client with HTTPS protocol:

https://my-zagreus-server:7443/zagreus/html/zagreus.html

The Zagreus Server uses a self-signed certificate, therefore the Zagreus HTML
application site has to be added to the security exceptions in the web browser used

(see Figure 1.).

Run script and get info

a
< C A Notsecure

g? Run scriptand get i...

ZAGRI

e Automate vy

user name
pasword

script ID or path

° Add paramett

Logging consols

job ID

Job info logging

x +

hitps//192.168.50.170:7443/zagreus/html/zagreus.html|

Certificate Viewer: Zagreus server

General | Details

Issued Te

Issusd By
Common Name (CN)
Organization (O)
Organizational Unit (OU) Zagreus serv

Validity Period
Issued On Tuesday, August 23, 2022 at 10:27:46 AM
Expires On Wednesday, August 10, 2072 at 10:27:46 AM

Fingerprints

SHA-256 Fingerprint C6 ASQE 3D DD C8 B1CE28 1ED3 32 AD3E 8438
4026 12 63 2E 2D 4E CDD4T4D39AADS
SHA-1 Fingerprint El 8B 44 53 AECI9BD 83 01 3F 594471 8E

D0 82 6A 50

E s |

X
l Fire event

-2 3

Figure 1 — The Zagreus Server certificate in a Chrome browser

After adding the Zagreus HTML application site as a security exception, it can be
reached from the web browser.
For the structure of the Zagreus HTML application, see Figure 2. and Figure 3.

ZAGREUS

E Automate your [T

/ / /

user name

pasword

script ID or path ym: m

° A Menu item for initiating script execution,
view log and get job information.

Logging

Menu item for getting job information /
job ID in a larger logging console.

Job info logging console

Menu item for triggering event
schedules and view event log.

Job log console

Figure 2 — The Opening screen of the Zagreus HTML application

. ZAGREUS Job info Fire event <
L Automate your IT
Run script and get info
@
user name
|
pasword

script ID or path Async

Figure 3 — The Zagreus HTML application opened in the browser of a smartphone.

12.2.1 Run script and get info tab

In this page the user can directly initiate script execution, define parameters for
scripts, check logs, and get job information. There are three mandatory input fields:

e username
e password
e script ID / script path

Adding script parameters is possible by opening the Add parameters section. The
result of the job is displayed in the Logging console. In the Job info logging console
frame, the job-log can be viewed in the following way: copy the job ID from the Logging
console to the job ID input field in the Job info logging console frame.

Scripts can be executed either in synchronous or in asynchronous mode, the default
mode being asynchronous. By using the Async checkbox, the execution mode can be
changed. Scripts can be executed by clicking the Run button. Consoles can be cleared
with the Clear / Clear console button.

Automate your IT

admin Authentication data and script ID
SessSsORORRRRN -
€275a121€93042329000bfcBafcc 756 Async [
° |ﬂdd parameters l
\ Set execution mode sync. /
X my-value async., and run script

y Open/close the Add parameters window

Add parameter Remove last parameter

Logging console

2023-02-27 15:28:16 Job created, job id ig befblb52-deZb-45b6-99d9-fff3e264c365

/ The job ID is copied

' automatically. To display the
be8b1b52-de2b-45b6-99d9ff | Lines job-log, click the Get info
button

Job info logging console

2023-02-27 15:28:32 Job status: finished ~
Begin Queus Time: 2023-02-27 15:29:59

Figure 4 - Main controller items of the Run script and get info screen

12.2.2 Job info tab

This menu item is used for viewing the job-log entries. The number of displayed lines
is configurable. In this page, there are three mandatory input fields:

e username
e password
e jobID

Automate your IT

admin . . 5 q .
_———>| Authentication data and job ID input fields
L1111}
beB8b1b52-de2b-45b6-99d9-ff Lines of job log displayed: last 100 ~

Clear consoles

The Get info and Clear
consoles buttons

Job info logging console

2023-02-27 21:09:41 Job status: finished ~
Begin Queune Time: 2023-02-27 15:29:59

End Queus Time: 2023-02-27 15:29:5%9

Begin Execution Time: 2023-02-27 15:29:59

End Execution Time: 2023-02-27 15:29:59

Job log console

2023-02-27 15:29:59 Execution started on script "cli"” -
2023-02-27 15:29:59 Zagreus wversiom: 1.5.5.7

2023-02-27 15:29:59 Job ID: befblbbZ-deZb-4Sb6-959d8-fff3e2e4c3es

2023-02-27 15:29:59 Job starting variables:

variable name variable value

callerIP

callerType webservice

currentUserlid 1

dokuwikinrl

executingUserName admin

exarntinnMode Adirect

Figure 5 - Job info screen with job-log entries

12.2.3 Fire event tab

The user can trigger event schedules and check event logs on this screen. There are
three mandatory input fields:

e username
e password
e event ID / event path

EBZASREYS
Automate your IT

—,

admin Authentication data and event ID

7529d6d7efeb4160ab0d8cc5084bBdTf

/

Event log console Triggering event

schedule

2023-02-27 20:58:47 Event was fired successfully.

Figure 6 - Triggering an event schedule and viewing the result

12.

3 Troubleshooting

When the execution of a script is initiated from command line, the result can be

checked in the Zagreus Client, Finished jobs window, see = Finished jobs window. If

the Finished jobs window does not contain the result, then the script was not executed.

In such cases, it is recommended to inspect the following items:

If

server definition in the command

port definition in the command

port definition in the Zagreus Server configuration, see - General properties and
- SSL properties

user authentication data

server machine firewall settings

server machine and router port forwarding settings

one of the pages in the Zagreus HTML application does not load, it is

recommended to inspect the following items:

is the Zagreus Server running?

port value in the URL

port value in the Zagreus Server configuration, see - General properties and =
SSL properties

Feedback message about script execution initiation is displayed immediately in the

Logging console section, see - Run script and get info tab.

13. Script Editor

The Zagreus Script Editor is the tool for implementing the core of IT processes -
creating Zagreus scripts. Scripts are composed from actions, see = Actions. Actions are
able to exchange information with one another and also to embed other actions as
sub-elements. The fundamental step in writing Zagreus scripts is making these links
between actions. Additionally, Zagreus scripts can communicate with one another to

build larger processes.

13.1 Layout

The Script Editor can be opened either by creating a new script resource (see =
Scripts) or by double-clicking on an already existing script resource in the Zagreus
Browser window.

The Script Editor consists of three main regions:

e Canvas
e Palette
e View selector

@- Untitled [1.0.0.0] (script) &2 =

~e Palette

> |7 |0

[.} Selection
canvas

=z

\ = Confluence
= db

[excel

[= file

(= ftp

= http

= Jira

= kafka

[Idap

= mail

\ 2 £ hliccocoft

Graph View | XML View

view selector palette

\ 4

Figure 1 — The layout of the Script Editor

The canvas is the area for creating the content of Zagreus scripts. The palette is the
container element of the available action groups and actions, see - Action groups and
action name. Actions can be drag-and-dropped from the palette to the canvas. The
user can choose between the Graph View and the XML View of the script via the View
selector.

13.1.1 Canvas

The canvas represents the z: root parent action of the Zagreus script. In case of a
new script the canvas is empty. Actions can be drag-and-dropped from the palette onto
the canvas, they will become the direct children of the root element - XML
representation. The canvas area is theoretically infinite; scrollbars appear when there
is any content in the non-visible region. The content of the canvas can be zoomed in or
out with the Zoom display and Zoom In / Out tools in the main toolbar, see - Zoom in
and Zoom out.

Aside from the actions, the canvas can display specific relations between actions,
like the links from siblings (see - Showing sibling links) and child-content arrows (see
- Outside displaying option for a child action).

13.1.2 Palette

The palette is a container element of the available action groups and actions. The
list of available action groups is controlled by the installed Zagreus licence (see =
Licencing). An action group is a container element of particular actions with the same
namespace, see - Action groups and action name. For example in Figure 2., the action
group db contains database related actions.

¢ Palette [
[+ Selection

=
(= Confluence

l,—_-b db <>o
db:begin
db:call

db:close
db:commit

dhjdbe-
connection

dh:lizad
(= excel

(= file
(= ftp
= hitp

= Jira

Figure 2 — The db action group on the palette

To open or close an action group in the palette, the user needs to click on its name.
The action items can be scrolled with the scroll wheel of the mouse. Up and down keys

also can be used for navigation, while the left cursor key closes and the right cursor key
opens an action group.

It is configurable which items are displayed on the palette, see also - Palette tab.
13.1.3 View selector tabs

It is possible to switch between XML View and Graph view by using the View selector
tabs. The Graph View (see Figure 3.) contains the canvas and the palette, and the XML

View (see Figure 4.) shows the XML representation of the Zagreus script, see - XML
representation.

@- cancel all jobs [1.0.0.0] (script) &2

= A ztext
BinniE]

CANCEL ALL JOBS USAGE

This script cancells all jobs that are in the gueue (running, gueued).

The value of "script.prierity” of this script is 1, therefore it will be the next script that starts when ene of the execution engines is finished with a job.

HH[E

z:loglevel zs:joblist z:foreach

Figure 3 — A script in Graph View

. cancel all jobs [1.0.0.0] (script) 22 =t

<?xml version="1.8" encoding="I50-8859-1"?>
<z:root

“http://zagreus.com/z"

xmlns:Fil ttp://zagreus.com/file™
xmlns:mail="http://zagreus.com/mail”
xmlns:excel="http://zagreus.com/excel"
sanlns:mstr="http://zagreus.com/mstr"
xmlns:mstrrest="http://zagreus.com/mstrrest”
tip://zagreus.com/bo"
http://zagreus.com/fop™
xmlns:kafka="http://zagreus.com/kafka"
ttp://zagreus.com/ldap™
ttp://zagreus.com/xs1t™
http://zagreus.com/http”
http://zagreus.com/ftp"
http://zagreus.com/zip”
ttp://zagreus.com/ws"
ttp://zagreus.com/db"
http://zagreus.com/mdx"
ttp://zagreus.com/json"
ttp://zagreus.com/msft"
xmlns:pdf="http://zagreus.com/pdf"
xmlns:confluence="http://zagreus.com/confluence”
smlns:jira="http://zagreus.com/jira"
xmlns:rest=
xmlns:zs=
text

8"
187" _s="false" _z="3" _w="B">CANCEL ALL JOBS USAGE

This script cancells all jobs that are in the queue (running, queued).
The value of "script.prioritylquet; of this script is 1, therefore it will be the next script that starts when one of the execution
<z:loglevel le " 18" ="57" "78" _s="false" 2" _
<zs:joblist o _ false™ connection-nam
<z:foreach key: parallel=" B 7" _h="78" _w="2" _s="false" in="%jobs" _ >
<z:log level: _o0="4.1" _x="9 ="199" _h="189" _v="8" _z="0" _s="false"»Cancelling ${z_foreach.counter}: $x</z:log»
<zs:cancel _o="4.2" _x="216" _y="17" _w="179" _h="122" _v="8" _s="false" _z="1" connection-name="" job-id="%{x.jobid}" test-expr="jo
</z:foreach>
</z:root>

®="85" _y; max-rows="5808" alias="job

Figure 4 — The same script in XML View

Any changes are made on the XML View is applied on Graph View and vice versa.

13.2 Actions

Actions are the building blocks of Zagreus scripts. Actions are divided into logical
groups — called action groups, e.g. file, mail or db. In full view mode, actions
display their attributes and child content. Actions can be created, repositioned,
deleted, copied etc. on the Graph View tab via specific user operations.

13.2.1 View modes

A view mode is the way of displaying an action. The view mode determines only the
graphical representation of the action on the canvas, it does not affect either any
operation performed on the action (e.g. copy, move, delete, comment) or the
execution process of the script.

There are two types of view modes: ‘closed’ and ‘open’ ones. In a closed view mode
(the iconized view mode), the sub-elements of the particular action such as child
actions or text are hidden. In contrast, in an open view mode (all the other view modes)
the sub-elements are fully visible.

13.2.1.1 Iconized view mode

The iconized view mode is a closed view mode and it has the smallest size among all
the view modes. When an action is in iconized view mode, it hides all the sub-tree of
the underlying script structure, so it can be regarded as a collapsed tree-node in a tree-
like structure (like the script XML itself). It is a very useful way of hiding sub-elements
of an action to provide a much cleaner overview for large scripts.

In the iconized view mode, only the following information are shown (see Figure 5.):

e the ordering number of the action (see - Ordering numbers)
e the icon of the action group
e the fully qualified name of the action (see = Action groups and action name)

action ordering number

— 7

. A
icon —

/ zs:fireevent
action name

Figure 5 —The iconized view mode

Info: When a label is set for an action, the label is displayed instead of
the action name.

13.2.1.2 Default view mode

The default view mode is one of the ‘open’ view. This means that the contents of
the action (such as child actions or text elements) are fully visible. Just because the
particular action is in an open view mode, any of its children still can be iconized. In
contrast with other open view modes, in the default view mode the attributes of the
action are not visible.

In the default view mode, the following information are shown (see Figure 6.):

e theicon of the action group (or of the particular action, see - Action groups and
action name)

e the ordering number of the action (see - Ordering numbers)

e the fully qualified name of the action (see = Action groups and action name)

e the toolbar of the action, containing specific tools for editing the properties of
the action

e the content area, which shows the sub-elements of the action (see = Action

content)

action ordering number action name
icon >
/ [a][t][T][c]

toolbar
content area
*_-—____..—-"

Figure 6 — The default view mode

13.2.1.3 Only filled view mode

The only filled view mode is another ‘open’ view mode. This means that the contents
of the action (such as child actions or text elements) are fully visible. Just because the
particular action is in an open view mode, any of its children still can be iconized. In
this view mode the already filled attributes of the action are visible (the attributes with
non-empty values).

In the only filled view mode, the following information are shown (see Figure 7.):

e theicon of the action group (or of the particular action, see - Action groups and
action name)

e the ordering number of the action (see - Ordering numbers)

e the fully qualified name of the action (see = Action groups and action name)

e the toolbar of the action, containing specific tools for editing the properties of
the action

e the list of the attributes of the action which have non-empty value (see - Action
attributes)

e the content area, which shows the sub-elements of the action (see - Action
content)

action ordering number action name

icon ~ j /

[a][t][T][c]
toolbar — | event-id = 7529d6d7efebd160ab0dBcc5084b6d 7f |

content area

attribute list

Figure 7 —The only filled view mode

13.2.1.4 The full view mode

The full view mode is the last ‘open’ view mode. This means that the contents of the
action (such as child actions or text elements) are fully visible. Just because the
particular action is in an open view mode, any of its children still can be iconized. In
this view mode all the attributes of the action are visible.

In the full view mode, the following information are shown (see Figure 8.):

e theicon of the action group (or of the particular action, see - Action groups and
action name)

e the ordering number of the action (see - Ordering numbers)

e the fully qualified name of the action (see = Action groups and action name)

e the toolbar of the action, containing specific tools for editing the properties of
the action

e the list of all the attributes of the action (see = Action attributes)

e the content area, which shows the sub-elements of the action (see = Action
content)

action ordering number action name

J =

1 zs:fireevent

icon [al[t][T[c]

connection-name =
event-id = 7529d6d7efeb4160ab0d8cc5084b6d7f
event-name = / content area

attribute list /

toolbar

Figure 8 — The full view mode

This view mode provides the most information about an action.

13.2.1.5 Switching between view modes

Switching between the view modes are possible in the following ways:

e by selecting the target view mode in the action context menu (see Figure 9.)

e by double-clicking on the action header (in open view modes) or on the action
icon (in iconized mode). This operation switches from any open view modes to
the iconized view, while from the iconized view mode it switches to the open
mode configured in the Zagreus Client options, see - Graph Editor tab.

Ls:ﬁreeve t
. W — tr_.

Undeo Mowve

Redo

Copy element Ctrl+C
Paste element Ctrl+V
Find in script...

Add/change label...

Add/change comment...

Edit attributes... Ctrl+A
Add/change text in dialog... Ctrl+T
Manage goto expressions...

Open include in a new editor

Set breakpoint...

~ lconized
Default
Only filled
Full

Figure 9 — Switching between view modes

13.2.2 Basic operations

Users can perform several operations in order to create and maintain Zagreus
scripts. In this section, the operations related to the script structure are discussed.

13.2.2.1 Create

Drag-and-dropping an action from the palette is the simplest way to add one to a
script, see Figure 10. When an action is created on the canvas, it is displayed in the
iconized view, see also - Iconized view mode.

.2 Palette [
[} Selection

(= common attributes

=z £

il zalias

= e | € il zarray
- S hlowl
. “Iﬂ. (= Confluence

(= db
= excel
(= file
= ftp
(= http

P
w
W

Figure 10 — Drag-and-dropping an action from the palette

13.2.2.2 Copy

Several ways are available for copying actions. When the user presses the hotkey
Ctrl+C, and then the Ctrl+V combination, a new copy of the action is created in the top
left corner of the canvas.

The second alternative for copying actions is the Ctr/ + drag method: while holding
down the Ctrl key, the user has to drag an action to another position on the canvas.

The third approach is right-clicking on the action and choosing the Copy item from
the context menu (see Figure 11.). Then, by choosing the Paste element menu item
from the context menu of the canvas (clicking on an empty area on the canvas, see
Figure 12.), the copy of the action is created at the mouse position.

. *Untitled [1.0.0.0] (script) &2

L] . L]
z < Undo Delete

Rede

Copy element Ctrl+C
Paste element Ctrl+V
Find in script...

Add/change label...

Figure 11 — Step 1: selecting the Copy element menu item from the action context menu

@- *Untitled [1.0.0.0] (script) &2

|E| Undo Copy element

z-arra
Y Redo

Paste element Ctrl+V

Find in script...

Figure 12 — Step 2: right-clicking on an empty space and selecting the Paste element menu item from the context menu

Altough It is possible to copy actions in the XML View from one script to another,
but it is not recommended. Any kind of introduced syntax or semantic error prevents
the user from switching back to the Graph View or saving the document.

@ Info: The first and the third method can also be used between different
scripts opened in the Editor Area.

13.2.2.3 Move

Users can move actions by simply dragging them on the canvas. The simplest moving
operation is when the action remains on the same level in the XML hierarcy, thus its
action ordering number does not change.

There are two other cases of moving actions: embedding and detaching.

Embedding an action to a new parent: the user is dragging an action and dropping
it inside the area of another action, see Figure 13. In this case the moved action
becames the last child action of the other action. The action ordering number changes

accordingly.

@- *Untitled [1.0.0.0] (script) &2

[al[E][T[c]

|

zvariable zvariable

Figure 13 — Embeding Action 2 into Action 1. The ordering number becomes 1.1

Detaching a child action from its parent: the user is dragging the child action out of
the area of its parent, see Figure 14. In this case the moved action becames the last
child action of its new parent action. The action ordering number changes accordingly.

E. *Untitled [1.0.0.0] (script) &2

ElRNE

4
||

z:variable

Figure 14 — Detaching Action 1.1 from its parent. The ordering number becomes 2.

13.2.2.4 Delete

There are several ways to delete actions in the Script Editor. When any actions are
selected, pressing the Delete key deletes the selected actions from the script. Another
way is to use the Delete menu item from the action context menu. Alternatively, the
menu item Delete is accessible from the main menu bar, see - Edit menu.

13.2.2.5 Changing the order of execution

The action ordering number indicates the order of execution of the script, see -
Order of execution, result flow. The graphical arrangement of the actions does not
affect the order of execution, but it is highly recommended to arrange the actions in a
way that represents the actual processing order.

The ordering number of an action can freely be changed among its siblings (i.e. only
among actions with the same parent action), which operation does not change the
position of the actions on the canvas. When an ordering number is increased or
decreased, the ordering number of the adjacent action changes accordingly. This
operation practically exchanges the ordering number of two adjacent actions.

There are several ways to perform this operation:

e by pressing the PageUp and PageDown keys
e by the Move up / Move down menu items in the action context menu

In Figure 15., the actions are organized well visibly, but their ordering numbers are
messed up, so script execution would result in error, e.g. the action ordering number
of the db: jdbc-connection action should precede all other db-related actions.

F. *Untitled [1.0.0.0] (script) &2

] [5]3][5]

dbjdbc-connection db:begin db:sgl dbcommit

Figure 15 — Ordering numbers are messed up on the execution level

In Figure 16., the same actions are ordered properly for exection.

@- *Untitled [1.0.0.0] (script) &2

9] [5](3]]5]

db’jdbc-connection db:begin dbisgl db:commit

Figure 16 — Ordering numbers are set correctly

13.2.2.6 Comment / uncomment

The user can comment any action in order to omit it from the execution. (It is similar
to temporarily commenting code lines in programming languages.) When an action is
commented, its ordering number remains unchanged, but it is skipped from the
execution flow. Commented status is indicated by grey color. The hotkey for
commenting / uncommenting an action is Ctr1+Shift+C. The same operation can
be accessible from the context menu of the action by selecting the Comment /
Uncomment menu item.

#. *Untitled [1.0.0.0] (script) &2

5] [3][5][5

dbcjdbc-connection FelsBeEG dbsqgl

Figure 17 —Action 2 and Action 4 are commented, so only Action 1 andAction 3 will be executed

13.2.2.7 Selecting multiple actions

It is possible to select and manipulate multiple actions at the same time.

= |
1 L
z:block z-block

Figure 18 —Action 1 and Action 3 are selected

There are several ways to select multiple actions:

e Using the Rectangle selection tool
Clicking on the canvas with the left mouse button, and by dragging the mouse
pointer, a selection rectangle will be drawn. All actions inside the rectangle will
be selected.

e Using the Ctrl+left mouse click combination
Actions can be added / removed from the existing selection.

e Using the Shift+left mouse click combination
Actions can be added to the existing selection.

e Using the Shift + arrows key combination
Left clicking on the first action to be selected, then holding the Shift key and
pressing an arrow key of the desired direction at the same time.

The following operations can be performed for multiple selected actions:
e Copy

e Move
Delete

Comment / uncomment

13.2.3 Editing

In this section, operations related to various action properties are discussed. The
properties of an action are described in details in = Action attributes and = Action
content.

13.2.3.1 Attributes

Action attributes can be edited in two different ways:

e by using inline attribute editing
e by opening the Attributes dialog

Inline editing can be performed by double clicking on the name of the attribute of
the action, see Figure 19. In this case, an input text field appears. After typing the
attribute value, it can be saved by pressing the Enter key, or cancelled by pressing the
Esc key (in this case, the original value will be restored).

Inline editing is only available when the action is either in the full or in the only filled
view modes, see = The full view mode and = Only filled view mode.

alt[e]

connection-name = connection name |

from =| my-address@somehost.d| I

from-dizplay-name =

to =

cc=

bce =

rephy-to =
rephy-to-display-name =
subject =

multipart = true

Figure 19 — Inline editing of an attribute value

The Attributes dialog provides a more convenient way to manage and edit

attributes. It can be opened in the following ways:

e by selecting the Edit attributes... menu item from the action context menu

e by pressing Ctrl + A

e by clicking on the ‘a’ toolbar icon on the action toolbar

The Attributes dialog lists all the attributes of the action. Here, the user can create
new attributes, edit the values of existing ones, or delete attribute name-value pairs.

e For creating a new attribute, the user needs to click on the subsequent empty
table line and enter the attribute name-value pair in the corresponding columns.

e For editing an existing attribute, The user needs to click on the given attribute
value and enter the new value, see Figure 20.

B 1 mail:send =
a][t][T][c]

connection-name = connection nam

from = your address
from-display-name =
to =

cc=

bee =
reply-to =
reply-to-display-name =
subject = .
) ‘! Attributes b4
multipart = tru
Mame Value
connection-name connection name
- from my-address@somehost.d
mail-body

from-display-name
to

cC

bee

reply-to

reply-to-display-name

subject

multipart true

Figure 20 — Editing the value of an existing attribute

e For deleting an attribute, the user needs to click on the given attribute name and
erase the it.

The changes take place after pressing the OK button.

Some attributes values can be selected from a pre-defined list, see - Predefined
and common attributes. In those cases, the value can be chosen from the pre-defined
values via a dropdown list, see Figure 21.

B 1 mail:send EII:I
al[t][[c]

connection-name = connection nam

from = your address

from-display-name =

to =

ce = a
bce =
rephy-to =
] MName Value =
reply-to-display-nal]
erTeTis from-display-name

to
cc

multipart = true

bee
reply-to
reply-te-display-name

subject

mail:body

multipart true hd

Figure 21 — Selecting the attribute value from a dropdown list

13.2.3.2 Text content

This property sets the textual content of an action, see - Textual content. The
textual content can be edited in two different ways:

e by inline text editing
e by opening the Set text dialog

Inline editing can be performed by double clicking on the textual value of the action,
see Figure 22. In this case, an input text field appears. After typing the new value, it
can be saved by the Ctrl+Enter key combination or by clicking outside of the textbox,
or cancelled by pressing the Esc key (in this case, the original value will be restored).

Inline editing is only available when the action is in an open view mode, see - View
modes.

= [1 z:variable

al[t]re]

name = numeric-value

menitor = false

scope = local

S{number(123.456}}]

Figure 22 — Inline editing of the text content

The Set text dialog provides a more convenient way to edit the text content. It can
be opened in the following ways:

e by selecting the Add/change text in dialog... menu item from the action context
menu

e by pressing Ctrl + T

e by clicking on the ‘t’ toolbar icon on the action toolbar

The Set text dialog shows the textual content of the action in a multi-line text editor,

see Figure 23.

7 1 zwvariable

a|[t][T]c]

name = numeric-value

manitor = false

scope = local

S{number(123.456)}

23 Set text Y

Y number(123.456)]
Figure 23 — Editing the text content in the Set text dialog

13.2.3.3 Label

An action can be labeled in order to provide short useful information about its
behaviour. This is recommended for parent actions that bunch child actions that are
doing a particular functionality in the script (e.g. connecting to a database and
processing some results might be labeled as ‘db query’). A parent action can be a
z :block action for this goal. Action labels are shown in the place and instead of the
action name.

Action labels can be edited in the following ways:

e by selecting the Add/change label... menu item from the action context menu

e by clicking on the ‘I’ toolbar icon on the action toolbar

After the Set label dialog box appears, the user can specify the label, see Figure 24.
The maximum length of the label is 256 characters, and line breaks cannot be used.

28 Set label bt

z:block i Label name:

| DB Query

Figure 24 — Setting an action label via the Set label dialog box

After pressing the Ok button, the action label will be shown at the place of the

H

DB Query

original action name, see Figure 25.

Figure 25 — The action label is displayed instead of the action name after a label has been added

A label can be updated in the same ways as creating one. Deleting an action label is
possible by setting an empty action label.

13.2.3.4 Comment

An action comment can be specified in order to provide short, useful information
about its behaviour. Unlike the action label, the action comment appears as a tooltip
when the mouse cursor hovers over the action.

Action comments can be edited in the following ways:

e by selecting the Add/change comment... menu item from the action context
menu

e by clicking on the ‘c’ toolbar icon on the action toolbar

After the Set comment dialog box appears, the user can specify the comment, see
Figure 26. The maximum length of the comment is 256 characters.

H | | &8 Set comment b
I| h []
z:block | This is a comment of the zblock actinr'||

Figure 26 — The Set comment dialog box

After pressing the Ok button, the action comment will be shown as a tooltip when
the mouse pointer is hovering over the action, see Figure 27.

o

|DC|'I'hi5 is a comment of the zblock actionk

=

Z:

Figure 27 — The new comment appears as a tooltip

An action comment can be updated in the same ways as creating one. Deleting an
action comment is possible by setting an empty comment.

Warning: The comment action property can be confused with the
commenting / uncommenting action operation. They are not the same!

13.3 Action help

Each action has its own help page, where all action details are described and
examples are listed. It is accessible from the palette (see - Palette) by right-clicking
on the action name and clicking on the help menu item, see Figure 28.

2= Palette [
% Selection

[=2Z
(= Confluence 0

2 confluence:add-
attachment

2 confluencesadd-
comment

2 confluence:call
2 confluence:connection
= help Iage

2 confluence:delete-
comment

L S

= db

Figure 28 — Accessing connection help from the palette

An alternative is to right-click on an already existing action action in the Script Editor,
and selecting the Show help... option in the context menu, see Figure 29.

@- *Untitled [1.0.0.0] (script) &2 l

[1]]

x < Undo Move

Redo

lconfluence:connecti

" " Copy element Ctrl+C
Paste element Ctrl+V
Find in script...

Add/change label...

Add/change comment...

Edit attributes... Ctrl+A
Add/change text in dialog... Crl+T
Manage goto expressions...

Open include in a new editor

Set breakpoint...

~ |conized
Default
Only filled
Full

Show link from sibling
Hide link from sibling

Comment element Ctrl+Shift+C
Fit to content Ctrl+Shift+F
Fit to content (all parents) Alt+Shift+F
Move Up PageUp
Move Down PageDown

Align selected elements horizontally
Align selected elements vertically
Show help... Ctrl+H

Graph View | XML View 3€ Delete [

Figure 29 — Accessing connection help from the Script Editor

Either way, the Documentation window will be shown, see Figure 30.

¥ Documentation x
General description:
Action: confluence:connection A

Description: Defines a Confluence connection.

Required attributes: name, url, token

Attributes:
Mame Type Default-value Description
name text name of the connection
url text URL of the Confluence installation
token text the authentication token. If it is an API token, the
format is: "mailaddress:token" BASE64-encoded.
For Personal Access Token, specify the token
itself v
Examples:
<confluence:connection name="con" token="cG¥%¥%¥¥¥kwrrwgogo==" ~

url="httpe://sample.atlassian.net/wiki" />
<confluence:create-page connectlion-name="con" space="SAMPLESPACE" page-
title="Trial page"><body>This is a trial page</body></confluence:create-page>

<confluence:connection name="con" token=TcG¥¥¥errewkegogg=="

T =M he s e F S mmn T m me T mmnd mm mme fend LA N o —MonumTEODAATN

Figure 30 — The Documentation window of the confluence:connection action with sample configurations

13.4 Formatting

There are several operations related to the formatting of the actions. Some of them
affect actions on the same level (actions with the same parent), while some of them
change the size of the parent action according to its children positions.

13.4.1 Alignment operations

Multiple actions can be aligned both horizontally and vertically. Align options can be
found in the context menu of multiple action selection (after selecting multiple actions,
the user needs to right click on one of them).

13.4.1.1 Align selected elements horizontally

By choosing the Align selected elements horizontally menu item from the context
menu, the selected actions will be aligned horizontally. For example, the actions shown
in Figure 31. will be aligned as shown in Figure 32.

Figure 31 — Selecting multiple actions on the same level

H| | H
222

zsicancel zs:backup zs:copy

Figure 32 — Actions aligned horizontally

Note that the order of selecting multiple actions determines the alignment result.
The action selected first will be the first action in the result, the subsequently selected
action will be the second one, and the others respectively.

13.4.1.2 Align selected elements vertically

By choosing the Align selected elements vertically menu item from the context
menu, the selected actions will be aligned vertically. For example, the actions shown
in Figure 31. will be aligned as shown in Figure 33.

|

i

zs:cancel

i

zs:backup

i

zscopy

Figure 33 — Actions aligned vertically

Note that the order of selecting multiple actions determines the alignment result.
The action selected first will be the top-most action in the result, the subsequently
selected action will be the second one, and the others respectively.

13.4.2 Size operations

Action size operations affect the size of the particular action related to its content.

13.4.2.1 Fit to content

The Fit to content operation changes the action size up to the minimum size that the
child actions take up. It makes sense only in open view modes, see = View modes.
The Fit to content operation can be performed in the following ways:

e by selecting the Fit to content menu item from the action context menu
e by pressing Ctrl + Shift + F

For example, the size of Action 1 shown in Figure 34. will be changed as shown in
Figure 35.

[al[t1[T][c]

al |a

zs:backup ZsIcopy

B

zs-cancel

Figure 34 — Before performing a Fit to content operation on Action 1

[al[t1[T[c]

2| |a

zs:backup Z5ICopy

B3

zs-cancel

Figure 35 — After performing a Fit to content operation on Action 1

@ Info: When an action view mode is changed from a closed to an open
view mode, the Fit to content operation is automatically performed.

13.4.2.2 Fit to content (all parents)

This operation performs the same as the Fit to content operation (see above). The
only difference is that it recursively resizes all the parents of the original parent action
in the same manner, so the fitting the content is propagated up to the z: root action
(the canvas level).

The Fit to content (all parents) operation can be performed in the following ways:

e by selecting the Fit to content (all parents) menu item from the action context
menu
e by pressing Alt + Shift + F

For example, performing this operation on Action 1.4 in Figure 36. will result in
an arrangement shown in Figure 37.

7 1 z:block
ElIRINIE
y | y | ~ [14 z:block =[x
[A= [£ BIRInE
zstbackup zs:copy 1.4.1
1.4.2
13 mail:connection
mail-send
zs:cancel

Figure 36 — Before performing a Fit to content (all parents) operation on Action 1.4

1 z:block
[al[t][T][]
y | y | ~ 14 z:block
- = AIRnE
zs:backup Zs:copy 1.4.1
1.4.2
13 mail:connection
mail-send
zs-cancel

Figure 37 — After performing a Fit to content (all parents) operation on Action 1.4

13.5 Additional displaying options

There are special cases when action opacity or the relations of actions are displayed

in a different way than usual. In this section, these displaying options are discussed in
details.

13.5.1 Outside displaying option for a child action

By default, the parent-child action relationship is displayed as the child action being
embedded into the content of the parent action. In some cases, switching between an
open and a closed view mode (see - View modes) of a large child action inside the
content area of the parent action is not convenient, see Figure 38. In this case, the
alternative display mode of embedment can be useful, see Figure 39.

The child action is displayed outside of the parent action, while a small connector
node indicates its original place in the content area of the parent action. These two are
connected by a black arrow pointing from the child action to the connector node.

BT[]

E————— &

ElRnE

[name = backup_dir |

DT]| zstbackw
[BI[TI[[]

| test-expr = startswith(lower(server05s), "win") | 13
[~ 1444 zihen NN 1112 zelse NN IE'
[allt][T][e] ElRiniE

fadmin/=-filesystem-=/backup.ink Jadmin/=-filesystem-=/backup

zsrunscript

Figure 38 — A parent action having a large child action

|~ M zvariabe
ERINE BIRNE

[name = backup_dir |

LB e
A ETEEE |
[al[t][L][c] o
| test-expr = startswith(lower(server0s), "win") |
zs:backup
[EI[TIT[c] BIRNE LR
fadmin/=-filesystem-=/backup.Ink ladmin/=-filesystem-=/backup .
o
zsIrunscript

Figure 39 —Action 1.1 is now displayed outside of Action 1

To achieve this alternative displaying option, the user needs to do the following

steps:

1) select an action

2) right-click on the embedment handle at the top-right corner of the main selection
frame (see Figure 40.)

3) drag the handle with the mouse pointer to an empty area of the canvas

" embedment handle

Figure 40 — The embedment handle of the selected action

13.5.2 Showing sibling links

There is an option to display execution order between two sibling actions for visually
emphasizing the execution flow, see - Order of execution, result flow. If the user
select the Show link from sibling menu item from the action context menu, a red arrow
is shown from the previous sibling action to the selected action, see Figure 41.

HEE

zvariable z-foreach

Figure 41 — Sibling link is shown between two subsequent actions

To hide a siblink link arrow, the user has to select the Hide link from sibling menu
item from the action (the one where the arrow is pointing to) context menu.

There is an option for the behaviour of the arrows in case of reordering affected
actions, see - Changing the order of execution.

13.5.3 Opacity

There is an option to set the opacity of overlapping actions. The opacity value can
be set from 0 to 100, 0 meaning full transparency and 100 meaning full opacity. By
default, the opacity value is set to 70.

ElRNIE

[alias = alias_name |
E

z:bl

Figure 42 — Opacity value is set to 50 (semi-transparent)

13.5.4 Displaying goto expressions

By using goto expressions, the user can change the order of execution (see - Order
of execution, result flow). Goto expressions can be displayed in the Script Editor.

Next, adding goto expressions will be demonstrated through an example. The
starting state of the sample script is shown in Figure 43.

|~ [2] zblock NN
EBRNE ERnE al[tI[[E]
[name = x | message = value is too large
S{number(1}} status = error
label = exit_too_large

[al[t][T][<]
o y al[t][L][c]
value S{x} is in the right range =
message = value is too low
status = error
label = exit_too_low
al[t][T][e]

message = value is in the right range
status = finished

Figure 43 — The script before adding goto expressions

One important condition to create a goto expression is having a label attribute at
the target action. In Figure 43., Action 5andAction 6 will be used as target actions,
therefore they have their label attributes set already.

By right-clicking on Action 2 and selecting the Manage goto expressions... menu
item from the action context menu, the Manage goto expressions dialog box appears.
Clicking on the Add... button opens a new input dialog box (Goto parameters), see
Figure 44. In this dialog box, the user has to specify the goto condition and select the
target label of the goto expression to be created. Notice that only labels belonging to
the same sibling level as the selected action are listed!

‘! vlanage goto EXpressions

Current goto expressions:

Goto condition Goto label

Add...

Edit....

Delete

¥ Goto parameters d

Save Cancel

Condition: | "

Goto label: | exit_too_large

0K Cancel

Figure 44 — Specifying a goto expression

Multiple goto expressions can be added for the same action, see Figure 45.

‘! vlanage goto EXpressions

Current goto expressions:

Goto condition Goto label it

x=100 exit_too_large

Add...

Edit...

Delete

8 Goto parameters x Cancel

Condition: |x<[1 | i

Goto label: | exit_too_low

Figure 45 — Specifying the second goto expression

All the current goto expressions are displayed in the Current goto expressions table,
see Figure 46. Already specified goto expressions can be edited or deleted by using the

Edit... and Delete buttons, respectively, while they can be reordered by using the up
and down arrows.

a Manage goto expressions >

Current goto expressions:

Gote condition Gote label i

=100 exit_too_large

x<0 exit_too_low
Add...
Edit...
Delete

Save Cancel

Figure 46 — Showing the list of goto expressions

After pressing the Save button, magenta colored arrows will be shown and indicate
the direction of the newly created goto expressions, see Figure 47.

[~ [2 z:block NN
[a][t][T][c] [a][t][T][c] a[t][1][c]
[name = x |

message = value is too large
Sfwmberct || [T # || status = error

label = exit_too_large

"
[al[t][T][e]
- - al[t][L][c]

value 3{x} is in the right range message = value is too low
status = error
label = exit_too_low

al[t][L][c]

mezsage = value is in the right range

status = finished

Figure 47 — The script after adding the goto expressions

For displaying the most comprehensive visual aid for the execution order of actions,

sibling links (see = Showing sibling links) might be switched on for specific actions, see
Figure 48.

~ 1 zvariable |~ 12 z:block NN
[allt][1][e] [allt][T]]e] al[t][T[e]
[name = x | S message = value is too large
sumber(t | | [T + || status = error
label = exit_too_large
A .
o
[alt][T][c]
value 3{x} is in the right range al[t[][]

message = value is too low
status = error

label = exit_too_low

al[t][c]

message = value is in the right range
status = finished

Figure 48 — The script showing the sibling links as well

13.5.5 Attribute as child element

There might be cases when a value of an attribute is too complex for a simple textual
attribute value. There is an option for loading an attribute value as a child element of
the parent action. Figure 49. shows a z : foreach action with an in attribute filled with
a list of values.

a|[t][1][e]
key = x

parallel = 1
monitor-counter = false
in= 5{['one', "two', 'three', 'four']}

al[t][1][c]

level =

nul-format = null

Ex

Figure 49 — An example for a z: foreach action with in attribute

If the user wants to use a lot of items in the list, reading them dynamically (e.g. from
a file) could be a good solution. However, because of the fact that an attribute value
can only be specified as a simple text value, it is not possible. One solution would be to
usea file:read action with an alias attribute, and refer to the alias in the in attribute

of the z: foreach action. A more convenient way to do the same is to use the View
attribute as child element menu item from the attribute context menu, see Figure 50.

al[t][lc]

key = x
parallel = 1

monitor-counter = false

in = §{['one’, 'two’, 'three',

<< Undo Resize
Redo
a][t][T][c]
level = Paste element Ctrl+V
nul-format = qull
ox Find in script... Ctrl+Alt+F
Edit attributes... Ctrl+A

Encrypt password

Paste path

Show path in status line

View attribute as child element

Figure 50 — The View attribute as child element menu item for the in attribute

This operation converts the in attribute into a z: in child action. As seen in Figure
51., the original attribute value became the textual content of the child action.

|~ @ zforeach
al[t][T][c]
key = x

parallel = 1

moniter-ceunter = false

ElRINE a|[t][1][e]
%{[one’, two', three', fourT} level =
nul-fermat = null
Sx

Figure 51 — The resulting z : in child action

The user now needs to simply delete the textual content and replace it with an
action with a more complex output, e.g. a file:read and a z:parse action, see
Figure 52.

~ Wl zforeach
al[t][T][c]
key = x

parallel = 1

Ioop-counter =
monitor-counter = false

ElRINIE al[tI[t]le]
_ . level =
nul-fermat = null
row-separator = \n Ha1

column-zeparator = \t

header = false

&l 1.1.1.1 filerread
al[t][T][E]

filename = fadmin/simple_list
binary = false
encoding = UTF-8

Figure 52 — An example for a more complex z : foreach action with z: in child element

The z:foreach action now iterates over the lines of the content of the
/admin/simple 1list file.

Note that the child actions generated this way can be converted back into attributes
by selecting the View element as attribute menu item from the action context menu.
However, using this is not recommended if the child action contains anything else than
textual content, as only textual content can be copied back into the attribute value.

13.6 Special operations

13.6.1 Find in script

The user can search in the content of the script by selecting the Find in script... menu
item from the action context menu. It opens the Search in script content dialog box,
see Figure 53. The search will be applied for the selected action and all of its child
actions recursively; the header of the dialog box also indicates the scope of the search.

If the user wants to search in the whole script, right-clicking on the canvas and
selecting the same menu item from the context menu should be performed.

2 Searchin script content: [1] fileiread >
Search for: | binary | Seendn i

Options [text content [action name

[Case sensitive attribute name [Miakel

Ignore commented actions [attribute value [cemment

Ordering Mame Action name Text content Attr, name Attr, value Label Comment

1 fileiread - - yes

Figure 53 — The Search in script content dialog

The user needs to specify the search string in the Search for textbox.
In the Search in area, the scope of the search can be specified. The following
checkboxes specify the parts of the script in which the search string should be looked

after:

e text content: in the text content of the action, see > Textual content

e attribute name: in the name of the attributes, see - Action attributes

e attribute value: in the value of the attributes, see - Action attributes

e action name: in the fully-qualified name of the actions, see - Action groups and

action name

e /[abel: in the label of the actions, see - Label
e comment: in the comment of the actions, see - Comment

In the Options area, two search options can be specified:

e (ase sensitive: when checked, a case sensitive search will be performed.
e Ignore commented actions: when checked, the commented actions (see —
Comment / uncomment) are excluded from the search.

By pressing the Search button, the search results are shown in the table in the lower
half of the dialog box. The table shows the following columns:

e Ordering: the ordering number of the action in which the search string was found,
see = Ordering numbers

e Name: the fully-qualified name of the action in which the search string was found,
see - Action groups and action name

e Action name: it indicates whether the search string was found in the action name

e Text content: it indicates whether the search string was found in the text content

e Attr. name: it indicates whether the search string was found in the attribute name

e Attr. value: it indicates whether the search string was found in the attribute value

e Label: it indicates whether the search string was found in the label

e Comment: it indicates whether the search string was found in the comment

13.6.2 Set breakpoint

Setting breakpoints for debugging can be useful before starting a debug session (see
- Starting a debug session) in the Script Editor. This operation can be accessed by
selecting the Set breakpoint... menu item from the action context menu, which opens
the Set breakpoint dialog, see - Breakpoints window.

This way, the user does not need to set the breakpoints after each debug session
start, but the breakpoints are already defined and saved into the Zagreus script.

The created breakpoints are displayed in the Breakpoints extension window, see -
Breakpoints window. Just like during a debug session, the user can edit and delete the
defined breakpoints in this window.

13.6.3 Encrypt password

The user can directly encrypt the value of a password attribute. This encryption is
the same as achievable in the Password encryption dialog box, see = Tools menu. The
Encrypt password menu item is accessible in the attribute context menu only for the
password attribute, see Figure 54., for all other attributes it is greyed out.

AIRIIE

name = connection_name
server = sample_host
port = 21

user = ftp_user

password = sample password
secure = <) Undo Resize
passive : Redo

encoding

Paste element Ctrl+V

Find in script... Ctrl+Alt+F
Edit attributes... Ctrl+A
Encrypt password

L Paste path
Show path in status line

View attribute as child element

Figure 54 — The Encrypt password menu item in the attribute context menu

After the operation is performed, the encrypted password will appear in the value
of the cpassword attribute, see Figure 55. The original password attribute will be
empty.

I 1 ftprconnection
al[t][1][e]

name = connection_name

server = sample_host

port = 21

user = ftp_user

cpassword = #-83250#68426401812281128- 938534 - 508 342- 20#-42-120892%-57
secure = false

passive = false

encoding = [SO-8859-1

Figure 55 — The cpassword attribute holds the encrypted password value

13.6.4 Paste path

Once the user selected the Copy path operation in the Zagreus Browser window (see
- Copying the resource path), the path copied to the clipboard can be pasted to an
attribute value. For this, the user has to select the Paste path menu item in the
attribute context menu, see Figure 56.

al[t][T][c]
path = I
fienan <2 Undo Move
details Redo
recurs
Paste element Chrl+V
log=t
Find in script... Ctrl+Alt+F
Edit attributes... Ctrl+&
Encrypt password
Paste path

L Show path in status line

View attribute as child element

Figure 56 — The Paste path menu item in the attribute context menu

13.6.5 Show path in status line

There is a special feature for the attributes filename and id. When they contain the
ID of a resource, the Show path in status line menu item is accessible in the attribute
context menu, see Figure 57. Using this feature will show the full path of the resource
in the status line of the Zagreus Client, see - Zagreus Client.

#l 1 file:read
a|[H][1[E]
filename = 68fb0d56e3b34556bb28 . .
) Undo Show path in status line
binary = false
encoding = UTF-8 R
log = true Paste element Crl+V
Find in script... Ctrl+Alt+F
Edit attributes... Ctrl+A
Encrypt password
Paste path

Show path in status line

View attribute as child element

Figure 57 — The Show path in status line menu item in the attribute context menu

13.7 Configuration options

Various settings for the Script Editor can be changed in the Options dialog box (see
- Options dialog), which can be opened by selecting the Options... menu item in the
Tools menu in the main toolbar. Two tabs on the dialog contain settings related to the
Script Editor: the Script Editor and the Palette tabs.

14. Debugging in the Zagreus Client

Just like any fully-featured programming language framework, Zagreus offers
debugging functionality for script execution. For using this functionality, the user needs
to start the script in debug mode, and open it in the Debug Editor in the Zagreus Client.

14.1 Features

The Debug Editor of the Zagreus Client provides various features for the user:

e Controlling script execution
Controlling basic script execution by the Resume, Step and Stop tools

e Monitoring actual state of script execution
Monitoring the actual point where the execution is suspended

e Handling breakpoints
Specifying breakpoints for each action and fine-tune them. Managing the
breakpoints is possible in the Breakpoints window

e Watching script variables
Monitoring the actual value of script variables in the Watch window

14.2 Debugging concepts and terms

Debugging is the process in which the user can identify and fix problems for a script.
During a debugging session, the execution of the script is often paused or suspended
at so-called breakpoints in order to check variable values and the actual execution flow
of the script in real-time.

Some basic concepts of debugging in the Zagreus System are:

e Debug session
A debug session is a special type of script execution, in which the user can control
the execution process and closely inspect the actual state of the job. In almost all
cases the debug session is suspended at a breakpoint (see below). When the
debug session is over, the status of the script is the same as if it was executed in
a normal way.
When a debug session is started, it immediately suspended before the first action
— this is the only way the user can open it after initiating an execution in debug
mode.

® Running in debug mode

In Zagreus, all scripts can be started in the so-called debug mode. This execution
type is very similar to the normal script execution (see - Initiating script
execution), but the execution of the started job is suspended at the very
beginning of the script. This allows the user to open the script in the Debug Editor,
which provides controls over the debug session of the started script.

Runningin debug mode puts the job into the queue (see > Queue) just like during
a normal initiation of execution, and then when a Zagreus Worker starts
processing it, a debug session is automaticcally opened for the job.

e Breakpoints
Breakpoints are specific points in the script where script execution is paused. A
breakpoint is linked to a specific action. A breakpoint can be fine-tuned by setting
its position in action. Its possible values are: Before action processing, After
attributes processing, After children actions processing and After action
processing.

Execution controlling action: Resume

From a suspended state of the debug session, the user can continue the execution
of the script with the Resume tool. The job execution will suspend again at the
next breakpoint (or the script will be executed till its end, if there is no any).

Execution controlling action: Stop
The user can immediately stop the debug session with the Stop tool. The status
of the job will be Cancelled in this case.

Execution controlling action: Step to next
The Step to next tool is a special controlling tool, by which the user continues job
execution, and suspends again at the next sibling action.

Inspecting or watching variable values

By using the Watch window, the user can real-time monitor the actual values of
the specified watching variables. Checking these values is the main purpose of
the debugging session itself, and it offers a truly useful possibility for identifying
the problems of the particular script.

14.3 Starting a debug session

As it was mentioned earlier, the script should be executed in debug mode in order
to start a debug session. The debug session can be considered as an additional layer
over the normal script execution, the suspended-type execution and the real-time
monitoring of the execution flow and the watching variables being the only differences.
After the end of the debug session, the job will be found among finished jobs just as if
it had been executed in the normal way.

In order to execute a script in debug mode, the user needs to right-click on the script
in the Zagreus Browser and select the Run in debug mode menu item from the context
menu, see Figure 1.

wl. sample sc . . .
B script versi b Open in Script editor
] temp %] Open in XML editor
] templates =/ Open in Simple text editor
il send_mail
[.autorun Set script variables...

|2 sendscripts ﬁs‘« Run in debug mode
=] .serverautorul {3 Run script

Figure 1 —The Run in debug mode menu item in the Zagreus Browser

Once the execution of the newly-created job was started, it is displayed in the Active
Jobs window with the job status Debugging, see Figure 2.

& Active jobs [Zagreus Demo Server] 52 | B Active logs [Zagreus Demo Server]| ¥ Execution engines [Zagreus Demo Server]

Job 1D UserD Script path Version Begin exec. time End exec. time Status

ddd495a2-3adb-4822-ach0-2e35865fdf0c 1 fadmin/scripts/sample_script 1.0.0.1 13.10.2023, 10:10:18 n/a Debugging

Figure 2 —The job of sample script isin Debugging status in the Active jobs window

The job is also shown in the the Execution Engines window with the same job status,
see Figure 3.

Waorker information Worker-controller logs

‘Worker Controller Workerid Status Enabled Started CPUcores Jobid Script Job status Free mem.
~ Worker Controller 1 Running 13.10.2023, 09:45:16
1 ldle yes 13.10.2023, 09:43:17 6 4149 MB
2 Busy yes 1310.2023, 09:45:29 6 ddd495a2-3adb-4822-ach0-2e358653fdflc /admin/scripts/sample_script [1.0.0.1] Debugging 381,9MB
3 ldle yes 13.10.2023, 09:45:32 6 3248 MB
4 Idle yes 13.10.2023, 09:4533 6 96,7 MB

Figure 3 —The job of sample script isin Debugging status in the Worker information window

The debug session has an implicit breakpoint before the first action, to allow the
user to open it in the Debug Editor and to control the execution process of the job from
the beginning. The job status Debugging is a suspended state: the processsing of the
job is paused before the execution of the first action, and at all breakpoints in the
further execution flow.

At this point, the user can open the job (the debug session) in the Debug Editor by
right-clicking on the job in the Active jobs window or in the Execution Engines window,
and then selecting the Open script in debug editor... menu item from the context menu,
see Figure 4. and Figure 5.

fadmin/scripts/sample_script [1.0.0.11 Debuaagina 2135 MEB 256 MB

Enable worker B
Disable worker 1B
Stop worker &
Restart worker

Cancel job

Cancel all jobs...

Start new worker...

Open script in debug editor...

Figure 4 — The Open script in debug editor... menu item in the Active jobs window

fadmin/scripts/sample_script IL OO 13 10 9023
Open script in debug editor...

Open script
Cancel job

Cancel all jobs...

Figure 5 — The Open script in debug editor... menu item in the Worker information window

The script — the debug session associated with the job — is opened in the Debug
Editor, see Figure 6. The functionality of this editor is discussed in details in the next
chapter.

l€lala)¢e pa|UE E B O o 3 m % stating.. |

:ﬁ? sample_script [1.0.0.1] (debug mode) 2

AlRmE |
[testexpr= | [E
Tiog]| i
] 2
211 —
z:else
z:log
#l 4 fileread [
a][t[T][c]

filename = fadrmin/<-filesystern-> /newlogfile.txt

binary = false

Figure 6 — The script / job opened in the Debug Editor

14.4 Debug Editor

The Debug Editor is basically a Script Editor with some further functionality to allow
script debugging. This mode does not contain the palette, because the script should
not be modified while it is under execution. On the other hand, it provides several
additional tools and functions compared to the Script Editor.

One should not forget about the conceptual difference between the two editors:
the Script Editor is designed strictly for editing scripts, while the Debug Editor is only
for handling a debug session: the Debug Editor is showing the currently running
(debugging) job for the particular script. The reason why the Debug Editor looks very
similar to the Script Editor is that it is very convenient for the user to see the same
format of the script for following the execution flow, monitoring the watch variables
and setting the breakpoints.

The Debug Editor is not an ’editor’ in the conventional way. It is an interface for a
currently running debug session.

14.4.1 Main toolbar

The main toolbar of the Debug Editor is the same as of the Script Editor, but the
usual tools (Save, Save as..., Save new version, etc.) are inactive. The following
additional tools are, however, available in the main toolbar:

U 2. @ %) starting.. [=

/

Resume tool Step next sibling Stop tool Status monitoring

tool tool

Figure 7 —The tools for the Debug Editor in the main toolbar

e The Resume tool:
By using the Resume tool, the job execution can continue from a suspended state
until the next breakpoint or the end of the script.

e The Step to next sibling tool:
By using the Step to next sibling tool, the job execution continues from the
currently suspended state to the next sibling and there it is paused again.

e The Stop tool:
The Stop tool immediately stops the debug sesssion. The job will be canceled and
no other tool can be used from this point onward.

e The debugger status monitoring tool:
This is an active textbox tool, which monitors the actual execution state of the
debug session. Its possible values are: starting, finished, and the current action
number where the execution process is suspended.

14.4.2 Debug Editor and the execution workflow

The execution is paused most of the times during the debug session. When the
session is suspended at a breakpoint, the action for which the particular breakpoint
was set is marked by a red header, see Figure 8.

ill[2 file:dir

al[t][1][c] al[t][1][c]

name = processed path = fadmin/scripts

monitor = false detailz = false

scope = local recursive = false z-foreach
S{number(0)}

[allt][T][e]

|te3t—expr = processed > 0

~ 42 zelse NN

4.2.1
z:then

7 exit

Figure 8 — The current action where the processing is suspended at is marked by a red header

Also, the action ordering number of this action is shown in the status monitoring
tool on the main toolbar.

b 2. ®%42 |

Figure 9 — The status monitoring tool is displaying the action ordering number

14.4.3 Action context menu

In the Debug Editor, only the Set breakpoint.. menu item is displayed in the action
context menu (which opens by right-clicking on an action).

ki

file:re
—N

Set breakpoint...

Figure 10 — The Set breakpoint... menu item in the action context menu

This menu item opens the Set breakpoint dialog box, see Figure 11.

8 Set breakpoint X
Action number |4
Pesitien in action | Befere action processing ~
Suspend

Figure 11 — The Set breakpoint dialog box

Here, the user can specify a breakpoint for the debug session. The following fields
are available on the dialog:

e Action number

The action ordering number for the breakpoint. It is non-editable.

e Position in action
According to the process how an action is executed (see - Execution of an
action), the breakpoint position can be fine-tuned here, see - Debugging
concepts and terms. Possible values are: Before action processing, After

attributes processing, After children actions processing and After action
processing

e Suspend
By default, job execution is paused at every breakpoint, and for these cases the
Suspend checbox should be checked. However, if the breakpoint is in a loop, and
after the first check it is not needed anymore (or not needed for a certain
execution flow branch), it can be unchecked, so the breakpoint will not suspend
the execution process.

After pressing the OK button, a new breakpoint is added to the action. Existing
breakpoints can be viewed and deleted only in the Breakpoints window, see below.

14.4.4 Breakpoints window

The Breakpoints window is an extension window for the currently active Debug
Editor (and the currently monitored debug session). It maintains a list of breakpoints
specified for the current session, see Figure 12.

The following columns are defined for the table displaying the breakpoints:

e Ordering
The action ordering number where the breakpoint was added to, see - Ordering

numbers.

e Action
The fully qualified name of the action, see = Action groups and action name.

e Position
The breakpoint position within the action, see - Debugging concepts and terms.

e Suspend
Whether the breakpoint pauses the execution of the job.

b= Qutline | % Attributes | ©a Breakpoints 52 | Watch

Ordering Action Position Suspend
3 zlist Before action processing yes
4 file:read After attributes processing yes

Figure 12 — The Breakpoints window

A context menu can be opened by right-clicking on a selected breakpoint, see Figure
13.

Ordering Acticn Position Suspend

3 zlist Before action processing yes

i4 file:read After attributes processinn aras :
Edit breakpoint

Delete breakpeint

Figure 13 — The context menu of the items in the Breakpoints window

Two menu items are available in the context menu. If the user selects the Edit
breakpoint menu item, the same Set breakpoint dialog box appears as by selecting the
Set breakpoint menu item from the action context menu, see Figure 11. The Delete
breakpoint menu item deletes the selected breakpoint.

14.4.5 Watch window

The Watch window is another extension window for the currently opened Debug
Editor and the attached debug session, see Figure 14.

0= Outline | % Attributes | ®g Breakpoints |5 Watch &2

Variable Value
X 2

Figure 14 — The Watch window

The watch window is empty by default. The user needs to specify a variable or an
engine expression in the Variable column by simply clicking on the first empty line in
that column and type the expression or variable in the text field. After pressing Enter,
the specified input is evaluated, and its result (if any) is displayed in the Value column.

Any kind of valid engine expression can be typed in, not just simple variable names.
If the specified expression cannot be evaluated yet, the result remains empty until it
can have a value. The $ and the ${} formats should not be used here, the processing
engine expects the input format without these qualifiers.

For example, in Figure 15., variable x is evaluated successfully at the current point
in execution, but variable y does not have a value yet, so its value is empty. The
expressions 2+2 and date can be properly evaluated at any point in the script, so the
values are filled immediately after the user typed them in.

0= Outline | %5 Attributes | ©g Breakpoints |9 Watch 52

Variable Value

X 2

2+2 4

date 2023-10-16

Y
Figure 15 — Various engine expressions and variables can be specified in the Watch window

There are several use cases for monitoring the watch variables in a debug session:

e Checking the value of the result of an action
When there is a result of an action which is used in the further execution process
as a variable (e.g. created and named by an alias attribute), the user can type in
the variable name after the action has been executed at a suspended breakpoint.
It is an easy way to check a sub-result in the execution logic.

e Checking a particular variable and the changes of its value during execution:
If there is a variable (in most of the cases defined by a z:variable action) that
the script is using from the beginning till the end, or in a loop, the changes of the
value of this variable can be monitored througout the whole execution. The user
types the variable name right after the debug session is opened in the Debug
Editor, and checks its changes when stepping the debugger from breakpoint to
breakpoint (or from action to the next sibling).

14.5 Best practices

e Using a reference to result attributes
It is possible to watch the result attributes of an action in the format of
namespace + _ + action name (e.g. file dir). The user can use this reference
in the Watch window after an action has been executed, and it is valid until it is
overwritten by another action of the same fully qualified name (e.g. another
file dir action).
Example:

0= Outline | % Attributes | 9 Breakpoints |51 Watch 53

Variable WValue

[rowent: 3, execution_time:d3]

Figure 16 — The result attributes of the last executed file:dir action are shown in the Watch window

e Setting the maximum running timeout
Because the debug session is a special case of normal script execution, the same
timeout values are applied to the job of the debug session as if it was executed in
a standard way. Hence it is recommended to set the maximum running timeout
large enough, see - List of execution options.

15. Initiating script execution

Any Zagreus script can easily be executed from the Zagreus Client (see - Zagreus
Client). In addition to this, Zagreus also has powerful automated processes and script
executing features. Making sure that the IT operations are started at the proper time
or are activated by the required event is crucial for the automation of such activities.
Zagreus Subscriptions allow processes to be scheduled, started at a given time, or
triggered by another task, depending on the requirements.

15.1 Overview

Besides manual execution, script executions can be triggered by specific events as
well, such as specific time instances (e.g. every Monday at 10:00 AM), fire events or
OS-based events such as the deletion of a file from a specific folder. To handle such
events for script execution, event-type resources have to be created. Examples for
event-based resources are time schedules (defining a set of time instances when script
execution should be triggered), database watchers (monitoring database tables for
satisfying specified conditions, such as the number of rows returned by a specific SQL
query), or file triggers (triggered by certain file manipulations in a specified OS folder).
Choosing the right event-based resource for an actual use case is a key step in
automating processes.

Next, if the condition defined in the event-type resource (if any) is satisfied, it
triggers the associated script or scripts. For this, in Zagreus the so-called subscriptions
are used, which link the event-type resource with a script. Whenever the event-type
resource is actived, the subscriptions linked to it will be active as well active, and the
execution of the corresponding scripts will be triggered. The subscriptions are stored
in the local database. In general, any subscription defines the link between a script and
an event-type resource, allowing to realize a many-to-many relation between them: an
event-type resource can start multiple scripts and a script can belong to multiple event-
type resources as well.

There are also cases where automated script execution happens without a
subscription. For example, script execution can be initiated by another script using the
zs:runscript action, or special events such as ‘server autorun’. See also - Special
eventsSpecial .

15.1.1 Manual execution

Zagreus offers several methods for manual script execution. Using the Zagreus Client
is the most common way to execute scripts (see - Manual script execution). There are
also command-line executables in Windows and Linux environments for firing events,
running scripts, and other administrative tasks (see - Execution from the command-
line client). Another convenient interface for running scripts is the Zargeus HTML
application (see = Execution from the Zagreus HTML Application).

In addition to these, execution of Zagreus scripts is also possible by using web service
calls from other platforms — such as Oracle, MSSQL database environments or the
Niota application. (For web service calls, see - Execution from external systems).

15.1.2 Execution by event-type resources

The other type of script execution happens via using event-type resources. The types
of event-type resources are as listed below:

e event schedule

When an event schedule is activated, it simply triggers the execution of the
subscribed scripts without evaluating any conditions. Triggering the event
schedule can be done by using the action zs:fireevent, using the Zagreus
command-line client (see = fireevent script), using the Zagreus HTML Application
(see = Fire event tab) or manually in the Browser window of the Zagreus Client
(see = Operations for event-type resources). Event schedules can be created and
edited in the Zagreus event schedule editor of the Zagreus Client application, see
- Event schedule

e time schedule
A time schedule represents a set of time points at which the schedule is activated.
Time schedules cannot be fired manually. Time schedules can be created and
edited in the Zagreus time schedule editor of the Zagreus Client application, see
- Time schedule.

e mail watcher
A mail watcher regularly polls a target e-mail server to check the content of an
inbox. It is triggered when the specified condition (usually the existence of a
specified email) is evaluated as true. Mail watchers can be configured and edited
in the Zagreus mail watcher editor of the Zagreus Client application, see - Mail
watcher

e database watcher
A database watcher regularly polls a target database server. It is triggered when
a specified condition (typically referring the result of an SQL query) is evaluated
as true. Database watchers can be configured and edited in the Zagreus database
watcher editor of the Zagreus Client application, see - Database watcher

e file trigger
A file trigger is continuously monitoring some part (e.g. a folder) of the Zagreus
file system. It will be triggered when a specific file event (such as file creation,

modification or deletion) occurs. File triggers can be configured and edited in the
Zagreus file trigger editor of the Zagreus Client application, see = File trigger

In addition, there are special triggers that are mostly used for error handling and
administrative tasks.

The execute_script_on _error and execute _script_ on _cancel are script execution
options (see = List of execution options). If the particular script ends with error or
cancelled status (see = Job lifecycle), the script specified by these options is executed.

Furthermore, scripts can be automatically executed when a particular user logs in
with the Zagreus Client application, or when the server starts up. To configure these,
the scripts for automatic execution have to be listed in the files .autorun and
.serverautorun, respectively, see = Script execution by autorun configuration files.

15.2 Execution options

Script execution can be fine-tuned by so-called execution options, which are specific

settings that control how execution should be performed, or specifying details for

other execution features. Execution options are applied only for a specific job, not the

script itself.

15.2.1 Declaration levels

In Zagreus, execution options can be declared on several different logical levels.

These logical levels are:

server
This level defines the most general scope of option declarations. The user needs
to set the server level options in the configuration of the Zagreus Server, see >

Server-level execution options.

worker

This level is only for the execution option log_level (for compatibility reasons only,
because of the former engine.loglevel setting).

The user needs to set this worker level option in the configuration of the Zagreus
Worker, see - Worker-level execution options.

owner
This level serves for option declarations specific to the user or group which owns
the actual script whose execution is initiated. The user needs to set the owner
level options by using the Set user variables and options... or Set group variables
and options... menu items in the Zagreus browser window in the Zagreus Client,
see - Context menu of a user node and = Context menu of a group node.

script

This level serves for option declarations of the actual script whose execution was
initiated. Options on this level can be set as script options (see = Setting script
variables and options). However, the options set for subscriptions (see -
Creating a new subscription) override the options set for the script. The same
option overriding also happens in case of any webservice calls (such as calls from
the Zagreus HTML Application or from the Zagreus command line) or when the

user set execution options by zs:option child elements in a zs:runscript
call.

15.2.2 Precedence order for resolution

The different levels that Zagreus options can be declared on have a specific
precedence. The same option set on different declaration levels eventually will be
evaluated, using a specific order of precedence. Then the evaluated value of the option
will be used for the proper queuing mechanism for the job.

The order of resolution is the following (from the lowest to the highest priority):

e default (implicit level)
e server
e worker
e owner

e script

The first logical level (default level) is an implicit level meaning that all options have
a default value.

An example for option resolution, when the priority execution option is defined on
the following levels:

e on the server level priority is set to 50

e on the owner level for the user test, priority is set to 30

e on the owner level for the group public, priority is set to 70

e on the script level for the script sample_script, priority is set to 10

The value of the execution option priority is resolved as:

e priority=10
for the script sample_script

e priority=30
if user test is the owner of the script and it is not the script sample_script

e priority=70
if group public is the owner of the script and it is not sample_script

mailto:admin@host.com
mailto:admin@host.com
mailto:admin@host.com

e priority=50
for all the scripts whose owners are different than user test and group public and
the script is not sample_script

15.2.3 List of execution options

The Zagreus System defines quite a few execution options. The listed options were
introduced from Zagreus version 1.5.6.1, but some of the options has already existed
as script options, or properties in the Zagreus Server or Zagreus Worker configuration
under different names, they are listed in the compatibility field. Zagreus 1.5.6.1
maintains backward compatibility with these old options and properties, but if an
option is specified with the regularized new name, the latter takes precedence.

® running_timeout
The maximum duration which the job is allowed to be executed. If the execution
time exceeds the value of this option (specified in milliseconds), the job will be
finished with running timeout status, see - Job lifecycle. The value -1 means
unlimited, i.e. there is no running timeout for the job.
Default value: 3600000 (i.e. 1 hour)
Minimum value: -1
Compatibility: engine.maxrunning on script level, gqueue.runningtimeout on
server level

e queuing_timeout
The maximum duration which the job is allowed to be queued. If the queuing time
exceeds the value of this option (specified in milliseconds), the job will be
removed from the queue with the queue timeout status, see - Job lifecycle. The
value -1 means unlimited, i.e. there is no queuing timeout for the job.
Default value: 60000 (i.e. 1 minute)
Minimum value: -1
Compatibility: job.max_queuing_time on script level, queue. queuingtimeout on
server level

e maximum_parallel_execution
Limits the number of times the given script can be executed at the same time.
The value -1 means unlimited.
Default value: -1

mailto:admin@host.com

Minimum value: -1
Compatibility: engine.maxparallelexecution on script level,
queue.maximum.parallel.execution on server level

maximum_parallel_queuing

Limits the number of times the given script can be queued at the same time. The
value -1 means unlimited.

Default value: -1

Minimum value: -1

Compatibility: engine.maxparallelqueuing on script level,
queue.maximum.parallel.queuing on server level

log_level

The applied loglevel (see - Logging levels and loglevel) during execution.
Available values are: "user’, ’info’, "warning’, ’error’ and ‘debug’.

Default value: info

Compatibility: engine.loglevel on script level, engine.loglevel on worker level

executing_user_name

If filled, the script will be executed on the behalf of the user with the specified
username. This option will only be applied if the user who originally initiated the
script execution is an administrator.

Compatibility: executing.username on script level

executing_user_id

If filled, the script will be executed on the behalf of the user with the specified ID.
This option will only be applied if the user who originally initiated the script
execution is an administrator.

priority

The priority of the job.

Default value: 10

Minimum value: 0

Maximum value: 10000

Compatibility: script.priority on script level, queue.script.priority on server level

e queue_group _id
When it is set, only Zagreus Workers that are associated to the specified queue
group ID are allowed to execute the script, see also - Queue groups. The value
can be a single number or a comma separated list of numbers.
Minimum value: 1
Maximum value: 99
Compatibility: script.queueld on script level, queue.default.queueid on server
level, queue.default.<username>.queueld also on server level (now the same
setting is queue_group_id option on owner level)

e job_monitoring
If set to false, the job is not shown in the Active Job window and Finished Job
window in the Zagreus Client (see = Finished jobs window) and in the timeline of
the Zagreus Monitor (see - Timeline area).
Default value: true
Compatibility: job.monitoring on script level

e execute_script_on_error
When this option is filled with a script fullpath, and the job execution is finished
with an error status, the execution of the specified script in the path will be
initiated, see = Script execution by script options.
Compatibility: error.runscript on script level

e execute_script_on_cancel
When this option is filled with a script fullpath, and the job execution is finished
with a cancel status, the execution of the specified script in the path will be
initiated, see = Script execution by script options.
Compatibility: cancel.runscript on script level

e execute_script_on_cancel_source
This option serves as an additional filter condition for the
execute_script_on_cancel option, see - Script execution by script options.
Possible values are ‘gui’ (referring to the Zagreus Client), ‘'monitor ’, ‘zs ’ and
‘server ’. Multiple values can be listed separated by commas, e.g. ‘zs,server’.
When left empty, all cancel types trigger the execution.
Compatibility: cancel.runscript.source on script level

15.2.4 Prefixes

Although options with the same name declared on different levels override each
other, the original values are stored in the Zagreus System, and can be checked for
debugging purposes. In order to distinguish these option values, Zagreus uses proper
prefixes based on the level of declaration. Thus:

e default. for the default values of options

e server. for server level declarations

e owner. for owner level declarations (i.e. users and groups)
e worker. for worker level declarations

e script. forscript level declarations

Option names with the proper prefixes are called fully-qualified option name. For
example, server.priority is referring to the option priority declared on the server level,
even though it was overridden during option resolution (e.g. by the priority option
defined on the script level).

The full list of the execution options with fully-qualified names can be seen in the
Zagreus Monitor application, by checking the Starting options tab (with the Advanced
mode checkbox checked) of the Job properties dialog. Figure 1. shows the tab in normal
and advanced modes.

B cedb6371-0f36-4873-895f-3205512ba3be X B cedbB371-0f36-4873-895F-3205512ba3be x
Info Starting variables Starting options Monitoring variables Info Starting variables Starting options Monitoring variables
[JAdvanced mode [Advanced mode
MName Value MName Value
job_menitoring true default job_manitoring true
log_level info default.log_level info
maximum_parallel_execution -1 default. maximum_parallel_execution -1
maximum_parallel_queuing -1 default. maximum_parallel_queuing B
priority 100 default.priority 10
queue_group_id default.queue_group_id
queuing_timeout 1200000 default.queuing timeout 60000
running_timeout 360000000 default.running_timeout 3600000
job_monitoring true
log_level info
maximum_parallel_execution -1
maximum_parallel_gueuing -1
priority 100
queuing_timeout 1200000
running_timeout 360000000
server.maximum_parallel_execution -1
server.maximum_parallel_queuing B
SErVErpriority 100
server.queuing timeout 1800000
server.running_timeout 360000000

Figure 1 — The Starting options tab of the Job properties dialog (normal and advanced mode)

15.3 Start-up variables

Start-up variables are parameters that are (eventually) passed to the script when its
execution is initiated. Variables allow the user to provide input to a script, enabling it
to perform specific actions or calculations based on the given values.

Fundamentally, all the variables declared on all different levels (e.g. server, queue,
user, group, script) eventually are passed to the script being executed. Additionally,
new variables can be created inside the script, e.g. by using the z:variable action,
see - z:variable action. Generally, using variables is a necessity to build up a flexible,
efficient and scalable system.

15.3.1 Declaration levels

In Zagreus start-up variables can be declared on several different logical levels.
These logical levels are:

e server
This level defines the most general scope of variable declarations. When there
are multiple Zagreus Server installations, these variables can be specific to the
actual system, or they can simply represent general constant-like values. The user
needs to set the server level variables in the configuration of the Zagreus Server,
see - Server-level and queue-level variables.

® queue
This level serves for variable declarations specific to the actual queue group. For
more details, see = Server-level and queue-level variables.

e worker
This level serves for variable declarations specific to all (or a particular) worker
which executes the job. For more details, see - Worker-level variables.

e owner
This level serves for variable declarations specific to the user or group which owns
the actual script whose execution is initiated. The user needs to set the owner
level variables by using the Set user variables and options... or Set group variables
and options... menu items in the Zagreus browser window in the Zagreus Client,
see - Context menu of a user node and = Context menu of a group node.

e script

This level serves for variable declarations of the actual script whose execution
was initiated. Variables on this level can be set as script variables (see - Setting
script variables and options). However, the variables set for subscriptions (see -
Creating a new subscription) override the variables set for the script. The same
overriding also happens in case of any webservice calls (such as calls from the
Zagreus HTML Application or from the Zagreus command line) or when the user
set variables by zs:variable child elementsina zs:runscript call.

Declaring Zagreus variables on the proper level is important to build up and maintain
an efficient and well-structured system. For example, in a multi-user system, the same

variable can hold different values for each different wuser, e.g.
emailaddress=user@host.com . This variable is recommended to be declared on the
user level. Another example is using a general variable environment=PROD , which
indicates that the current Zagreus installation is in a production environment. This
variable is then recommended to be declared on the server level.

15.3.2 Precedence order for resolution

The different levels that Zagreus variables can be declared on have a specific
precedence. Variables with the same name (declared on different levels) eventually
will be used as one single variable during the execution of the job, so these variables
override each other.

The order of resolution is the following (from the lowest to the highest priority):

e server
e queue

e worker

e group

e user

e script

e job (implicit level)

The last logical level (job level) is an implicit level meaning that the user can not
declare variables on this level. However, many job-related start-up variables are
specified automatically by the execution system, see below the list of them.

An example for variable resolution, when an email variable is defined on the
following levels:

e on the server level with a value server@host.com

e on the owner level for the user test with a value test@host.com

e on the owner level for the group public with a value public@host.com

e on the script level for the script sample script with a value
sample_script@host.com

The value of email variable is resolved as:

e sample_script@host.com

mailto:sample_script@host.com

if the script is sample_script

e test@host.com
If the owner of the script is user test and the script is not sample_script

e public@host.com
If the owner of the script is group public and the script is not sample_script

e server@host.com
for all the scripts whose owners are different than user test and group public and
the script is not sample_script

15.3.3 Prefixes

Although variables with the same name declared on different levels override each
other, the original values are stored in the Zagreus System, and can be checked for
debugging purposes. In order to distinguish these variables, Zagreus uses proper
prefixes based on the level of declaration. Thus:

e server. for server level declarations
e queue. for queue level declarations

e worker. for worker level declarations
e owner. for group level declarations

e script. for script level declarations
e job. forjob level declarations

Variable names with the proper prefixes are called fully-qualified variable name. For
example, server.email is referring to the variable email declared on the server level,
even though it was overridden during variable resolution (e.g. by the email variable
defined on the script level).

The full list of the start-up variables with fully-qualified names can be seen in the
Zagreus Monitor application, by checking the Starting variables tab (with the Advanced
mode checkbox checked) of the Job properties dialog. Figure 2. shows the tab in normal
and advanced modes.

mailto:test@host.com
mailto:admin@host.com
mailto:server@host.com

B cedb6371-0f36-4873-895f-3205512badbe *

Info Starting variables Starting options Monitoring variables

[] Advanced mode

Mame Value @&
MSTRAdminPW #-084-1265-1122822-80%-582- 1682

MySQLUser server

TestVar server

bankholidays 2019-01-04;DE2£22019-01-02,HU2£2

callerlP

callerName admin
callerType gui
currentUserld 1
dokuwikiurl

environment DEV
executingUserName admin
executionMede direct

general-queue-variable general-queue
general-server-variable general-server

general-worker-variable general-worker

genworkervariable true

jobld ced66371-0f36-4873-8095f-3203512ba3be
parallelLoops 10

queueld 2

queueTimeout 1300000

queucingTime 1200000

qutest true

runTimeout 360000000

runningTime 360000000

sMS550L USER test a2

B cedb6371-0f36-4873-895f-3203512ba3bc x

Info Starting variables Starting options Monitoring variables

[“] Advanced mode

Name Value 2]
job.callerlP

job.callerName admin

job.callerType qui

job.currentUserld 1

job.executingUserName admin

job.executionMode direct

job.jobld ced66371-0F36-4873-8095f-3205512badbe
job.queueld 2

job.scriptDesc

job.scriptld 08d34c5c52ceda20961826319cfc5c0f
job.scripthame db_sql

job.scriptParentFolder Jadmin

job.scriptPath /admin/db_sql

job.scriptVersion 1.0.0.0

job.serverHost lecalhost

jobuserverlP localhost

job.warkerld 5

job.worker0S Linuzx

queue.general-queue-va.. general-queue

queue.queueTimeout 1300000

queue.queucingTime 1200000

queue.qviest true

queue.runTimeout 360000000

queue.runningTime 360000000

queusscope event queue v

Figure 2 — The Starting variables tab of the Job properties dialog (normal and advanced mode)

15.3.4 Automatically set start-up variables

There are start-up variables that are automatically set when the job execution is
starting. These variables provide information about the execution environment and

how the execution has been initiated.

These variables also have a fully-qualified name with proper prefixes. Referencing
them can be done in the same way as the user declared variables, both the resolved

name and the fully qualified name work, see - Prefixes.

Variables with the prefix job:

e job.jobld

the ID of the job

e job.scriptld

the ID of the executed script

job.scriptVersion
the version of the executed script

job.scriptName
the name of the executed script

job.scriptPath
the full path of the executed script

job.scriptDesc
the description of the executed script

job.scriptParentFolder
the full path of the parent folder of the executed script

job.queueld
the queue group ID (see - Queue groups) of the job. Empty when there are no
gueue groups defined

job.currentUserld
the ID of the executing user

job.executingUserName
the name of the executing user

job.scheduleld
in case when the job execution was initiated by a subscription (see -
Subscriptions), it is the ID of the associated time schedule or event-type resource

job.scheduleName

in case when the job execution was initiated by a subscription (see -
Subscriptions), it is the name of the associated time schedule or event-type
resource

job.schedulePath

in case when the job execution was initiated by a subscription (see -
Subscriptions), it is the full path of the associated time schedule or event-type
resource

job.subscriptionld
in case when the job execution was initiated by a subscription (see -
Subscriptions), it is the ID of the subscription

job.home
the full path of the home folder of the scipt owner

job.callerType
the caller type of the job, see - Caller and caller type

job.executionMode
the execution mode of the job, see = Job properties

job.callerName
the caller name of the job, see - Caller and caller type

job.callerlP
the caller IP of the job, see & Caller and caller type

job.callerResourceld

the ID of the resource which initiated the execution of the script. When it was
initiated by a subscription, it is the ID of the associated event-type resource (see
- Execution by event-type resources). Whenitwas a zs: runscript action, the
value of this variable is the ID of the caller script. The ID does not contain the
version, which is set in a variable job.callerResourceVersion

e job.callerResourceVersion
the version of the resource which initiated the execution of the script. When it
was initiated by a subscription, it is the version of the associated event-type
resource (see -» Execution by event-type resources). When it was a
zs:runscript action, the value of this variable is the version of the caller script.

e job.callerResourceName
the name of the resource which initiated the execution of the script. When it was
initiated by a subscription, it is the name of the associated event-type resource
(see = Execution by event-type resources). When it was a zs:runscript
action, the value of this variable is the name of the caller script.

e job.callerResourcePath
the full path of the resource which initiated the execution of the script. When it
was initiated by a subscription, it is the full path of the associated event-type
resource (see -> Execution by event-type resources). When it was a

zs:runscript action, the value of this variable is the full path of the caller

script.

e job.serverHost
the host of the Zagreus Server to which the actual worker is connected

e job.serverPort
the port of the Zagreus Server to which the actual worker is connected

e job.workerld
the ID of the worker that is executing the job

e job.workerOS
the operating system of the worker that is executing the job

Variables with the prefix server:

e server.bankholidays
the full path of the optional bank holidays descriptor file, see - Bank holidays

feature.
Variables with the prefix worker:

e worker.parallelLoops:
The number of allowed parallel loops defined in the installed Zagreus Licence, see

- Licencing.

15.3.5 List of resolved start-up variables

Resolving the start-up variables is done right before the execution of the job. The
list of these variables is logged into the job-log file (see - job-log file), allowing the
user to check the final variable resolution. This may prove to be useful e.g. in the

following cases:

e Checking configuration when variables with the same name were declared on
different levels (e.g. server, owner, script levels).

e Checking values of dynamically set start-up variables. For example, if there is a
job that is started by a zs:runscript action from another script, and the
zs:runscript action specifies some start-up variables dynamically. In this case,
the values of those start-up variables can be checked.

e Checking caller properties for jobs whose execution were initiated automatically
(e.g. by subscriptions or zs : runscript action). The caller properties are passed
as automatically set start-up variables (e.g. callerName, callerlP, subscriptionld).

Figure 3. below shows a beginning of a sample job-log file:

Job starting wvariables:

callerResourceld d726@5847c724adeat3f98c35aeced3s
callerResourceName every_min
callerResourcePath fadmin/every_min
callerResourceVersion 1.8.8.8

callerType scheduler

currentUserId 1

docurl $%{server.docurl 1}

docurl 1 http://localhost/FresourceName
docurl 1 replace R

docurl_replace ' ',,"+'

executinglserName admin

executionMode scheduled

group_var 18

jobId 338c9c25-82ec-4620-8T6a-887d955237d1
parallellLoops 5

queueId 1

queueTimeout 1ea688

queueingTime 1eaea

runTimeout 6GEe8288

runningTime 6222228

scriptDesc

scriptld 7738421717c5488d98bebeb76basthd?
scriptName sample_script

scriptParentFolder /fadmin

scriptPath Jadmin/sample_script
scriptVersion 1.8.8.8

serverHost localhost

server(s Windows 1@

serverPort 7323

serverWorkingFolder c:/Programme/zagreus/server
subscriptionId 5774

test_war true

uMailconn

uMysQLUser root

uwusername admin

workerId 1

worker0s Windows 18
worker_execute R tempfolder /r

worker_execute_powershell tempfolder /powershell
worker_execute_python_tempfolder /pythen

w2

y 4

zagreusVersion 1.5.5.6P82
Figure 3 —The list of start-up variables in the job-log file of the finished job in the Zagreus Client

15.4 Subscriptions

In the Zagreus System, to allow automatic task execution, the scripts (see = Scripts)
specify the tasks to be executed and the event-type resources (see = Execution by
event-type resources) are responsible for the starting of the execution in the
appropriate time or at the occurrence of the appropriate event. The scripts and the
event-type resources have an n:m relation, which means that multiple scripts can be
subscribed to the same event-type resource, and also one script can be subscribed to
multiple event-type resources. The Zagreus System uses the subscriptions to establish
the connection between one script and one event-type resource, helping to establish
this n:m relation.

A subscription has the following properties:

e id: identifier of the subscription resource. It is an automatically assigned unique
integer, and it cannot be changed.

e galias: a human-readable name of the subscription.

e schedule path: the path of the event-type resource, associated with the
subscription

e scriptid: the id of the script resource which is associated with the subscription

e active: whether the subscription is active (i.e. it executes the subscribed scripts)
or not

e subscription variables: variables (see = Start-up variables) can also be defined on
subscription-level, which are passed to the executed script

e subscription options: options (see = Execution options) can also be defined on
subscription-level, which are used during script execution

15.4.1 Subscriptions from the perspective of scripts

Subscriptions are usually maintained from the perspective of the scripts, however it
is possible to check and remove subscriptions from the perspective of an event-type
resource.

The Subscriptions window can be opened by right clicking on the particular script
and selecting the menu item Script subscriptions... from the context menu (see Figure
23.).

@8 Zagreus Client
File Edit Window Tools Help
| &89 Edit view Reportview (%5 €' @ % | ¢ B &

2

5. Zagreus browser E,u =]

FERER v
v [[] Zagreus Demo Server [connec
§% groups
, €& users
v € admin
>] administration
] configuration
,] connections
] resources
>] schedules
> 0| scripts
»] templates
. sample_script ,
(5 .autorun &3 Open in Script editor

@ R &] Openin XML editor
B serveraute _ o :
s B8 <filesyster [E] Openin Simple text editor

EEEHBOm= a8

> T recycle bin Set script variables...

%5 Runin debug mode
€ Runscript
Script subscriptions...

Select

Figure 23 — Opening the Subscriptions window from the context menu of a script

In the Subscriptions window (see Figure 24.) one may check, edit, or remove
subscriptions belonging to the particular script.

28 Subscriptions [m} X
Setting subscriptions for script

Create, modify or remove subscriptions

Script name:: fadmin/sample_script

Id Alias Schedule path Active Variables Options New...

10 /admin/schedules/time schedules/every-10-minut... no error.runscript:/admin/s...

Edit...

Edit as new...

Remove...

Run now

Close

Figure 24 — The Subscriptions window

15.4.1.1 Creating a new subscription

A new subscription can be created by clicking on the New button in the Subscriptions
window (see Figure 24.). The opening Create new subscription window has three tabs:

e Subscribe to: allows to set the general properties of the subscription
e Script variables: allows to set the script variables of the subscription
e Executing and queuing options: allows to set the options of the subscription

The main subscription settings can be edited under the Subscribe to tab, see Figure
25. Users can define here the alias of the schedule by entering the value in the Alias
textbox. The active / inactive status can be toggled by the Active checkbox. The watcher
or trigger can be chosen from the list of all watchers and triggers in the given Zagreus
System (for these, the resource path is shown). To make this selection easier, it is also
possible to filter on the type of the watcher or trigger by using the Type drop-down.

The new subscription can be saved with the Create new subscription button, while
the subscription can be discarded by using the Cancel button.

[

Setting subscriptions for script

@8 Create new subscription X

Subscribeto Script variables Executing and queuing options
Alias: I db-customer-changesl Somebles iy New..

Subscribe to:

Type: Edit as new...

. Path ‘ Remove...
/admin/schedules/db watchers/credit-below-800!

Active / inactive chekbox

Define subscription name

Filter trigger type

Close

o r
| Create new subscription I Cancel

A = =TT — = ST — —

Figure 25 — Settings of the Subscribe to tab of the Create new subscription window

The Script variables tab allows the user to specify and edit the variables which can
be used during script execution (see Figure 26.). Variables defined for the script (listed
in the Script variables and options dialog, see - Setting script variables and options)
are overridden with the variables defined here if they have the same name. By the
Reload from script button, it is possible to delete the currently defined variables and
to load the variable values which are defined in the Set script variables window (e.g.
for further editing).

a2

Setting subscriptions for script

&8 Create new subscription X

Subscribe to Script variables Executing and queuing options

Script parameters: Reload from script | 4
‘ Name Value

defaultUserld abcdefgh123
| changeOcurred false

Delete the variables and load

those defined for the script

Create new subscription | Cancel

T
Figure 26 — The settings of the Script variables tab of the Create new subscription window

The layout and the options present in the Executing and queuing options tab are the
same as in the window Script variables and options (see - Setting script variables and
options). Similarly to the case of the variables, the executing and queuing options
defined here override the settings of the script during execution — of course, only in
the case when the given script is executed by the actual subscription.

Info: The settings of the Script variables and Executing and queuing
options tabs extend or override the settings of the script — but only in the
case when the script is executed by the subscription.

When a subscription is created, the button Run now becomes active on the
Subscriptions window (see Figure 24.). By clicking this button, the currently selected
subscription is executed immediately. It might be a useful feature during fine-tuning
and testing a subscription.

15.4.1.2 Editing a subscription

There are two ways to edit an already existing subscription, both accessible from
the Subscriptions window (see Figure 24.). By clicking on the Edit... button, the
currently selected subscription can be edited in the Edit subscription window. The

accessible tabs and settings of this window are the same as those of the Create new
subscription window (see above).

The second way of editing a subscription is to use the Edit as new button (see Figure
27.): it creates a copy of the selected subscription in an edit window. After making the
necessary changes, it can be saved as a new subscription object.

L‘l-.

Setting subscriptions for script

Create, modify or remove subscriptions

Script name:: /admin/scripts/monitor-customer-changes

Id Alias Schedule path Acti New...
12 db-customer-changes fadmin/schedules/db watchers/credit-bel... no Edit

&3 Edit as new subscription X Edt e
Subscribeto Script variables Executing and queuing options ﬁemove...
Alias: | db-customer-changes-new-item Active | Run now

Subscribe to:

Type: | DB watcher v
Path Edit the copy of the selected
/admin/schedules/db watchers/d su bscription as a new one

Save as new subscription Cancel Close

Figure 27 — Editing a subscription as a new one

15.4.1.3 Removing a subscription

The selected subscription can be deleted by clicking on the Remove button in the
Subscriptions window (see Figure 24.). Subscriptions are not stored in the recycle bin
(see = Recycle bin), but they are deleted permanently.

Warning: Unlike all Zagreus resources, subscriptions are deleted
permanently.

15.4.2 Subscriptions from the perspective of event-type
resources

Subscriptions associated with an event-type resource (i.e. event schedule, time
schedule, mail watcher, database watcher and file trigger) can be displayed by right-
clicking on the event-type resource and selecting the menu item Subscriptions... from
the context menu (see Figure 28.).

&8 Zagreus Client
File Edit Window Tools Help

{88 Edit view |03 Reportview ([%2/€° 1@ % | ¢ @ 2| H

| 2. Zagreus browser &2 =0
MER v
v E] Zagreus Demo Server [connected]
. §% groups
ﬁ users
v € admin

"] administration
| configuration
] connections
1 resources
v | schedules
v] dbwatchers
B credit-below-80000 |
»] event sc . Openin DB Watcher editor

1 file trige

1 mailwa Subscriptions...

] time sct Evaluate watcher condition...
21 scripts N
] templates == e
& sample_sct Rename resource...

Figure 28 — Opening the Subscriptions window of a DB watcher.

In the Subscriptions window, the user can view the properties of the associated
subscriptions (see Figure 29.). The only action currently supported by the Zagreus
Client in this window is deleting a subscription, by clicking on the Remove... button.

i3 Subscriptions O X

Subscriptions for schedule

Subscriptions related to schedule

Schedule name: /admin/schedules/db watchers/credit-below-80000

Id Alias Script path Active Variables Options Remove...
12 db-customer-cha... /admin/scripts/moniter-customer-change.. no defaultUserld:123456789...
< >

Close

Figure 29 — The Subscriptions window of a database watcher

Warning: Unlike all Zagreus resources, subscriptions are deleted
permanently

15.5 Execution by event-type resources

Executing Zagreus scripts via event-type resources is a key step for automation. First,
the user has to find out which type of event-type resource fits the given task best. It is
also possible to combine such resources: for example, a file watcher executes a script,
and inside this script, an event schedule is fired when a condition is satisfied. Zagreus
provides solutions both for handling various kinds of events and for performing
iterated tasks automatically.

All event-type resources need subscriptions to be assigned to any given script, see
- Subscriptions.

Info: To use event-type resources, the Scheduler component of the
Zagreus Server must be enabled.

15.5.1 Event schedule

Event schedules can be created and edited in the “Zagreus event schedule editor”,
accessible from the menu item File / New Resource... / Event schedule. The only
property that can be set for an event schedule is its description (see Figure 4.).

(L

File Edit Window Tools Help

82 Edit view Reportview : %% @& & *% | & B @l = B =9
5. Zagreus browser &7 = B8 || E New event [1.0.0.0] (event schedule) 2
_ LR Zagreus event schedule editor
w [Zagreus Demo Server [connected]
§% groups + Description
ﬁ users Description of schedule
v _fj;] admin

] administration
] cenfiguration
] connections
] resources

] schedules

Figure 4 — Event schedule editor

All scripts subscribed to a specific event schedule will be started when the event
schedule is fired. It can be done in the following ways:

e manually in the Zagreus Client

The user needs to right-click on the specific event schedule in the Zagreus
browser window of the Zagreus Client and choose the Fire event menu item from
the context menu (see Figure 5.)

manually in the Zagreus HTML application
The user needs to manually fire the event in the Fire event tab in the Zagreus
HTML application (see - Fire event tab)

manually via the Zagreus command line application
The user needs to or use the fireevent command-line tool (see = fireevent script)

with the zs : fireevent action
Firing an event can be triggered with the zs:fireevent action in a Zagreus
script.

&8 Zagreus Client
File Edit Window Tools Help

(&) Editview D Reportview (S 6 B % (¢RI | HE E B O o
| 85. Zagreusbrowser 2 | FI @I B ¥ = O
v [[] Zagreus Demo Server [connected]
§% groups
€ users
v € admin

| administration
"] configuration
| connections
"] resources
v] schedules
1 db watchers
v] event schedules
& Sample event schedule
| file triggers T Openin Event editor
] mail watchers

B8 time schedules Subscriptions...

2 scripts Fire event

| templates S Select

. Untitled =

B autorun Rename resource...
[5 .sendscripts ¥ Delete

[5 .serverautorun Copy path

& «<-filesystem->

B recycle bin Show dependents...

4 Show resource information

<" Refresh

Figure 5 — Firing an event schedule manually in the Zagreus Client

15.5.2 Time schedule

Time schedules can be created and edited in the “Zagreus time schedule editor”
(menu item Menu / File / New Resource / Time schedule). The properties of firing time
and description can be defined for each time schedule object (see Figure 6.).

&8 Zagreus Client
File Edit Window Tools Help
{8 Editview §3 Reportview (%5 € B % | ¢ B | H E E B €

| 8. Zagreus browser 52 | [(] 1 ¥ = 8 || ET Untitled [1.0.0.0] (time schedule) &2 ‘
[] Zagreus Demo Server [connected 2 g
ML [] Zagreus time schedule editor
§% groups
vE ki v Define firing time
ﬁ Demeo User Firing time can be exact time, intervalls, list, periodic (see "Advanced..." cheices in
€ Test User the comboboxes)
€ admin
B recycle bin Year: 2099 v
Month: 12 v
@ Day of month: 31 %
O Day of week: 1Sunday v
Hour: 0 v
Minute: 0 v
Second: 0 v

v Description
Description of schedule

Figure 6 — Opening a time schedule editor tab, showing the default settings

The option to enter an exact value (for example, Year=2021) as well as the value
"Every" is available for all fields. Complex patterns (following the Cron format) can be
set for each field by choosing the option "Advanced".

Examples for advanced setting:

e Specifying an interval, e.g. Hour=9-17

e Specifying a list, e.g. Hour=9,10,11,12,13,14,15,16,17

e Specifying a period by using the pattern “<starting time>/<interval>”, e.g.
Minute=5/15 . This time schedule will fire at the minutes 5, 20, 35 and 50 in every
hour.

In Figure 7., time schedule will be triggered on every weekday, between 8:00 and
17:00 at 5, 20, 35, and 50 minutes:

1] Zagreus Client
File Edit Window Tools Help

82 Edit view Reportview : 85 @ {3 *& | (G| @l HE ESG :E
. Zagreus browser &3 = 8 Eweekda}@—ﬁ—min[1.D.D.D] (time schedule) 2
| i

_ Zagreus time schedule editor
w [] Zagreus Demo Server [connecte:

£% groups » Define firing time
ﬁ UsErs Firing time can be exact time, intervalls, list, periodic (see "Advanced..." cheices in
~ 4 admin the comboboxes)
] administration
] configuration Vear: Every e

:J connections Month: Every o

_| resources

w [schedules () Day of month: 31 e
] db watchers

] event schedules

] file triggers Hour: Advanced.. | 8-17 |

1 mail watchers

()] Day of week: Advanced... |1-S |

Minute: Advanced...

£

w] time schedules 315 |

FT end-of-every-week Second: 0 el
FU every-10-minutes

FT every-minute + Description

7 weekdays-15-min Description of schedule
O scripts
] templates
i sample_script
D .autorun
£ .sendscripts
£ .serverautorun
78 «<-filesystem-»

B recycle bin

On weekdays, between 8:00 and 17:00 at minutes 05, 20, 35, SD.l

Figure 7 — A time schedule with advanced day, hour, and minute setting

15.5.3 Mail watcher

By using a mail watcher, the user can execute scripts depending on the results of
the fetched messages from an e-mail inbox. Checking the mailbox content occurs
periodically (relying on a time schedule, see - Time schedule), evaluating a specified
logical condition based on the filters of the mail watcher. If this condition is evaluated
as true, the mail watcher will be triggered, executing the subscribed script(s).
Technically, a mail watcher can be considered as an additional filter inserted between
a time schedule and triggering the script execution, where the filter is based on the
content of an e-mail inbox. There is also a built-in counter value for fine-tuning the
behaviour of the watcher.

15.5.3.1 Define filter section

The filter defines the condition which is evaluated for the contents of the specified
e-mail inbox, accessible under the “Define filter” expandable section of the Zagreus

mail watcher editor. Figure 8. shows a sample filter defined in the Zagreus Client
application, filtering on the subject and of the name of the attachments of the last 20
e-mails.

1] Zagreus Client

File Edit Window Tools Help

| B3 Edit view Reportview |8/ & @)% | ¢ B B | H E B g

T Zagreus browser &3 = B |5 check-report-pdf [1.0.0.0] (mail watcher) &2

] file triggers

: b - Zagreus mail watcher editor
w [| Zagreus Demo Server [connec
§% groups = Define filter
£ users Define the mail filters and evaluation cptiens.
~ 4 admin
] administration Last (x) mails: E 2/ all mails: 0
fl configur.atinn Only unread emails:]
VJ_CDhnECtIDHS Mark as read: |
imap-demo
mysql-demo Sender contains | |
T‘ resources Subject contains | report |
w || schedules
1 db watchers Reply to contains | |
_| event schedules Body contains v | |
|

~ | mail watchers Attachment regexp v | \b(sales-report)[0-9].pdfib

[%] check-report-pdf

£ time schedules Evaluation logic: [manual (Ssubject) and (Sattachment)
O scripts
] templates
i sample_script b Execution
i sample_script_2 s Connection
£ .autorun

2 .sendscripts

(=%

Figure 8 — Creating a new mail watcher resource
The following options control which e-mails are examined, i.e. they refer to the

number and the status of the examined e-mails:

e Last (x) mails
The latest x e-mails to be filtered. If it is set to 0, all e-mails are being examined.

e Only unread emails
If this setting is checked, only unread e-mails will be examined. If this setting is
unchecked, both read and unread e-mails are examined.

e Mark as read
If this setting is checked, the mail watcher will set the status of unread e-mail
messages to read after examination.

The next group of options define the condition which is evaluated for the e-mails,
each option corresponding to a specific property of the e-mail. The following
properties can be referred to:

e Sender: the sender of the e-mail

e Subject: the subject of the e-mail

e Reply to: the reply-to field of the e-mail

e Body: the body of the e-mail

e Attachment: the name of attached files of the e-mail

For all five properties, the user can choose from two behaviours: “contains” and
“regexp”. “contains” means that the text element defined for the given property is
expected to be a part of the given property of the e-mail, while with the “regexp”
option one can define a regular expression, which is matched for the particular e-mail
property. For example, by setting “Sender” to “contains” and setting the corresponding
value to “sender@test”, the watcher will trigger the associated scripts when the sender
property of an examined e-mail contains the specified value, for example
“testsender@testdomain.com”. In the “regexp” behaviour, regular expressions can be
used with tags like [A-Z, a-z]*. For example, the regular expression “[SsJender[0-9].*”
will match for any property values starting with the parts “sender” or “Sender”,
followed by a digit, and ending with any string.

Finally, one might specify the relation between the examined properties. By default,
all fields which were not left empty in the mail watcher have to be satisfied, being
equivalent to an AND relation between them. By setting the “manual” “Evaluation
logic” checkbox, more complex relations can be defined. The condition parts can be
referred to by adding the “S” character; possible values are: $sender, $subject,
Sreplyto, $body, Sattachment. Over these parts, AND, OR and NOT logical
operators can be used to define their relations, e.g. the value “ ($Ssender) AND
(Ssubject) AND NOT (Sreplyto)” means that the conditions defined for the
“Sender” and the “Subject” properties have to be true, while the condition defined for
the “Reply to” property has to be false at the same time for the mail watcher to trigger
the associated scripts.

15.5.3.2 Execution section

On the next expandable section (“Execution”), additional script execution options
can be set, see Figure 9.

mailto:sender@testdomain.com

5] check-report-pdf [1.0.0.0] (mail watcher) &2
Zagreus mail watcher editor

» Define filter

* Execution
Execution options

Execution:] Multiple execution: execute subscribed scripts as many times as many mails matched.
Passed field: Msgld ~ | The value of this mail attribute will be passed to the subscribed scripts (watcherResult variable).
Delimiter I:I The delimiter character between the passed variables

= Connection
Define the IMAP connection used for the watcher, Simply drag and drop the connection from the browser,

Connection id or path: fadmin/connections/imap-demo

= Scheduling

The mail watcher checks its condition according to an existing time schedule. Drag and drop the time schedules from the browser. Resetting the
value of the mail watcher is also done by a time schedule,

Time schedule id or path: | Jadmin/schedules/time schedules/weekdays-13-min |

Reset time schedule id or path: | |

Resetting value: 10 = minimum: 0, maximum: 9339
Actual value: -1 2 minimurm: 0, maximurm: 9389, infinity: -1

[Crverwrite actual value

[[] Check even when no scipts subscribed

Figure 9 — Mail watcher Execution, Connection and Scheduling expandable sections. In this particular example, an IMAP
connection is defined and a time schedule of 15 minutes at each weekday is used for scheduling to check the e-mail inbox.

The following execution options can be changed:

e [xecution
If the “Multiple execution” option is set, the mail watcher will be activated
independently for each e-mail for which the filter matches; otherwise, it will be
activeted only once (in the case that the filter matches for at least one e-mail).

e Passed field
This field grants the option that the script(s) which execution will be triggered are
provided information about the corresponding e-mail. For this, the value of the
SwatcherResult variable will be set accordingly; the dropdown box shows the
property of the e-mail which will be stored in this variable. Currently only the
option “Msgld” is supported.

e Delimiter
If the “Multiple execution” option was not set, the mail watcher will fire only once,
regardless of the number of the e-mails satisfying the specified filter. In this case,
the value of the $SwatcherResult variable will contain the corresponding

information (e.g. sender) for all these e-mails, separated by some delimiter (e.g.

“,n

;”), which delimiter can be set here. It can be at most two characters long.

15.5.3.3 Connection section

The mail connection (i.e. a Zagreus recource with connection type, see also -
Connections), which the mail watcher uses to check the incoming e-mails, can be set
in the “Connection” expandable section. It can either be IMAP or POP3. It can be drag-
and-dropped from the Zagreus browser (see - Drag-and-drop operations), or the
corresponding resource ID or resource path can be copied from e.g. the Resource
information page (see - Resource information).

15.5.3.4 Scheduling section

As we mentioned, the mail watcher can be considered as a further filter between a
time schedule and script execution, as it evaluates its e-mail-based condition when a
given time schedule fires. This time schedule resource (see also - Time schedule) can
be set in the Scheduling expandable section along with further scheduling options.

These further options rely on the concept of the counter. To help fine-tuning the
behaviour of the mail watcher, a maximum value can be defined at which the mail
watcher triggers the subscribed scripts within a given time interval. This is
implemented by assigning a counter value for a mail watcher; this value is decreased
by one each time the mail watcher runs (even if there is no matching e-mail), and if it
falls to zero, the mail watcher becomes inactive. The counter value can be reset by
another time schedule. The -1 value of the counter means that this setting is inactive,
and the mail watcher might trigger the subscribed scripts infinitely.

The following options are available in the Scheduling expandable section of the mail
watcher editor in the Zagreus Client application:

e Time schedule id or path
The mail watcher checks its condition according to the time schedule specified
here. This field is mandatory.

e Reset time schedule id or path
The time schedule which resets the counter value of the mail watcher resource
can be set here.

e Resetting value
The value which is set for the counter value when resetting. It can be a non-
negative integer between 0 and 9999.

e |nitial value
The initial value of the counter. Accessible in the Zagreus Mail watcher editor only
when the mail watcher is created; afterwards, the initial value will be replaced by
the actual counter value.

e Actual value
The actual value of the counter. By default, changing this value is inactive in the
Zagreus Mail watcher editor. It can be an integer between 0 and 9999. The value
-1 has a special meaning: in this case, there is no limitation on the number of
triggering the execution of the subscribed scripts.

e Overwrite actual value
To modify the actual value in the Mail watcher editor, this setting must be
checked, otherwise the actual value input field will behave read-only. This is a
safety feature to avoid unintentional changes in the counter value.

e Check even when no script is subscribed
If this setting is checked, the mail watcher will run even if there are no scripts
subscribed to it.

15.5.3.5 Evaluate watcher condition

The user can evaluate the condition of the mail watcher without affecting the actual
counter value. This step can be very useful during the development and set-up period
for the watcher configuration, i.e. the user can check if the mail connection is alive,
and if the condition filter works properly.

The user needs to select the Evaluate watcher condition... menu item from the
context menu in the Zagreus Browser window, see - Operations for event-type
resources. This opens the Evaluation results dialog, which shows the result of condition
evaluation. Figure 10. shows the result of a mail watcher with two messages that
satisfied the filter condition (so the condition was evaluated as TRUE).

¥ Evaluation results *

Evaluation result iz TRUE.
Result count: 2

Passing values:
«<481334087.5.1717392376277 @etix pertoffice.ddns.net>
<1162306464.26.1717593485886 @ etin pertoffice.ddns.net>

Figure 10 — The Evaluation results dialog box for a mail watcher

15.5.3.6 Server-side configuration

Most of the settings of a mail watcher are done on client side, in the Zagreus Client
application. However, a property affecting general watcher behaviour is configured on
the server side, where the way of evaluating the watcher conditions can be set by the
watcher.counter.policy setting, see = Trigger and watcher properties. The possible

values are:

e evaluate: the counter is decreased by 1 each time the condition is evaluated

e condition_true: the counter is decreased by 1 if the condition is evaluated to true.
This is the default value of this setting.

e script_run: the counter is decreased by 1 if the condition is evaluated to true and

any script is executed

Warning: watcher.counter.policy is a general setting, which affects the
behaviour of all of the watchers, i.e. both database watchers and mail

watchers.

15.5.4 Database watcher

The database watcher is technically very similar to the mail watcher. In the case of
a database watcher, the triggering (and therefore the execution of the subscribed
scripts) depends on the result of an SQL query. The query is run against a database
server periodically (relying on a time schedule, see - Time schedule). Technically, a
database watcher can be considered as an additional filter inserted between a time

schedule and triggering the script execution, where the filter is based on the content
of some database table. There is also a built-in counter value for fine-tuning the
behaviour of the watcher.

15.5.4.1 Define filter section

The filter of the database watcher can be set in the Define filter expandable section,
see Figure 11. The SQL query has to be set in the SQL query field, and it is mandatory.

The Condition type radio button is used to set the interpretation of the result of the
SQL query. The two options are:

e lines
By selecting this option, the database watcher examines the number of lines
returned by the SQL query. If this value is larger than 0, the condition will be
evaluated to true and the database watcher will trigger the execution of the
subscribed scripts.

e Scalar
By selecting this option, the database watcher examines the value of the result
returned by the SQL query. If this value is not 0, the condition will be evaluated
to true and the database watcher will trigger the execution of the subscribed
scripts. A straightforward use case for this option is a ‘'SELECT COUNT (*) ..’
SQL query.

8 Zagreus Client
File Edit Window Tools Help

| 82 Edit view Reportview : %5 @ & i*:7‘o| € & EI| El &l 50 i B
5. Zagreus browser &4 = 0O || credit-below-80000 [1.0.0.0] (db watcher) &2
- L Zagreus db watcher editor
w [] Zagreus Demo Server [connecte
% groups
€ users Defi query and the condition type for filtering.
~ € admin
] administration 50L query: SELECT customerMame from customers where creditLimit < 80000

] configuration
| connections
] resources
v] schedules
~ [db watchers Condition type: (@ Lines: check the number of lines of the result. if the number is 0, the condition evaluates as
k. credit-below-80000 false otherwise it is true,
] event schedules

— () Scalar: check the result value of a scalar (e.g. count(*)). If the first column result is 0, the
\J file triggers condition evaluates as false otherwise it is true,
_| mail watchers

] time schedules
+ Execution

] scripts . .
- Execution options
_| templates P
| ipt - - - - - - . .
EIP sar‘:p escng Execution: [Multiple execution: execute subscribed scripts as many times as many lines are in the result
.autorun
. Passed column: The result values of this column will be passed to the subscribed scripts (watcherResult variable).
|=| .sendscripts P P
[E] .serverautorun |cu5t0merName
i «filesystem-> Delimiter l:l The delimiter character between the passed variables

B recycle bin
» Connection

» Scheduling

Figure 11 — Creating new db watcher resource. Define filter and Execution expandable sections
15.5.4.2 Execution section

On the next expandable section (Execution), additional script execution options can
be set. The following execution options can be changed:

e [xecution
If the Multiple execution option is set, the database watcher will be activated
independently for each line returned by the SQL query. Each executed script
receives one line of result via the $ {watcherResult} variable. If this checkbox
is not checked, the database watcher will trigger script execution only once.

e Passed field
This field grants the option that the script(s) which execution will be triggered are
provided information about the corresponding database content. For this, the
value of the SwatcherResult variable will be set to the result value(s) of the
column defined in this “Passed field” textbox.

e Delimiter
If the Multiple execution option was not set, the database watcher will fire only
once, regardless of the number of lines returned by the SQL query. In this case,
the value of the SwatcherResult variable will contain the value of the specified

column for all the returned rows, separated by some delimiter (e.g. “;”), which
delimiter can be set here. It can be at most two characters long.

Info: The value of only one result column can be passed to the script. This
column must be defined in the Passed column setting.

15.5.4.3 Connection section

The database connection (i.e. a Zagreus recource with connection type, see also -
Connections), which the database watcher uses to check the database content, can be
set in the Connection expandable section (see the upper half of Figure 12.). It can be
drag-and-dropped from the Zagreus browser, or the corresponding resource ID or
resource path can be copied from e.g. the Resource information page (see - Resource

information).

B credit-below-20000 [1.0.0.0] (db watcher) &2
Zagreus db watcher editor
» Define filter

» Execution

~ Connection
Define the db connection used for the query. Simply drag and drop the connection from the browser,

Connection id or path: | fadmin/connections/mysql-demo

[] Keep alive connection in the background after the first check

The db watcher checks its condition according to an existing time schedule, Drag and drop the time schedules from the browser. Resetting the value of the db
watcher is also done by a time schedule.

Time schedule id or path: | Jadmin/schedules/time schedules/every-minute |

Reset time schedule id or path: | Jadmin/schedules/time schedules/every-10-minutes |

Resetting value: 10 =) minimum: 0, maximum: 9999

Actual value: 10 2 | minimurm: 0, maximurm: 9999, infinity: -1

[Overwrite actual value

[] Check even when no scipts subscribed

Figure 12 — Creating a new database watcher resource. Connection and Scheduling expandable sections

The other setting in the Connection tab (Keep alive connection in the background
after the first check) refers to a specific connection keep-alive setting. When the
database watcher runs for the first time, the connection used by the watcher is stored
in a connection pool and re-used when necessary. If a connection is used frequently, it
is worth keeping this connection open to save server resources, which behaviour is
enabled by setting this option. If this option is not set, the database connection opens
and closes each time when the database watcher is executed.

15.5.4.4 Scheduling section

As we mentioned, the database watcher can be considered as a further filter
between a time schedule and script execution, as it evaluates its database-related
condition when a given time schedule fires. This time schedule resource (see also -
Time schedule) can be set in the Scheduling expandable section (see the lower half of
Figure 12.) along with further scheduling options.

These further options rely on the concept of the counter. To help fine-tuning the
behaviour of the database watcher, a maximum value can be defined at which the
database watcher triggers the subscribed scripts within a given time interval. This is
implemented by assigning a counter value for a database watcher; this value is
decreased by one each time the mail watcher runs (even if there is no matching
database content), and if it falls to zero, the database watcher becomes inactive. The
counter value can be reset by another time schedule. The -1 value of the counter means
that this setting is inactive, and the database watcher might trigger the subscribed
scripts infinitely.

The following options are available in the Scheduling expandable section of the
database watcher editor in the Zagreus Client application:

e Time schedule id or path
The database watcher checks its condition according to the time schedule
specified here. This field is mandatory.

e Reset time schedule id or path
The time schedule which resets the counter value of the database watcher
resource can be set here.

e Resetting value
The value which is set for the counter value when resetting. It can be a non-
negative integer between 0 and 9999.

e |nitial value
The initial value of the counter. Accessible in the Zagreus Database watcher editor
only when the database watcher is created; afterwards, the initial value will be
replaced by the actual counter value.

e Actual value
The actual value of the counter. By default, changing this value is inactive in the
Zagreus Database watcher editor. It can be an integer between 0 and 9999. The
value -1 has a special meaning: in this case, there is no limitation on the number
of triggering the execution of the subscribed scripts.

e Overwrite actual value
To modify the actual value in the Database watcher editor, this setting must be
checked, otherwise the actual value input field will behave read-only. This is a
safety feature to avoid unintentional changes in the counter value.

e Check even when no script is subscribed
If this setting is checked, the database watcher will run even if there are no scripts
subscribed to it.

15.5.4.5 Evaluate watcher condition

The user can evaluate the condition of the database watcher without affecting the
actual counter value. This step can be very useful during the development and set-up
period for the watcher configuration, i.e. the user can check if the database connection
is alive, and if the condition works properly.

The user needs to select the Evaluate watcher condition... menu item from the
context menu in the Zagreus Browser window, see - Operations for event-type
resources. This opens the Evaluation results dialog, which shows the result of condition
evaluation. Figure 13. shows the result of a watcher with a lines condition type, listing
all the values which were returned by the SQL query (if any). In this example, the
condition is evaluated as TRUE since the query returned five values.

8 Evaluation results *

F_valuation result is TRUE.
Result count: 5

Passing values:
France

USA

Australia
France
Monway

Figure 13 — The Evaluation results dialog box for lines condition type

Figure 14. shows the result of a watcher with a scalar condition type, showing the
numeric return value of the SQL query (i.e. 30). In this example, the condition is
evaluated as TRUE since the returned value is not zero.

8 Evaluation results *

F_valuation result is TRUE.
Result count: 1

Passing values:
30

Figure 14 — The Evaluation results dialog box for scalar condition type

15.5.4.6 Server-side configuration

Most of the settings of a mail watcher are done on client side, in the Zagreus Client
application. However, a property affecting general watcher behaviour is configured on
the server side, where the way of evaluating the watcher conditions can be set by the
watcher.counter.policy setting, see - Trigger and watcher properties. The possible
values are:

e evaluate: the counter is decreased by 1 each time the condition is evaluated
e condition_true: the counter is decreased by 1 if the condition is evaluated to true.
This is the default value of this setting.

e script_run: the counter is decreased by 1 if the condition is evaluated to true and
any script is executed

f Warning: watcher.counter.policy is a general setting which affects the
behaviour of all of the watchers, i.e. both database watchers and mail
watchers.

15.5.5 File trigger

File triggers allow the triggering of the execution of subscribed scripts when a
specific file event (e.g. file modification or file deletion) occurs in the Zagreus
filesystem.

The number of file trigger activations is related to the number of files which satisfy
the condition defined in the file trigger. For example, when a particular file trigger
checks the deletion of files in a specific folder, and two files are deleted from the folder,
the subscribed scripts will be executed twice. File triggers can be created and edited in
the Zagreus File trigger editor, accessible via the menu path File / New Resource / File
trigger.

15.5.5.1 Define folder and filename pattern section

The filter of the file trigger can be set in the Define folder and filename pattern
expandable section, see the upper half of Figure 15. The folder which will be watched
can be set in the Watch folder field, and it is mandatory. Its content must be a Zagreus
filesystem folder. The folder can also be drag-and-dropped from the Browser window
of the Zagreus Client application, see - Zagreus Client.

The Filename pattern radio button is used to set the file mask for the file trigger
filter. The two options are:

o All files
The file trigger will fire for all the files in the specified watch folder.

e textbox

By selecting this option, a filename filter can be specified in the textbox. In this
filename mask, the wildcard character “*” can be used, for example:
“2021*.x1s”.

The checkbox below this option controls whether this filename mask should be
interpreted as a regular expression or as a standard filename. For example, the

“"

regular expression “[A-7,a-z]+"” stands for file names which contain only

uppercase and lowercase letters.

&8 Zagreus Client

File Edit Window Tools Help

83 Editview |13 Reportview (% /EBI%| ¢ R EZ|HE E B O »
"ﬂ.T Zagreus browser = 57 1 [% check-new-pdf [1.0.0.0] (file trigger) &2 -r

_ R Zagreus file trigger editor
v [[] Zagreus Demo Server [connec
€% groups v Define folder and filename pattern
Q users Define the folder to be watched and the file name pattern that triggers the event.
v € admin When the creating file name matches the pattern, the trigger will fire.
"] administration
| configuration Watch folder: l /admin/<-filesystem-> /pdf |
] connections Filename pattern: (O All files
| resources -
v 7] schedules ® I -pdf J
] db watchers [0 Regular expression

] event schedules
v [file triggers
[check-new-pdf Besides the file event types you can check the existence of a file when the file

trigger is starting to watch (server bootup and modifying the filetrigger resource).

v Define event type

1 mail watchers
] time schedules

B scripts Eventstowatch: [Create
] templates O Modify
. sample_script [0 Delete
[t 2urorin Check file exist hen the trigger start
B sendscripks O eck file existence when the trigger starts

[2) .serverautorun
3 «<filesystem->
ol :
i recycle bin

Figure 15 — Creating a new file trigger. This trigger fires on the creation of a file with .pdf extension
15.5.5.2 Define event type section

There are three types of file events which might trigger a script execution:

e C(Create: file creation
e Modify: file modification
e Delete: file deletion

These values can be selected in the “Define event type” expandable section (see the
lower half of Figure 15.), it is possible to check only one or multiple events. By setting
the Check files existence when the trigger starts checkbox, the existence of the
specified file(s) will be checked by the file trigger when it starts to run —i.e. when the
Zagreus server starts, or after saving the modified or newly created file trigger
resource. If none of these check boxes is set, the file trigger remains active, but —as no
file event may satisfy the specified condition — the execution of the subscribed scripts
will not be triggered.

Info: The events (script creation, modification and deletion) are not
watched by Zagreus, but they are detected by the given operation system
(0S), and forwarded to Zagreus.

15.5.5.3 Server-side configuration

Some behaviour setting of file triggers can be configured on the server side, see -
Trigger and watcher properties. There, the setting filetrigger.double.trigger.limit
controls the handling of a specific OS tendency. There might be unwanted cases that
sometimes two events are created for one file event, while the user understandably
expects only one script execution triggering. For example, modifying a file creates two
events in the Windows OS. To avoid double script execution in such cases, and to filter
these double file events (referring to the same file with a too short time difference
between the two events), we can use this filetrigger.double.trigger.limit setting, which
is used to define the minimal time difference between two events (in milliseconds). For
example, if this setting is set to 250, a second event referring to the same file only after
220 milliseconds after the first one will be ignored; therefore, the file trigger will be
activated by only the first one. However, a setting of 200 milliseconds would result in
double triggering, and therefore double script executions. The default value for this
setting is 500.

15.5.6 Special events

There are also special events in Zagreus which may trigger automatic script
execution. Out of the four special such events, two are script options, while the other
two are special files located in the Zagreus local database.

15.5.6.1 Script execution by script options

There are two special execution options: execute script on_error and
execute_script_on_cancel. If they are set for a given script, they can initiate the
execution of another script. If the execution of the actual script (i.e. which has any of
these options set) ends with error on cancelled status (for job statuses, see - Job
lifecycle), the execution of the script specified in the corresponding option will be
triggered. The value of these options can be either a script ID or path.

Regarding the option execute_script_on_cancel, there is another script option to
fine-tune its behaviour: the source of cancellation can also be specified. This option is
an additional filter condition, and can be set with the option
execute_script_on_cancel _source, with the possible values being gui, monitor, zs and
server. It is also possible to specify multiple values separated by commas. Figure 16.
shows an example setting for these options: in this particular example, if the execution
of the given script (i.e. sample script) ends with status error, the script error-
handling will be executed. Similarly, if the execution of sample script ends with
status cancelled, where the source of cancellation was the Zagreus Client or the
Zagreus Monitor application, the execution of the script cancel-handling will be
triggered. However, if the source of cancellation was a zs:cancel action, no script
execution will be triggered, as that would be handled by the zs value of the
execute_script_on_cancel_source option.

a Script variables and options X

Script variables Executing and queuing options

Execution parameters:

Mame Value
running_timeout
maximum_parallel_sxecution

log_level

executing_user_name hd

Clueuing options:

Mame Value
queuing_timeout
maximum_parallel_gqueuing

pricrity

queue_group_id

job_monitaring

execute_script_on_error Jadmin/scripts/error-handling
execute_script_on_cancel fadmin/scripts/cancel-handling
execute_script_on_cancel_source gui,monitor

Figure 16 — Setting the execute script on error, execute script on cancel and

execute script on cancel source options

15.5.6.2 Script execution by autorun configuration files

The special file.autorun is a special text file in the home folder of each Zagreus
user. The execution of scripts (specified either by their resource ID or their path) listed
in this file will be triggered right after the given user logs in to the Zagreus Server via
the Zagreus Client application. In this file, one line defines one script to execute.

Administrator users can create another special file named .serverautorun in
their Zagreus home folder. The execution of scripts listed in this file are will be triggered
right after a Zagreus server start-up event. The format of this file is the same as that of
the .autorun file.

15.5.7 Administrative tools for event-type resources

There are useful administrative tools built in the Zagreus Client applications to
monitor and handle the behaviour of event-type. Additionally, there is the Zagreus
Monitor application, also designed to monitor script executions. By these tools the
users can check the status of automating components, monitor which scripts are
started by different types of event-type resources, while administrators can also start
and stop the operation of triggers, watchers and schedulers.

15.5.7.1 Monitoring watchers and triggers window

In the Zagreus Client, in the Monitoring watchers and triggers window, the
administrator users can monitor the behaviour of the watchers and triggers on the
given Zagreus server. This window can be opened by right-clicking on the server
definition node in the Browser window of the Zagreus, then selecting the Administrator
options / Monitor watchers, triggers... options from the context menu (see Figure 17.).

8 Zagreus Client
File Edit Window Tocols Help
: B Editview 3 Reportview : % €' 8| % | ¢ @ | 1 E B O
T, Zagreus browser 53 = 0
ri ¥
w [| Zagreus Demo Server [connected]

E] Disconnect from server

Administrator options » * Group management...
Medify server definition A LR s

Remove server definition R

Cancel all jobs...

Get licence infermation...
% Stop/start server components...

S inf ti : :
Erverintermation Monitor watchers, triggers...

Cenfiguration testing...

Figure 17 — Opening the Monitor watchers, triggers... window

The opening Monitoring watchers and triggers window consists of three tabs:
Watchers, File Trigger and DB Connection Pool. The mail and database watchers are
listed in the Watchers tab, while file trigger resources can be viewed on the File Trigger
tab.

In the Watchers tab, the user can check the following details of the mail and
database watchers (see Figure 18.):

e Trigger: the path of the watcher

e Type: the type of the watcher (i.e. mail watcher or db watcher)

e Connection: the path of the connection resource which the watcher uses

e Schedule: the path of the time schedule which the watcher uses

e Reset schedule: the path of the time schedule which the watcher uses for
resetting its counter value

e Last evaluation: the date and time when the watcher was last evaluated

e Last execution: the date and time when the watcher last triggered script
execution

e Actual value: the actual value of the counter

8 Menitoring watchers and triggers *
Watchers File Tigger DB Connection Pool
Trigger Type Connection Schedule Reset schedule Last evaluation Last execution Actual value
Jadmin/schedules/db watc... db watcher Jadmin/connecti... fadmin/sche.. /admin/schedules.. 2023.03.1715:12:00 2023.03.17 15:12:00 a
fadmin/schedules/mail wa... mailwatcher /admin/connecti.. /admin/sche.. 2023.03.17 15:05:01 2023.03.17 15:05:01 -100

Figure 18 — Monitoring watchers, triggers... window

In the File trigger tab, the following details of the file trigger resources are listed:

e Trigger: the path of the trigger

e Folder path: the path of the folder the file trigger uses in its filter (see - Define
folder and filename pattern section)

e last triggered: the date and time when the file trigger was last triggered

e Trigger filename: the filename which caused the file trigger to trigger last

e Event type: the type of event which causes the file trigger to trigger last

e Currently active: whether the file trigger is currently active (yes or no)

The DB Connection pool tab lists the database connections which are used by
database watcher resources having the setting Keep alive connections in the
background... checked, i.e. they are open and kept in memory (see - Connection
section). The following details are listed:

Connection: the path of the connection resource which the watcher uses

Driver: the name of the SQL driver which is used by this open connection

Host: the host to which this DB connection is open
User: the user which is used to log in by this DB connection

15.5.7.2 Stop / start server components

With this option in the Zagreus Client application, administrator users can turn on
and off the Scheduler module (see - Quartz scheduler), the execution of watchers and
triggersin a Zagreus server. This menu item can be found by right-clicking on the server
connection node in the Zagreus browser window of the Zagreus Client, and selecting
the Administrative options / Stop/start server components option in the context menu
(see Figure 19.).

a Zagreus Client
Eile Edit Window Tools Help

‘B3 Edit view Reportview %5 & B % | € B I | B i
5. Zagreus browser 52 | [¥ = 0

v [] Zagreus Demo Server [connected]
£% groups E] Discennect frem server |

ﬁ users

3 - Administrator options * - Group management...
€l admin P p g

W recyclebi Meodify server definition o M

Remove server definition Sl

Cancel all jobs...

Get li inf tion...
% ICENEE information Stop/start server components...

S inf ti - -
ErVerintermation Monitor watchers, triggers...

Configuration testing...

Figure 19 - Opening the Stop/start server components window

In the Server Component Control dialog, the user can enable or disable the selected
component by right-clicking on it (see Figure 20.).
For further details on different server components, see - Components.

a
File Edit Window Tools Help

| B2 Edit view Reportview | %5 &' B & | &' B & | 1 BB FEY
5. Zagreus browser 22 | [¥ = B
w [| Zagreus Demo Server [connected]
£% groups L
£ users &8 Server Compenent Control Zagreus Demo Server d
£ admin
B recycle bin Component Enabled
Scheduler yes
Queue Enable/disable component r‘ES
Direct running yes
Filetriggers running yES
Watchers running yes
Pricrity algorithm n
< >

Figure 20 — Enable / disable server components

Warning: If the scheduler module is disabled, the watchers and file triggers
will not fire either, since they rely on time schedule resources.

15.5.7.3 Administrative tools in Zagreus Monitor

The Zagreus Monitor application (see - Zagreus Monitor) is primarily designed to
allow the administrators to monitor the job executions performed on the given Zagreus
Server. It has functionality to filter scripts by different criteria like execution mode,
status, etc. The events are displayed in a timeline, see Figure 21.

B zagreus Monitor 1.5 - X
File Tocls Help

Zagreus Server Connections Search Jobs Time Range Status Exccution mode
| &) B on Server Unit: |1 hour ~ [select all [Jrunning timeaut [select all
Connect Name Zagreus Demo Server - From: Select [finished [queue timeout [direct
by Script Name:
Zagreus Demo Server [connected] ‘ Hierron [debugging [scheduled
Clqueued [Jsuspended A fired
Refresh!
0] Clrunning [future triggered
Gol COleancelled [skipped
[C] Zagreus Demo Server [connected]
102.168.50,170:7223 (v1.5.5.7)
Show All | Control Components | Show users | [] Show Engines [] Show hidden jobs [IMerge lines by script name [] Group manual and subscribed runs []Highlight Cells | Show Cu
Script Name Version Subs.. LastStatus Last Begin Exec Time 12:00 1400 15:00 16:00 T
backup metadata 1000 7 -
check-report 1,000 finished 2023/03/17 14:08:43 I
check-report 1000 17 finished 2023/03/17 17:50:02 Y R O O e e
delete jobs 1000 8 - -
delete logs 1000 9 - -
moritor-customer-changes 1000 12 finihed 202303/17212700 (O O AR A
sample_script 2 1000 finished 2023/03/17 13:52:01 w1

Figure 21 — A sample Zagreus Monitor window, showing jobs regardless of execution type

If the user restrains the execution modes to keep only the scheduled and triggered
items, scripts with automated execution can be monitored, see Figure 22.

B zagreus Monitor 1.5 - X
File Tools Help
Zagreus Server Connections Search Jobs Time Range Status Execution mode
I3 [l (=2 on Server: Unit: |1 hour ” [selectall [Jrunning timeout [select all
Zagreus Demo Server <
Connect Name From: [2023/03/17 11:00:00 | |Select Mfinished [queue timeout ldirect

Zagreus Demo Server [connected] yieoptiblape:

W) s

‘ O] To: | 2023/03/18 05:00:00 Select

Cqueved [Jsuspended

Refresh!
O — Moy W
Go! eancelled [Jskipped
[C] Zagreus Demo Server [connected]
192.168.50.170:7323 (v1.5.5.7)
Show All | Control Components| | Show users | [] Show Engines (7] Show hidden jobs [IMerge lines by script name (] Group manual and subscribed runs [Highlight Cells | Show Cu
Script Name Version Subs.. LastStatus LastBegin Exec Time 12:00 14:00 15:00 16:00 7
backup metadata 080 7 -
check-report 1000 finished 2023/03/17 14:08.43
check-report 1000 17 finished 2023/03/17 17:50:02 [e e
delete jobs 1000 8 - -
delete logs 1000 9 - -
1000 0 feshed 2230317212800 T
sample_script 2 1000 finished 2023/03/1713:52:01

Figure 22 — A sample Zagreus Monitor window, showing only scheduled and triggered scipt executions

15.6 Manual script execution

Besides automated script execution, Zagreus also provides multiple ways of
executing scripts manually. It is possible to initiate script execution from the Zagreus
Client, from another script (by the zs:runscript action), while remote users can
also initiate script execution by using Zagreus command line tools or the Zagreus HTML
application. Furthermore, scripts can be executed from external systems — such as
database environments — with SOAP requests.

15.6.1 Execution in the Zagreus Client

To manually execute a script in the Zagreus Client, right-click on the script in the
Browser window of the Zagreus Client, and choose the Run script menu item from the
context menu (see Figure 30.). By selecting multiple scripts, all of them can be executed
at the same time by selecting the Run script item from the context menu after right-
clicking on the selection.

&8 Zagreus Client

File Edit Window Tools Help

{89 Editview 3 Reportview (%5 € @) % | € B & |
| %5. Zagreus browser &2 SR

o
| JRI S

v g
v [j Zagreus Demo Server [connected]
§% groups
€ users
v € admin
"] administration
" configuration
"] connections
1 resources
"] schedules
| scripts
] templates
gl sample -
[Z .autor
[.sendsc %] Openin XML editor

Open in Script editor

[Z] serveri 5] Open in Simple text editor

B <filesy

& recycle bil Set script variables...

Run in debug mode
§2 Run script

Script subscriptions...

= Select

Rename resource...

Figure 30 — Executing a script from the context menu in the Browser window of the Zagreus Client

When a script is opened for editing in the Zagreus Client, there are two icons in the
top icon bar which serve to initiate script execution manually: Save and run resource
and Run script (see Figure 31.). Scripts have to be saved before execution; clearly, the
Save and run resource icon first saves the active script, and executes it afterwards.

&8 Zagreus Client
File Edit View Window Tools Help
| &) Editview 3 Reportview (82 &' @ % | ¢ @ & | [B E]E

e = omiE{100% v|@ &

5. Zagreus browser 23 ‘ = o ‘@' *sample_script [1.8070] (script)/23
| Rl R ey
v [l Zegreus Dem - g0 and run resource BiaaiE ’
. §% groups [tespexpr = L'
€ users
< B8 admin e /T (BT || | T
] administration [al[t][tfe] S
.] configuration 2.1.1
,] connections Run Script z:else
»] resources
] schedules z:log
»] scripts
»] templates
L. sample_script

Figure 31 — Initiating the execution of a script which is opened for editing

15.6.2 Execution with the .sendscripts file

By using a special file called .sendscripts, the user can use a special type of
manual script execution initiation. This file has to be placed in the Zagreus home folder
of the user (see Figure 32.), and its content applies for the given user.

L Zagreus Client

File Edit Window Tools Help
Edit view §5 Reportview : s
T Zagreus browser 3 = 0
FEEBE ~
~ [[] Zagreus Demo Server [connec
§% groups
€ users
~ 4 admin
] administraticn
] configuration
] connections
| resources
] schedules
2 seripts
] templates
D autorun
[.sendscripts
2 .serverautorun
8 <-filesystem->»
B recycle bin

Figure 32 — The location of the .sendscripts file in the home folder of the admin user

In the .sendscripts file the user can list Zagreus scripts that can be executed
from the Zagreus Client in a special way:

1) The user needs to select a resource that will be an input of the script that will be
executed.

2) When the user right-clicks on the selected resource, a new context menu item
Send will be shown, with the listed scripts from the . sendscripts file shown in
a sub menu, see Figure 33.

3) By clicking on one of the possible script aliases, the given script will be executed
and the properties of the originally selected resource will be passed as start-up
script variables, see below.

T Zagreus browser &2 = 0
B 7
w [[] Zagreus Demo Server [connec
§% groups
€ users
~ i admin
] administration
] configuration
~] connections
fil. sample_script
imap-demo
¥ mysgl-demo
%l 4 Openin Script editor

S8 Open in XML editor
I: =l Openin Simple text editor
= Test connection
El Connect
_lél Send * {2 Migrateto PROD
B rec Select 2 Migrateto QUAL
Rename resource... [

Figure 33 — . sendscripts example: using a MYSQL connection as an input parameter for a migration script

15.6.2.1 Format of the .sendscripts file

Each line of the file defines one case, containing the ID or the path of the script to
be executed. A human-readable description can optionally be written to the same line,
separated by a semicolon, which will be shown in the Zagreus Client in the Send context
menu. Without adding description to an entry, the name of the script will be shown.

Empty lines and lines starting with the character # will be considered as remarks and
will be ignored.

The keyword import can be used to include the contents of another file. The format
of imported files must match the same rules as the original . sendscript file.
A sample . sendscripts file can be the following:

here is the import
import /groups/common group/shared sendscript definitions

here come the new definitions
pd92555d£f4614090bfele31a45fe8£79; Migrate to PROD
/admin/scripts/migrate-qual; Migrate to QUAL

15.6.2.2 Passed start-up variables

If the user clicks on a custom menu item from the submenu, the execution of the
given script (i.e. which was defined in the corresponding line of the .sendscripts
file) will be initiated. For the execution, the following resource properties will be set as
input parameters as script start-up variables:

e SinputResourceld: the id and version of the resource (concatenated)
e SinputResourceName: the name of the resource
e SinputResourcePath: the Zagreus path of the resource

Info: Changes will be applied immediately after saving the
.sendscripts file —there is no need to restart the Zagreus Client or
to disconnect from the Zagreus server.

15.6.3 Execution from the command-line client

The user can run a Zagreus script from via the command-line client, the process is
described here in details, see = runscript script.

15.6.4 Execution from the Zagreus HTML Application

The user can run a Zagreus script from via the Zagreus HTML Application, the process
is described here in details, see - Zagreus HTML application.

15.6.5 Execution from external systems

Zagreus scripts can be executed by using SOAP requests from those platforms which
supports this method. For example, in an Oracle database environment a SOAP call can
be defined as a stored procedure, while in MSSQL Server a standalone binary has to be
implemented and the .d11 file must be imported into the database.

15.6.5.1 General SOAP format without script parameters

The SOAP request pattern for initiating script execution without any parameters:
(the parts where the actual parameters have to be substituted are marked in orange)

<?xml version="1.0" encoding="UTF-8"?><S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<ns2:user
xmlns:ns2="http://ws.server.zagreus.etixpert.com/">MY USERNAME</ns2:user>
<ns2:password
xmlns:ns2="http://ws.server.zagreus.etixpert.com/">MY BASE64 ENCODED PASSWO
RD</ns2:password>
</S:Header>

<S:Body>
<ns2:executeExt
xmlns:ns2="http://ws.server.zagreus.etixpert.com/">
<arg0>MY SCRIPT ID</arg0>
<argl/>
<arg2/>
<arg3>3</arg3>
<arg4>html</argd>
<arg5>false</arg5>
</ns2:executeExt>
</S:Body>
</S:Envelope>

15.6.5.2 General SOAP format with script parameters

The SOAP request pattern for initiating script execution with parameters: (the parts
where the actual parameters have to be substituted are marked in orange)

<?xml version="1.0" encoding="UTF-8"?><S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<ns2:user
xmlns:ns2="http://ws.server.zagreus.etixpert.com/">MY USERNAME</ns2:user>
<ns2:password
xmlns:ns2="http://ws.server.zagreus.etixpert.com/">MY BASE64 ENCODED PASSWO
RD</ns2:password>
</S:Header>

<S:Body>
<ns2:executeExt
xmlns:ns2="http://ws.server.zagreus.etixpert.com/">
<arg0>MY SCRPT ID</arg0>
<argl>VARIABLE NAME 1</argl>
<argl>VARIABLE_VALUE_1</argl>
<argl>VARIABLE NAME 2</argl>
<argl>VARIABLE VALUE 2</argl>

<argl>VARIABLE NAME n</argl>
<argl>VARIABLE_VALUE_H</argl>
<arg2/>
<arg3>3</arg3>
<arg4>html</argd>
<argb>false</arg5>
</ns2:executeExt>
</S:Body>
</S:Envelope>

@ Info: When passing multiple input parameters for script execution, the
variable names and variable values have to be put inside

<argl>...</argl> tags; for example:
<ar g1>VARI ABLE_NAME_1</argl>
<ar g1>VARI ABLE_VALUE_ 1</ argl>
<ar g1>VARI ABLE_NAME_2</ argl>
<ar g1>VARI ABLE_VALUE_2</ argl>

<ar g1>VARI ABLE_NAME_n</argl>
<ar g1>VARI ABLE_VALUE n</argl>

15.6.5.3 Execution from Oracle

A sample Oracle stored procedure for initiating script execution with encrypted

password:

create or replace PROCEDURE "ZAGREUS SAMPLE CPWD" (p server IN varchar2,
p_username IN varchar2, p password IN varchar2, p scriptid IN varchar2) AS
http req UTL HTTP.req;
http resp UTL HTTP.resp;
request env varchar2 (32767) ;
response_env varchar?2 (32767) ;

BEGIN
dbms output.put line('procedure started');

request env := '<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header>

<ns2:user
xmlns:ns2="http://ws.server.zagreus.etixpert.com/">"'||p username]||'</ns2:us
er>

<ns2:password
xmlns:nsZz"http://ws.server.zagreus.etixpert.com/">'llutl_raw.cast_to_varch

ar2 (utl encode.base64 encode (utl raw.cast to raw(p password))) ||'</ns2:pass
word>

</S:Header>

<S:Body>

<ns2:executeExt xmlns:ns2="http://ws.server.zagreus.etixpert.com/">
<arg0>'|| p_scriptid ||'</arg0>

request env := request env ||'<arg2></arg2>"';

request env := request env ||'<arg3>3</arg3>

<arg4>html</arg4d>

</ns2:executeExt>

</S:Body>

</S:Envelope>

LY
’

http req :=
utl http.begin request ('http://'||p_server||'/zagreus/services/ws/zagreuswe
bbaseservice', 'POST', utl http.HTTP VERSION 1 1);

utl http.set header (http req, 'Content-Type', 'text/plain; charset=utf-
8');
utl http.set header (http req, 'Content-Length', length(request env));
utl http.write text (http req, request env);

dbms output.put line('Request sent');

http resp := utl http.get response (http req);
utl http.read text (http resp, response env);
utl http.end response (http resp);

END ZAGREUS SAMPLE CPWD;

Execute the stored procedure with the following command:

call ZAGREUS SAMPLE CPWD('my.zagreus.server:7323', 'admin', '***x**x&xskxi,
'0d020d9ceebb486998e5601c24273253") ;

Note: encoding the password is done inside the stored procedure. As the input
parameter for the stored procedure, the plain text password is required.

15.6.5.4 Execution from C#

To initiate script execution through the Zagreus web service from a C# code, at least
the following includes must be used:

using System.Text;

using System.Threading.Tasks;
using System.Net.Http;

using System.Xml.Ling;

15.6.5.5 Execution from PHP

To initiate script execution through the Zagreus web service from a php code, the
soap extension must be enabled in the php configuration file and class
SoapClient must be used. The SOAP call can be performed by calling the method
__doRequest of an instance of SoapClient.

A sample function for a Zagreus call from php:

public function doZagreusRequest ($XMLStr) {
Sendpoint =
“http://localhost:7323/zagreus/services/ws/zagreuswebbaseservice”;

SwsdlLocation = “http://localhost:7323/zagreus/zagreuswebbaseservice.wsdl”;

Sclient = new SoapClient ($wsdlLocation, array('encoding'=>'UTF-8',
'soap version' => SOAP 1 2, 'trace' => 1, 'exceptions' =>1));

$ret = Sclient-> doRequest ($XMLStr, Sendpoint, '', SOAP 1 2);

return Sret;

}

15.7 Execution from a Zagreus script

Initiating the execution of a Zagreus script from another running script (i.e. job) can
be done by using the zs: runscript action. For the newly created job, the value of
the parent job id, caller, caller type and execution mode attributes take the
corresponding values. Of course, the script whose execution was initiated, might also
contain a zs: runscript action, allowing the user to define execution chains.

Besides zs:runscript, there are further actions in the zs action group which
might initiate or affect script execution. The more important ones are the following:

e z:fire-event, zs:fireevent: fires an event schedule

e zs:cancel: cancels arunning job

® zs:wait: waits for a running job to finish

® zs:createevent: creates an event schedule

e zs:createschedule: creates a time schedule

e zs:createresource: allows creating resources, including events and time
schedules

® zs:subscribe, zs:unsubscribe: manages subscriptions

Of course, several further actions might initiate script execution in a more indirect
manner; for example, the executionof a file:copy, zs:copy or zs:delete action
might lead to the activation of a file trigger, a mail : send action might activate a mail
watcher, while the user might use the zs: setvariable action to set the value of the

execute script on cancel option.

15.8 Summary

As described in this section, Zagreus provides a powerful infrastructure for
automating IT and business processes. This flexibility extends to initiating Zagreus
script execution as well, as the user can choose from a wide range of tools. Time
schedules can be used for periodic maintenance of repetitive operations, while event
schedules, file triggers, database watchers and mail watchers makes Zagreus able to
respond to a variety of actions and events. These options offer Zagreus users a wide
range of solutions to find the best setting for their particular automation problems.

A Zagreus installation contains three clients. The Zagreus Client is the most powerful
application to connect to a Zagreus server, create resources, run scripts, fire triggers
and check execution result (see also - Zagreus Client). With the Zagreus HTML
application, a user might initiate script execution, fire events and check logs in a web
browser of a PC, laptop, tablet, or a smart phone (see also - Zagreus HTML
application). The Zagreus Console applications might also be used for initiating script
execution and fire event schedules, however they also allow the user to perform some
delegated administrative tasks (see also - Command-line tools). Using the
zs:runscript and several further zs actions, script execution can be initiated and
affected on the local or even on remote Zagreus Servers, allowing building a powerful,
automated system.

15.9 Best practices

Finally, we give some tips on configuring the script execution in the Zagreus System.
There are practices for choosing the appropriate schedule, watcher and trigger type,
also when it is worthwhile to invest time in creating an automated workflow rather
than manually initiating script execution. There are also some hints to tune watchers,
triggers, and check execution result.

15.9.1 Choosing the appropriate event-type resource

The main question is “Does script execution depend from an event?”. As a rule of
thumb, if a script should be executed If the answer likes the followings, then a mail
watcher, a database watcher or a file trigger should be used: If a script should be
executed if

e A report or a file is received: mail watcher (- Mail watcher), file trigger (= File
trigger).

e Data is received from another department: database watcher (- Database
watcher), file trigger (= File trigger).

e An update or a report about the status of a task or process is received: mail
watcher (= Mail watcher), database watcher (= Database watcher).

e Data migration is performed: database watcher (= Database watcher), file
trigger (= File trigger).

e Files are uploaded to some (other) server: file trigger (= File trigger), event
schedule (- Event schedule).

e The execution of a job is finished: event schedule (- Event schedule).

e The execution of a job ends in error: special events (e.g. execute_script_on_error)
(= Script execution by script options).

e The user logs into Zagreus: special events (- Script execution by autorun
configuration files).

For time-scheduled tasks, the main question is “When should...?”. Answers for these
kind of tasks are usually similar to the following:

e Before holidays.
e At the end of each weekday / weekend.
e At 8:00 am each weekday.

e At aspecial day in every year (i.e. anniversaries).
e Every 15 minutes (e.g. synchronize a folder).

15.9.2 Monitoring watchers and triggers

There are two ways for monitoring watchers and triggers: one is the Monitor
watchers and triggers window in the Zagreus Client (see - Monitor watchers, triggers).
This window is used only for monitoring the operation of watchers, triggers and the
database connections kept open for the database watchers.

The other way of monitoring watchers and triggers is the Zagreus Monitor
application. The job status and further corresponding data are displayed in a timeline
view (see - Timeline area), while it is possible to filter on execution modes (triggered,
scheduled, etc., see - Execution mode filter) as well as for job status (finished, error,
running, etc., see - Status filter).

15.9.3 Quarterly settings for a time schedule

The following example (see Figure 34.) shows a setting for every quarter of a year.
Instead of at the end of a quarter, the time schedule fires in the very first second of the
next quarter to avoid the problem of months with 28, 30 and 31 days.

Zagreus time schedule editor

= Define firing time
Firing time can be exact time, intervalls, list, periodic (see "Advanced..." choices in
the comboboxes)

Year: Every ~

Month: Advanced... 1,47 10
® Day of month: 1 ~
() Day of week: Every ~

Hour: 0 ~

Minute: 0 ~

Second: 1 ~
= Description

Description of schedule

In the first second of a new quarter.|

Figure 34 — Time schedule which fires at the end of each quarter

15.9.4 Using special subscription features

During the editing of subscriptions, the Run now button is useful for checking if the
value of variables and options are set correctly. It triggers the execution of the
subscribed script immediately. The settings can be checked in the job-log file, see
Figure 35.

| Finished logs, cli [1.0.0.0] (file) 2

B53.83.2023, 18:43:35 z:root (root) Execution started on scri
B5.83.2823, 18:48:35 z:root (root) Zagreus version: 1.5.5.7
B53.83.2023, 18:43:35 z:root (root) Job ID: 88618d6c-5428-44h:
B5.83.2823, 18:48:35 z:root (root)

Job starting variables:

variable _name wvariable_wvalue

callerIP

callerType gui

currentUserId 1

dokuwikiurl

&8 Subscriptions O >
Setting subscriptions for script

Create, modify or remove subscriptions

Script name: fadmin/scripts/cli

.chedule path Active Variables MNew...
admin/schedules/event schedules/Sampl... yes x:3, y:123 Edit

Edit as new...
Remove...
< >

worker0s ﬂ.inux

X a
y 123
zagreusVersion 1.5.5.7

info
B5.83.2823, 18:45:35 z:root (root) Default encoding: UTF-3
B5.83.2823, 18:48:35 z:root (root) Default locale / country:
88.83.2823, 18:48:35 z:root (root) Default locale / language

Figure 35 — Checking subscription variables in the job-log file after clicking the Run now button

The feature of the Edit as new... button is useful when the subscription variables
and options are the same in multiple cases. If the user wants to subscribe the particular
script to a new event-type resource with the same settings (or even with just smaller
changes), this is an effective solution.

It is also recommended to think about when to delete and when to only deactivate
a subscription. Since the subscriptions are deleted permanently, and therefore they
cannot be recovered from the recycle bin, in most of the cases setting the Active

property of the corresponding subscription to false (i.e. deactivating it) could be a
better solution.

15.10 Troubleshooting

15.10.1 Practices for event-type resources

In the followings some general practices and some specific cases will be described
for the event-type resources, i.e. for time schedules, mail watchers and database
watchers.

15.10.1.1 General practices

Make sure that the Watchers module of the Zagreus Server is running (see - Stop
/ start server components).

Since mail watchers and database watchers rely on a time schedule, it is also worth
to see if the Scheduler module of the Zagreus Server is running as well (see - Quartz
scheduler).

Instead of subscribing a heavy-weight, long-running script which operates on
production resources, it is worth to experiment with a simple Zagreus script first, e.g.
one with a simple z: 1og action.

15.10.1.2 Subscriptions

It is worth checking the subscription settings (see also - Editing a subscription).
Variables and options set in the subscription override the existing script settings. The
following steps should be performed to verify basic subscription settings:

e Check if the required subscription exists

e Check if the required subscription is active

e Check the variables and options of the subscription

e Use the Run now button to check the result of script execution triggered by
subscription. In the job-log file, the actual values of the script starting variables
can also be verified, see = Editing a subscription

15.10.1.3 Database watchers and mail watchers

Database watchers and mail watchers both rely on connection resources. It is
recommended to test the database, POP3 or IMAP connection which is used in the
watcher definition, see = Test connection feature.

Use the context menu item Evaluate watcher condition... to test the syntax and
behavior of the filter condition, see - Evaluate watcher condition and = Evaluate
watcher condition.

15.10.2 Command-line tools

When a script execution is initiated from the command line, the result can be
verified in the Finished jobs window of the Zagreus Client (see also = Finished jobs
window). If the result cannot be found in the Finished jobs window, then the initiation
of the script execution has failed. In such a case, the following details are
recommended to be checked:

e server definition in the command

e sort definition in the command

e port definition in the Zagreus Server configuration (see - General properties)
e user authentication data

e server machine firewall settings

e server machine and router port forwarding settings

About the command-line tools in details, see > Command-line tools.

15.10.3 The HTML application

In the case of Zagreus HTML application, if the appropriate HTML page does not
load, the following items should be checked:

e |Isthe Zagreus Server running?

e |s the port definition in the URL correct?

e |sthe port definition in the Zagreus Server configuration correct? (See - General
properties)

Feedback messages about script execution are displayed in section Logging console,
see - Run script and get info tab.
About the Zagreus HTML application in details, see - Zagreus HTML application.

16. Special features

There are some special features in Zagreus that are complex enough to be discussed
in separate chapters. Next, these features are described in details.

16.1 Standalone Worker

Since Zagreus version 1.5.6.0, the Zagreus Worker module can be started as a
standalone Java application (‘Standalone Worker’). This allows the user to execute a
script without the whole Zagreus System running. The script still can use a large portion
of the Execution Engine functionality, but in the abscence of all other modules to which
the Zagreus Worker is usually connected, some limitations are present.

Unlike the Zagreus Worker, which is a part of the whole Zagreus System, the
Standalone Worker does not run continuously. It must be started by the user via
command line with a specified script to be executed. When the script execution is
finished, the Standalone Worker stops running.

16.1.1 How to use

The following list is the recommended way for the user to efficiently use the
Standalone Worker module:

e The user first should develop the script to be executed in a standard Zagreus
environment, being aware of the limitations of the Standalone Worker.

e The script then should be copied to the worker filesystem. It can be done, for
example, by using a file: read action and the worker-output attribute.

e Since job execution cannot be monitored in the usual ways (e.g. Zagreus Client,
job-log etc.), the script should be designed in a way that its output can be read
from created files in the worker filesystem or in the Standalone Worker job-log
files, see = Local filesystem in the Zagreus Worker.

e The user now can start the Standalone Worker with the provided command line
script zagreus home/worker-controller/worker/standalone worker.bat
(or standalone worker.sh on Linux systems), using the path of the script and
the optional script start-up variables as command line parameters. E.g.:

standalone worker.bat folder/script.xml x=1;y=2

where the path of the script to be executed is relative to the worker filesystem
root, see - Local filesystem in the Zagreus Worker, and the optional second
command line parameter is of the format keyl=valuel; key2=value?2 ..

o After the execution of the script has been finished (which is clearly visible in the
command line window), the generated log files can be accessed in the specified
log folder, see below. The default value is zagreus home/worker-

controller/worker/joblog.

e Any other files that were generated by the script execution can manually be
inspected in the worker filesystem folder.

16.1.2 Configuration

Just like the Zagreus Worker, the Standalone Worker module is using the
worker.properties configuration file, see - Zagreus Worker configuration. The
following path properties are particularly important for the Standalone Worker
module:

e worker.filesystem.path
Defines the OS worker filesystem root folder, relative to the Worker module root
directory.
Default value: ffilesystem

e worker.standalone.joblog.path
Defines the job output log folder, relative to the Worker module root directory.
Default value: /joblog

It is very important to set the correct -Dworking.folder and -Djava.folder
parameter values inside the provided starting script.

In some cases, the user might need to manually edit the value of the Java classpath
parameter (i.e. cp) in the starting script, e.g. when a new MicroStrategy library version
isinstalled in the /11ib folder of the Worker module, see - Worker startup properties.

16.1.3 Licencing

Because of the fact that the Standalone Worker module runs without a Zagreus
Server connection, it has no access to the licence key which is installed on the server.
Therefore it needs the licence key in its own folder structure. The user needs to put
the licence key file into the /conf folder relative to the Worker module root under the
name key.txt

16.1.4 Limitations

Because of the fact that the Zagreus Server is not accessible, the user needs to be
aware that only resources stored only on the worker side are available. The following
limitations should be considered when using the Zagreus Worker in standalone mode:

e The action group file cannot be used in the script. A substitute for using the
file actionsisthe wfile action group.

e The output common attribute cannot be used. The user can use the worker-
output common attribute instead, see - worker-output attribute.

e The z:include action does not work. The content of the included resource (in
most cases a connection definition) must be directly copied into the executed
script instead.

e The running of the Standalone Worker cannot be monitored from the customary
Zagreus clients, e.g. Zagreus Client, Zagreus Monitor.

16.1.5 Notes

Here is a non-comprehensive list of actions and common attributes which should be
avoided during the development of a script intended to be executed with a Standalone
Worker:

e file action group

e zs action group

e z:include action

e z:logfile action

e output common attribute (use the common attribute worker-output instead)

e ftp:lcd, ftp:mget, ftp:mput actions

e filename attribute of excel : readaction (use wfile: read child action instead)

e template attribute of excel :workbook action

e pdf:to-image, pdf:extract-images actions

e attachments-target-path attribute of the msft:get-mail action

o xs/ attribute of the xs1t:transform action (use xsl-value attribute instead)

e filename attribute of the zip:read and zip:dir actions (use wfile:read
child action instead)

e wildcard attribute of the zip: file action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 463

16.2 External script execution

One of the recent special features in Zagreus is the ability to integrate methods for
external script execution. ’Scripts’ in this context are not the Zagreus script resources
but scripts from external programming languages and frameworks, like Python, R,
Powershell, etc.

All this functionality is organized around the dedicated z : execute Zagreus action.
In the following, the configuration and the usage of the external script execution is
described in details.

16.2.1 How it works

External script execution works in the following way:

4) A Zagreus script is initiating an external script execution by the z:execute
action inside the Zagreus script.

5) The z:execute action specifies an external script and its framework type (like
python, R, Powershell, etc.) to be executed. This external script is stored in the
local database or in the server filesystem as a simple file resource. An extension
like .py, .R, .ps1 is recommended to use.

6) When the Zagreus execution engine is processing the z:execute action, the
following steps are taken:

a) The external script is copied to a pre-defined temporary folder in the worker
filesystem with a specified / generated name, see - Configuration

b) A command line is constructed by using the executor binary, the copied
temporary file name path and the parameters. The exact way of this
construction is depending on the tempfilename and the params attributes,
see - tempfilename attribute and - params attribute.

c) The Zagreus Worker JVM starts a new external process to execute the
constructed command line.

d) Depending on the async=false/true attribute of the z : execute action, the
Zagreus script processing waits for the end of the external process

(synchronous execution) or release it (asynchronous execution), see -
Synchronous and asynchronous execution.

7) The Zagreus script continues to process its other actions and eventually ends.

8) The result of the externally executed script can be accessed in different ways,
depending on the async attribute.

16.2.2 Configuration

Each script execution framework type has to be configured in the Zagreus Worker
Configuration, see - Zagreus Worker configuration. First, a user-defined type label has
to be chosen for the actual execution framework, e.g. ‘python’ for python executables.
(In the following we will refer to this as <t ype>’.) This label is very important since it
will be referred to in the type attribute of the z : execute action.

Then the following properties have to be defined for each framework type:

e worker.execute.<type>.bin
This property specifies the OS full path (in the format of the given OS) of the
binary executable file of the selected framework, e.g. C: \Python\python.exe

e worker.execute.<type>.tempfolder
This property specifies the path of the temporary folder relative to the root folder
of the worker filesystem, where the temporary script files will be saved for
execution, e.g. /python-scripts

16.2.3 tempfilename attribute
The copied temporary file name will be generated according to the following rules:

o |If the tempfilename attribute is specified, the temporary file name will simply be
the specified value.

o |f the tempfilename attribute is not specified, then the temporary file name will
be generated, with the actual time stamp (in the format ‘yyyyMMddHHmMmss'):

o If the external script to be executed is defined by using the name attribute
in the z:execute action, the file name of the specified Zagreus resource

will be used with the timestamp. For example, if the script path was
/Jusers/testuser/external_scripts/test.py, the generated filename for the
copied temporary file will be test-20230901153030.py

o If the external script to be executed is defined by any other way (using the
id attribute or a child element, so the original file name cannot be retrieved),
the name ‘script’ will be used with the timestamp. For example, if the
content of the (here, a python) script was inserted as a child element in the
z:execute action, the generated filename for the copied temporary file
will be script-20230901153030.py

16.2.4 params attribute

The command line is constructed according to the following rules, depending on the
params attribute:

o If the params attribute is not specified, the command line is:
executor binary temporary filename fullpath

o |If the params attribute is specified, the command line is using the value of this

attribute as the parameter list, i.e.:
executor binary temporary filename fullpath parameters

o |If the params attributes is specified and it contains the #tempfilename string,
then the #tempfilename string will be substituted by the fullpath of the copied

temporary file, and the command line will look like:
executor binary resolved parameters

This is the only workaround for the special cases where the temporary file fullpath
is not the first parameter of the executor binary, see this example -
#tempfilename substitution.

Note: the params attribute can contain multiple parameters divided by the space
character. Also, depending on the operating system, if there is a space character inside
one parameter value, double quotes can be used to force them to be created as one
parameter. For example, the string

one two “three four” five

will be treated as only four parameters.

16.2.5 Synchronous and asynchronous execution

External scripts can be executed either in a synchronous or asynchronous way,
specified by the async attribute in the z:execute action. In case of synchronous
execution (async="false”), the Zagreus processing engine waits for the end of the
external process, and only then it continues processing the subsequent Zagreus action.
Also, the output of the externally executed script is accessible as the result of the
z :execute action, as well as the exit value of the external execution is passed as the
result attribute exit value.

On the other hand, in case of asynchronous execution (async="true”), the Zagreus
processing engine starts the external script execution process, but it immediately
continues processing the subsequent Zagreus action. Since we release the external
process at this point, the Zagreus script cannot reach its output or exit value. Therefore
the output stream and the error stream of the external process are redirected into two
separate files in the worker filesystem, right next to the copied external script. Their
file names are the same as the original copied script, but with .out and .err
extensions, respectively. The OS full path of these files are returned in the results
attributes output filename and error filename.

16.2.6 Examples

In the worker.properties configuration file, the external framework type label
‘python’ has been chosen, and used in the following two properties:

worker.execute.python.bin=C:\python-embedded\python.exe
worker.execute.python.tempfolder=/python

In the Zagreus local database, an external python script test.py is saved in the folder
/Jusers/testuser/external_scripts, see Figure 1.

v [external_scripts
=] test.psl

= test.py
£l test.R

Figure 1 —The list of external scripts stored in the external_scripts folder

The content of test.py is the following:

import sys

print ("Number of arguments: ", len(sys.argv), "arguments.")
print ("Argument List: ", str(sys.argv))

Next we present some examples which consist of executing this python script via a
z :execute action in different ways.

16.2.6.1 Synchronous execution

In order to execute the above python script synchronously, the following action has
been created in a Zagreus script:

al[1][m[c]

name = fusers/testuser/external_scripts/test.py

async = false
type = python
params = ane two three
tempfilename =

log = true

Figure 2 — A z : execute action referring to the test.py script with async="false”

The z :execute action in Figure 2. will perform the following steps:
1) It loads the content of the /users/testuser/external_scripts/test.py file.

2) The content is saved in the /python folder of the worker filesystem. Hence the
tempfilename attribute is empty, the copied file name will be generated with a
timestamp, such as test-20230901153030.py

3) The processing engine translates the worker file system path of the previously

copied file into OS full path, such as C:\Programme\zagreus\worker-
controller\worker\filesystem\python\test-20230901153030.py

4) The processing engine constructs the full command line using the specified
executor binary, the translated OS filesystem path and the specified parameters:

C:\python-embedded\python.exe C:\Programme\zagreus\worker-controller\
worker\filesystem\python\test-20230901153030.py one two three

5) The processing engine starts an external process executing the previously
constructed command line. Since the async attribute was set to false, it waits for

the end of the external process. The output of the external process is passed as
the result of the z :execute action.

6) Since there is a log="true” attribute specified, the result of the z : execute action
is logged to the job-log file:

Number of arguments: 4 arguments.
Argument List: ['c:/work/eclipse_workspace_new/zagreus-worker-1.5.8/filesystem/python/test-20823111514495@.py", 'one', 'two', 'three']

16.2.6.2 Asynchronous execution

In order to execute the test.py python script defined above asynchronously, the
following action has been created in a Zagreus script:

EIRINIE

name = fusers/testuser/external_scripts/test.py

async = true
type = python
params = one two three

tempfilename =

Figure 3 — A z : execute action referring to the test.py script with async="true”

The z:execute action in Figure 3. will perform the following steps:

1) It loads the content of the /users/testuser/external_scripts/test.py file.

2) The content will be saved in the /python folder of the worker filesystem. Hence
the tempfilename attribute is empty, the copied file name will be generated with
a timestamp, such as test-20230901153030.py

3) The processing engine translates the worker file system path of the previously

copied file into OS full path, such as C:\Programme\zagreus\worker-
controller\worker\filesystem\python\test-20230901153030.py

4) The processing engine constructs the full command line using the specified
executor binary, the translated OS filesystem path and the specified parameters:

C:\python-embedded\python.exe C:\Programme\zagreus\worker-controller\
worker\filesystem\python\test-20230901153030.py one two three

5) The processing engine starts an external process executing the previously
constructed command line. Since the async attribute was set to true, it
immediately continues executing the further actions of the Zagreus script.

6) The external process is executing the specified command line independently of
the Zagreus processing engine. It may even last longer than the execution of the
Zagreus script.

7) Due to the asynchronous execution, the output and the error streams of the
external process are redirected to two separate files in the /python worker
filesystem subfolder, with the .out and .err extensions, respectively, see

Figure 4.
|| test-20230901153030.py out 172
| | test-20230801153030.py err 0
|7 test-20230901153030 Py 12

Figure 4 — The copied python script and the generated output and error files
16.2.6.3 Custom tempfilename attribute

The user can opt for specifying a custom name for the copied temporary file by using
the tempfilename attribute. In the next example, the z:execute action is the same
as seen in Figure 3., but with a tempfilename attribute specified:

a|[1][r[c]

name = fusers/testuser/external_scripts/test.py

async = true
type = python
params = one two three

tempfilename = custom_test.py

Figure 5— A z : execute action specifying the tempfilename attribute

The steps of the execution are identical to those in the previous example, with the
exception of the name of the copied file, which will be custom test.py (without a
timestamp). Therefore, the following files will be generated in the worker filesystem
temporary folder:

| | custom_test.py out 164
|| custom_test Py 112
| | custom_test.py err 0

Figure 6 — The copied python script and the generated output and error files with a custom name

16.2.6.4 #tempfilename substitution

In this example a Powershell script is executed with the z : execute action. In order
to allow this, in the worker.properties configuration file, the type label
‘powershell’ has been chosen, and is used in the following two properties:

worker.execute.powershell.bin=powershell.exe
worker.execute.powershell.tempfolder=/powershell

Note: there is no need to specify the full path of the executor binary (i.e.
powershell.exe), if the location of the binary is part of the OS system path.

In the Zagreus local database, an external Powershell script test.ps1 is saved in the
folder /users/testuser/external_scripts (see Figure 1.) with the content:

Write-Host "You passed $($args.Count) arguments:"
Sargs | Write-Host

In Figure 7., a properly configured z : execute action is shown:

3t T[]

name = fusers/testuser/external_scripts/test.ps1

async = false
type = powershell
params = -f #tempfilename one two three

tempfilename = custom.ps1

log = true

Figure 7 — A z : execute action specifying a powershell type

In the case of executing Powershell scripts with the powershell.exe binary, there is
a special order of parameters: the script to be executed is not the first parameter of
powershell.exe (as it is in case of most execution frameworks), but it has to be
specified with the - £ switch. Because of this, the user has to properly specify the whole
parameter list in the params attribute, including the #tempfilename tag, which will be
substituted with the copied custom temporary file name. Thus, the whole command
line will be the following:

powershell.exe —-f C:\Programme\zagreus\worker-controller\worker\
filesystem\powershell\custom.psl one two three

16.3 Document URL feature

In the Zagreus System, there is a possibility to open dynamically created external
links from the Zagreus Client application. This is useful for externally stored
documentation (e.g. Confluence pages) for individual resources.

For example, in Confluence, it is common for the URL of a page to include the title
of the page. Confluence often generates URLs based on the title to create human-
readable and user-friendly links. The title is usually converted to lowercase, spaces are
typically replaced with + signs, in the following format:

https://your-confluence-site.com/display/SPACEKEY/My+Example+Page

Therefore, a resource-based documentation can easily be implemented by
Confluence system using the Zagreus Document URL feature, which allows the user to
use document-specific external links. These links open in the default browser of the
installation environment.

The Zagreus Document URL feature works for the following resource types:

e script

e connection

e template

e time schedule

e event schedule

e mail watcher

e database watcher
o file trigger

Therefore, this feature can only be used for resources stored in the embedded
database, and not to those stored in the local OS filesystem.

16.3.1 How to use

The Document URL needs pre-defined variables. These variables can be declared on
several different levels, for example server, owner, script level (see also - Declaration
levels). For further details about the variables, see the next chapter.

Once the Document URL feature is configured, the user can use it in the Zagreus
Client application by opening the Resource info dialog box (see - Resource
information). At the end of the first line of the dialog box, a new icon appears, see

Figure 8. By clicking on the icon, the default external browser opens the dynamically
created document URL.

¥ Resource info X
Resource name: {tl. script with spaces
Resource id: 201 df6 1894 cdfdfbb03385ech5a9752

Version: 1.0.0.0, current

Resource type: script

Figure 8 — The Document URL link icon in the Resource info dialog box

16.3.2 docurl variable

The docurl variable must be declared on any of the following levels: server, owner
and script. The already discussed order of variable resolution (see - Precedence order
for resolution) applies to this variable declaration, i.e. a variable docurl defined on the
script level overrides the variable docurl defined on the server level. The value of the
docurl variable defines a valid URL with the necessary http:// or https:// prefixes. For
example, :

variable.server.docurl=https://my-confluence.com/display/SPACE/confluence-
page

This example defines a static link, i.e. it will point to the same URL for any given
resource. For the dynamic behaviour, there is a possibility to use substitution keys.
When a substitution key is present in the value of the docurl variable, it will be resolved
dynamically when the user opens the Resource info dialog box. The following
substitution keys can be used:

e %resourceld
refers to the ID of the resource

e %resourceldWithVersion
refers to the ID of the resource with the concatenated version

e %resourceName
refers to the name of the resource

e %resourcePath
refers to the full path of the resource

e %resourceDescription
refers to the description of the resource until the first line break, see - Resource
properties

For example, for the docurl variable using the %resourceName substitution key:

variable.server.docurl=https://confluence.com/display/SPACE/%resourceName

will be resolved as https://confluence.com/display/SPACE/sample_script for the
resource named sample_script.

16.3.3 docurl_replace variable

Sometimes there is a need to replace particular characters in the dynamically
created link. For example, in Confluence the URL of a page is derived from the title of
the page. When the title contains spaces, these appear as plus signs in the page URL.
In Zagreus, the only way to replace some special characters to others in the generated
Document URL is the provided docurl_replace variable functionality. The usage of this
variable is optional.

Just like the docurl variable, the docurl_replace variable can also be declared on the
server, group, user and script levels. Variable resolution behaves the same way as well.
The value of the docurl_replace variable needs to follow the following format:

variable.server.docurl replace=’ ',,’+’

This example defines a character pair: all occurrences of the first character (in this
example, the space character in apostrophes) will be replaced by the second one (the
plus sign). The two character definitions are separated by double commas (,,).

This functionality is not limited for replacing single characters, substrings can also
be used.

Multiple replacements can be defined by using double semicolons (;;) as separators.

variable.server.docurl replace=’ ’,,'+';;’a’,,"a’

This example replaces all space characters with plus signs as well as all a-umlaut (d)
characters with the letter ’a’.

16.3.4 Examples

16.3.4.1 General docurl definition

When the user wants to use a general approach for the Document URL feature, only
two variables need to be specified on the server level:

variable.server.docurl=https://confluence.com/display/SPACE/%resourceName
variable.server.docurl replace=’ ’,, '+’

This allows the user to open the Resource info dialog for the supported resource
types and to click on the appearing Document URL icon. The generated URL contains
the name of the selected resource at the end, and the space characters are replaced
by plus signs.

16.3.4.2 User-specific docurl definitions

When the goal is to use a general approach for the Document URL feature for most
users, but a different approach for one specific user, first both variables need to be
specified on the server level:

variable.server.docurl=https://confluence.com/display/SPACE/%resourceName
variable.server.docurl replace=’ ’,,’+’

Then the following variables need to be defined on the user level, see Figure 9.:

L
Marne Value
docurl https://confluence.com/display/SPACE/ %resourceld

Figure 9 — The docurl variable set for the specific user

Now the Document URL behaves in the following way:

e Forresources whose owner is not the specific user, the generated Document URL
will follow the general approach declared on the server level.

e Forresources whose owner is the specific user, the generated Document URL will
follow the user-specific approach as seen in Figure 9.

16.3.4.3 A single script-level docurl definition

When the goal is to set a Document URL for one single script resource, the user
simply needs to set the docurl variable for the specific script, see Figure 10.:

L] Script variables and options X

Script variables Executing and queuing options

Script variables: || &
Marme Value
docurl https://confluence.com/display/SPACE/static+ page

Figure 10 — The docurl variable set for the specific resource

Since the variable declared on the script level overrides all other levels where the
docurl variable might be set, the specified Document URL will be assigned to the given
script. Therefore, a static link is satisfactory without any substitution.

For the other resources, the Document URL will be determined based on the
variables set on the other levels (i.e. server, group and user).

16.3.4.4 Defining the Document URL in the resource description

There is a special case when the resource description contains the Document URL
for each resource. To do this, the user needs to specify the $resourceDescription
as the value of the docur/ variable (either on server, user or group level). The following
example shows such a definition on the server level:

variable.server.docurl=%resourceDescription
variable.server.docurl replace=" ’,,’+’

Then, each resource description must contain the whole Document URL static link
in the first line, see Figure 11.:

As it was mentioned earlier,

%' Resource info

Rezocurce name:

Resource id:

Version:
Resource type:
Full path:

Size:

Owner name:
Created:

Last modified:
Created by:

Description:

#. script with spaces

f291df61894c4f4fbb03385ech5a9752

1.0.0.0, current

script

Jadmin/scripts/script with spaces

1018 byte(s)

admin

04.03.2024, 15:26:23

04.03.2024, 15:26:23

admin

https://confluence.com/display/SPACE/static+page
this is the Document URL for this resource

Cancel

additional comments).

16.3.4.5 A more complex example with variable referencing

The docurl variable can also refer to other variables, declared on different levels. By
using variable referencing, more complex examples can be built.
In the next example, aside from the usual docurl and docurl_replace variables, there

only the first

are two further variables defined on the server level:

variable.
variable.

variable.
variable.

The variables docurl_alt_1 and docurl_alt_2 will behave as optional alternatives

server
server

server
server

against the default docurl variable.

.docurl replace=" ’,,"+’

.docurl alt l=%resourceDescription

Figure 11 — The Document URL link is set in the resource description

line

.docurl=https://confluence.com/display/SPACE/%resourceName

.docurl alt 2=https://custom-server.com/%resourceld

is substituted by the
$resourceDescription substitution string (from the second line the user can add

For one specific user, the docurl variable can be overridden by referencing to the
first alternative variable declared on the server level, see Figure 12.:

o
MName Value
daocurl S{zerver.docurl_alt_1}

Figure 12 — The docurl variable set for a user is referencing to the docurl_alt_1 server variable

For one specific script, the docurl variable can be overridden by referencing to the
second alternative variable declared on the server level, see Figure 13.:

(L

Script variables Executing and queuing options

Script variables: i || &
MName Value
docurl $server.docurl_alt_2}

Figure 13 — The docurl variable set for a script is referencing to the docurl_alt_2 server variable

In this example, the specific script will generate the Document URL derived from the
value of the script ID (i.e. docurl_alt_2), while the Document URLs of all resources of
the aforementioned specific user will use the %resourceDescription substitution string.
All other resources will simply use the default docurl variable from the server level.

By using such a structure, the Document URL behavior can be controlled in a very
flexible and user-friendly way.

16.4 Bank holidays feature

The Zagreus System maintains a list of common European holidays as well as a
configurable, country-specific list of additional bank holidays. The list plays an
important part when performing working day-related calculations with the following
functions:

e workingday(date) and workingday(date, locale)
Tells if the given date (with the optional locale) is a working day.
Example:
workingday(2023-05-01’, ‘AT’) returns false
workingday(2023-12-18’, ‘AT’) returns true

e workingdayofmonth(date) and workingdayofmonth(date, locale)
Tells which working day of the actual month is the given date.
Example:
workingdayofmonth(2023-12-04’, ‘AT’) returns 2

e workingdaysafter(date, number) and workingdaysafter(date, number, locale)
Tells the date which is the specified ‘number’ workingdays later than the given
date.

Example:
workingdaysafter(2023-12-04’, 5, ‘AT’) returns ' 2023-12-11"

16.4.1 Common European holidays

This is a fixed list of common European holidays:

e January 1

e Mayl1

e November 1

e December 25 1
e December 26
e Easter Monday
e Ascension Day
e Whit Monday
e Corpus Christi

16.4.2 Specifying additional bank holidays

The Zagreus System provides a way for the user to specify additional bank holidays.
It can be useful to set locale-specific bank holidays (i.e. dates which count as holidays
only in the particular country).

The following steps need to be taken in order to set a list of additional bank holidays:

e Specifying the full path of a bank holidays descriptor file
The user needs to specify the full path (either in the embeded database or in the
local filesystem) which points to the simple text file which contains the list of
additional bank holidays (see below). This can be set by the bankholidays.path
property in the Zagreus Server configuration, see - Miscellaneous properties.

e Creating the bank holidays descriptor file
The user needs to create a simple text file containing the list of additional bank
holidays in the following format: YYYY-MM-DD,;<Country code> in each line.
Comments can be used by starting the line with the # character.
Example:
2023-01-06,AT
2023-08-15,AT

17. Server administration in the Zagreus
Client

There are a bunch of administrative options which are available in the Zagreus Client
application. These options are grouped together under the server definition node
context menu in the Zagreus Browser window, see Figure 1.

~ [] Zagreus Demo Server [connected]
f% groups fF| Disconnect from server |

€ users
ﬂ admin Administrator options » - Group management..
B recycleb Modify server definition S LIETERETEETL

_ _ S Cancel all jobs...
Remove server definition

Stop/start server components...

Get li inf tion... -
% 1cence imermation Manage certificates...

Server infermation . .
Monitor watchers, triggers...

Configuration testing...

Figure 1 — The server definition node context menu

17.1 Administrator options

The menu item Administrator options contains several sub-menu items, which will
be described in details in the further sections.

17.1.1 Group management

It opens the Group management for administrators wizard. Here, groups can be
managed based on the options available in the Select action dropdown list, see Figure
2.

£% Group management for administrators O X
Group management

Please select operation...

Select action: Modify existing group... v

Select group: public

subgroup
testgroup
shared

< Back Finish Cancel

Figure 2 — The Group management for administrators wizard

The following options are available in the Select action dropdown list:

e Create new group...: for creating a new group
e Modify existing group...: for modifying a group
e Delete existing group...: for deleting a group

When the user selects the Modify existing group... or Delete existing group... action,
a further list Select group appears for selecting a particular existing group.

By pressing the Next button, the wizard proceeds to the next wizard page to
complete the selected action.

17.1.1.1 Create new group

By selecting this option, a new group can be created, see Figure 3.

f% Group management for administrators O d

Group management - create new group

Please specify the new group parameters...

Group name: |te5tgroup|

Description:

< Back Finish Cancel

Figure 3 — Creating a new group with the Group management wizard

The following options are available on this wizard page:

e Group name
The name of the group to be created.

e Description
A description can be defined for the group.

After specifying the required information and pressing the Next button, the Group
management - summary wizard page appears for the final confirmation, see Figure 4.

£% Group management for administrators O >

Group management - summary

Summary of the current operation to be executed

Operation: creating new group: testgroup

Click Finish to complete cperation!

Mext = Finish Cancel

Figure 4 — Group management summary for final confirmation in the Group management wizard

17.1.1.2 Modify existing group

By selecting this option, an existing group can be modified, see Figure 5.

f% Group management for administrators O d

Group management - modify existing group

Please specify group parameters...

Group narme: |tegtg|'0l_|p|

Description:

< Back Finish Cancel

Figure 5 — Modifying a group with the Group management wizard

The following options are available on this wizard page:

e Group name
The name of the group can be modified here.

e Description
A description of the group can be modified here.

After specifying the required information and pressing the Next button, the Group
management - summary wizard page appears for the final confirmation, see Figure 4.

17.1.1.3 Delete existing group

By selecting this option, an existing group can be deleted. The Group management
- summary wizard page appears for the final confirmation, see Figure 4.

17.1.2 User management

It opens the User management for administrators wizard. Here, users can be

managed based on the options available in the Select action dropdown list, see Figure
6.

€ User management for administrators O *

User management

Please select operation...

Select action: Medify existing user... ~

Select user: Test User ~

< Back Finish Cancel

Figure 6 — The User management for administrators wizard

The following options are available in the Select action dropdown list:

e Create new user...: for creating a new user
e Modify existing user...: for modifying a user
e Delete existing user...: for deleting a user

When the user selects the Modify existing user... or Delete existing user... action, a
further dropdown Select user appears for selecting a particular existing user.

By pressing the Next button, the wizard proceeds to the next wizard page to
complete the selected action.

17.1.2.1 Create new user

By selecting this option, a new user can be created, see Figure 3.
To create a new user, select the Create new user... option and click Next to open
User management - create new user wizard page.

€ User management for administrators O X

User management - create new user

€ Fill user login name!

User login name:

Password:

Password again:

Administrator:

Use password policy:

User title:

First name:

Last name:

Il

Birthday (dd.mm.yyyy):

Sex: Male ~

E-mail: | |
Maobile phone: | |
Groups: Belong Group name RO W E
public 0o oo
[shared O oo
Description:

MNext > Finish Cancel

Figure 7 — Creating a new user with the User management wizard

The following options are available on this wizard page:

e User login name
The name of the user to be created. This field is mandatory.

Password
The password for the user to be created. If the Use password policy option is
checked, the password policy rules must be applied. This field is mandatory.

Password again
The user has to enter the password again to ensure that there are no typing
errors. This field is mandatory.

Administrator
If set, the new user will have administrator rights, see - Administrator user
rights.

Use password policy:
If set, the password policy is activated for the user, see - Password policy.

User title
The title of the user.

First name
The first name of the user.

Last name
The last name of the user.

Birthday (dd.mm.yyyy)
The birthday of the user. The date format is indicated inside the parentheses.

Sex
The sex of the user.

E-mail
The e-mail of the user.

Mobile phone
The mobile phone number of the user.

e Groups
The groups associated with the new user. By default, the user is assigned to the

public group. Additional groups can be selected by checking the checkbox under
the Belong column. The R, W and Ex are indicators for read, write and execute

user rights, respectively, for the particular group.

Groups: Belong Group name RwW B
public oo o
1 shared o oo

Figure 8 — The Groups table in the User management wizard

e Description
A description for the user.

After specifying the required information and pressing the Next button, the User
management - summary wizard page appears for the final confirmation, see Figure 9.

O x

€ User management for administrators

User management - summary

Summary of the current operation to be executed

Operation: creating new user: Sample User

Click Finish to complete operation!

Figure 9 — User management summary for final confirmation in the User management wizard

17.1.2.2 Modify existing user

By selecting this option, an existing user can be modified, see Figure 10.

€ User management for administrators O d

User management - modify existing user

Please specify the user parameters...

User login name: | Sample User

Pazsword:

Password again:

Administrator: |
Use password policy:]
Password expiration: | |
Account id: |g |
User title: I:I
First name: | |
Last name: | |
Birthday (dd.rmm.yyyy): | |
Sex: Male — ~
E-rnail: | |
Mobile phene: | |
= Belong Group name R W E i
public O O d

O testgroup O 0O O

] test] O O o

| test3 O 0O 0O hd
Description:

= Back Finish Cancel

Figure 10 — Modifying a user with the User management wizard

The attributes are mostly identical to those of the user creating process in the
previous chapter; next only the differences are listed:

the same as those available during the user creation process (See -->), with the
exception of one when the password policy option is selected for the first time during
the user modification.

e Password expiration
If the password policy is activated for the user, a date is displayed here. (For
password policy and password expiration, see = Password policy)

e Account id
The unique identifier number of the user. This field cannot be changed.

After specifying the required information and pressing the Next button, the User
management - summary wizard page appears for the final confirmation, see Figure 9.

17.1.2.3 Delete existing user

By selecting this option, an existing user can be deleted. The User management -
summary wizard page appears for the final confirmation, see Figure 9.

17.1.2.4 Changing password

The user can change his/her own password by selecting the Change password...
menu item from the user context menu (right-clicking his/her user home folder node).
This opens the Change password dialog box, see Figure 11. The old password needs to
be specified as well as the new one. The user can select the Show checkbox in order to
see the plain-text password.

8 Change passward X
Old password | | []Show
Mew password | | [JShow
Confirm new password | | []Show

Figure 11 — The Change password dialog box

If the password policy is switched on for the given user (see = Password policy), the
new password needs to satisfy the conditions of the password policy.

An administrator user can change the password for all the users. In this case, the old
password of the given user does not need to be specified, see Figure 12.

¥ Change password d
Mew password | | | [1Show
Confirm new password | | [JShow

Figure 12 — The Change password dialog box for an administrator user

17.1.3 Cancel all jobs

It opens a Cancel jobs dialog box for cancelling jobs based on their status, see Figure
13.

For further information about job cancelation methods in Zagreus System, see -
Cancellation.

(L

[~] Running
] Queued
[] Suspended
[] Starting
[] Debugging

Cancel jobs Close

Figure 13 — The Cancel jobs dialog box

17.1.4 Stop / start server components

It controls components of the Zagreus server. This is the very same dialog as
displayed in the Zagreus Monitor; for a detailed description, see - Additional options.

17.1.5 Manage certificates

It opens the Manage certificates dialog box, see Figure 14. With this dialog, the user
can manage the SSL certificates installed on both the Zagreus server and the Zagreus
Worker Controller side, see = Security. There are two tabs by default: Zagreus Server
and Zagreus Worker Contoller 1 (the current 1.5.6.0 version of Zagreus supports only
one Worker Controller module). The two tabs behave in an identical way, the only
difference is the location of the truststore file.

L] Manage certificates (Zagreus Demo server)

Zagreus Server Zagreus Worker Controller 1

Truststore file name: "client.trustedservers” (table refreshed: 2023-11-22 16:33:16)

Alias Principal

atlassian_1 CM=DigiCert TLS R5A SHAZ236 2020 CA1, O=D...
atlassian_2 CM=DigiCert Global Root CA, OU=www.digic...
atlassian_3 CMN=DigiCert Global Root CA, OU=www.digic...
Zagreus_server EMAILADDRESS=support@etixpert.com, CN=..

Valid from
2022-11-07
2021-04-14
2006-11-10
2022-08-23

Valid te
2023-12-08
2031-04-14
2031-11-10
2072-08-10

Type
X509
X.509
X.509
X.509

Add certificate...

Delete certificate

Close

Figure 14 — The Manage certificates dialog box

On the top of the tab item, the truststore file name for the selected module is

displayed. The most recent time when the truststore file was loaded is also indicated;

after all certificate operations, it is properly refreshed.

The table displayed on the tab item contains the following columns:

e Alias

The alias of the certificate, loaded from the truststore file.

e Principal

The subject distinguished name of the certificate.

e Valid from

The start date of the certificate validity.

e Valid to

The end date of the certificate validity.

o Type

The type of the certificate; in most cases it is X.509.

There are color codes for the table: red indicates an expired certificate, while orange

warns that the certificate will expire within a month.

There are two operations that the user can perform via this dialog box:

e Add certificate...

The user has to select a certificate file from the local OS filesystem via the opened
file browser. This file can be BASE64-encoded or binary type; the extension of the
binary file must be .der. Also, this file can contain multiple certificates
(certificate chain).

After selecting the certificate file, the needs to specify an alias in the Select an
alias dialog box, see Figure 15. Be aware of the fact that if the certificate file
contained a certificate chain, they will be installed separately, and the given alias
will be used with different ordering number suffixes, see the atlassian alias in

Figure 14.
28 Select an alias O *
Alias:
| microsofi]

Figure 15 — The Select an alias dialog box

After pressing the OK button, the user needs to confirm the operaton, and the
certificate will be installed on the selected module. The main table on the tab
item will be refreshed accordingly. If there is any problem with a given certificate
(technical issues or the certificate is already expired), an error message is
displayed.

e Delete certificate
The user first needs to select a particular certificate by selecting a table row, then
needs to click on this button. After confirming the deletion operation, the
selected certificate will be removed from the truststore. The main table on the
tab item will be refreshed accordingly.

17.1.6 Monitor watchers, triggers

Clicking on this menu item opens the Monitoring watchers and triggers dialog box,
where the user can monitor the watchers and triggers on the selected Zagreus server.
There are three tabs on this dialog box: Watchers, File Trigger and DB Connection Pool.

17.1.6.1 Watchers tab

Mail and database watcher resources (see - Mail watcher and - Database
watcher) together are listed on this tab, see Figure 16.

¥ Monitering watchers and triggers X
Watchers File Trigger DB Connection Pool
Watcher path Type Connection Schedule Reset schedule Last evaluation Last execution Actual value
fadmin/schedules/db w... dbwatcher fadmin/connections/m... fadmin/schedules/time... /admin/schedules/time., 20231013 0%:48:00 2023.10.13 09:48:00 10
fadmin/schedules/mail ... mail watcher /admin/connections/i... fadmin/schedules/time... 2023.10.09 17:50:11 2023.06.05 13:50:09 -100
fadmin/scripts/Zagreus ... mail watcher /admin/connections/i... fadmin/scripts/Zagreus... 2023.04.06 14:18:16 2023.04.06 14:18:16 null

Figure 16 — The Watchers tab of the Monitoring watchers and triggers dialog box

The following columns are displayed in the main table:

e Watcher path
The full path of the watcher.

e Type
The type of the watcher. It can be db watcher or mail watcher.

e (Connection
The full path of the connection resource associated with the watcher.

e Schedule
The full path of the time schedule resource associated with the watcher.

e Reset schedule
If a Reset time schedule resource (see - Connection section) is set for the
watcher, the full path of that time schedule resource is displayed.

e Last evaluation
The most recent evaluation date of the watcher (if any).

e [ast execution
The most recent execution date of the watcher (if any).

e Actual value
The actual value of the counter in the watcher. This value is also shown in the
Zagreus mail watcher editor (see - Scheduling section) and Zagreus DB watcher
editor (see - Scheduling section).

17.1.6.2 File Trigger tab

File trigger resources (see - File trigger) are listed on this tab, see Figure 17.

¥ Monitoring watchers and triggers X

Watchers File Trigger DB Connection Pool

Trigger path Folder path Last triggered Trigger filename Event type Currently active
Jadmin/schedules/file tri... /admin/<-filesystem->/pdf 2023.08.2112:44:38 testD1.pdf modified no

Close

Figure 17 — The File Trigger tab of the Monitoring watchers and triggers dialog box

The following columns are displayed in the main table:

e Trigger path
The full path of the file trigger.

e Folder path
The full path of the folder monitored by the file trigger.

e last triggered
The most recent date on which the file trigger was activated.

e Trigger filename

The filename of the OS file that activated the file trigger most recently.

e [Event type
The type of event that activated the file trigger most recently. Can be created,
modified, deleted and exists.

e Currently active
If the file trigger is currently active.

17.1.6.3 DB Connection Pool tab

Database connections kept open by database watchers (with the Keep alive
connections in the background... setting checked, see - Connection section) are listed
on this tab, see Figure 18.

1] Menitoring watchers and triggers *

Watchers File Trigger DB Connection Pool

Connection Driver Host User

fadmin/connections/my... MySOL Connector lava jdbeimysql//192.168.50.171:3306... demo@192.16...

Close

Figure 18 — The DB Connection Pool tab of the Monitoring watchers and triggers dialog box

The following columns are displayed in the main table:

Connection
The path of the connection resource associated with the database watcher.

e Driver

The name of the database driver Java library of the open database connection.

e Host
The JDBC connection string.

e User
The database user of the open connection.

17.1.7 Configuration testing

The configuration settings of the main Zagreus modules such as the Zagreus Server,
the Zagreus Worker Controllers and the Zagreus Workers can be tested by selecting
the Configuration testing... menu item. The modules are able to self-test themselves
by running a specific testing procedure, and the results of these procedures are
displayed in the Self-test results dialog box.

The particular property files involved in the self-testing procedures are:

e Zagreus Server
zagreus_home/server/conf/conf.properties

e Zagreus Worker Controller
zagreus_home/worker-controller/conf/workercontroller.properties

e Zagreus Workers
zagreus_home/worker-controller/worker/conf/worker.properties

In the result, errors and warnings may appear in case of any misconfiguration (e.g.
unknown parameter or wrong value). An example for a self-test result for all three

modules can be seen in Figure 19.

(L

Server self-test result:

WARNING: [variable.server.dokuwikiurl] Value is not set

Worker-controller self-test result:

Everything is ok.

Worker self-test result:

Everything is ok.

Figure 19 — The Self-test results dialog box

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 498

17.2 Get licence information

This menu item opens the Licence info dialog box, which shows information about
the active licence installed on the Zagreus Server, see Figure 20. This dialog box can be
opened even when the server is disconnected.

a,

Licencing information

You can see the licence information here,
or send a new licence key.

Licence status: Company: zagreus_docs A
Execution engines: 4

Parallel loops: 10

Maximum users: 99

Current number of saved scripts: 53

Licence type: Registered.
lirenre nenerated date 7 02 2022 07-75.40 W

Licence key:

Send licence key

Figure 20 — The Licence info dialog box

The Licence status textbox contains information about the licence, see - Licencing.

The user can install a new licence key to the selected Zagreus Server by pasting it
into the Licence key textbox and pressing the Send licence key button. After the new
licence key has been installed on the server, the content of the Licence status textbox
will be refreshed.

17.3 Server information

The Server information dialog box displays version and uptime information about
the actual Zagreus Server, see Figure 21.

&8 Server information >

ICennection info for Zagreus Demo Server (192,168,50.170:7323)

Zagreus Server Version: 1.5.5.7
Uptime: 26 Days, 21 Hours, 24 Minutes, 16 Seconds

Figure 21 — The Server information dialog box

