
Last updated: 2024-05-14

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 2

Table of Contents

1. Introduction .. 16

2. Zagreus as a whole system ... 18

2.1 Zagreus Server .. 19

2.1.1 Communication ... 19

2.1.2 Logging ... 19

2.1.3 Components .. 20

2.2 Zagreus Worker .. 22

2.2.1 Communication ... 22

2.2.2 ID of the Zagreus Worker .. 23

2.2.3 Logging ... 23

2.2.4 Statuses.. 24

2.2.5 Memory handling .. 24

2.3 Zagreus Worker-Controller ... 26

2.3.1 Communication ... 26

2.3.2 Logging ... 26

2.3.3 Statuses.. 27

2.3.4 Starting Zagreus Workers .. 27

2.3.5 Managing Zagreus Workers ... 30

2.3.6 Collecting and sending worker information .. 30

2.3.7 Suspended mode ... 31

2.4 Zagreus Client ... 32

2.4.1 Communication ... 32

2.5 Zagreus Monitor ... 33

2.5.1 Communication ... 33

2.6 Other Zagreus clients .. 34

2.6.1 Communication ... 34

2.6.2 Command-line tools .. 34

2.6.3 Zagreus HTML Application ... 34

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 3

2.7 Security ... 35

2.7.1 SSL Certificates .. 35

2.7.2 Encrypted passwords, cpassword ... 38

2.7.3 Users and password policy .. 38

3. Installation .. 39

3.1 Downloading Zagreus ... 40

3.2 Installation on Windows ... 42

3.2.1 Copying the installation files ... 42

3.2.2 Setting the configuration parameters ... 42

3.2.3 Setting up Zagreus Windows services ... 44

3.2.4 Opening ports in the firewall ... 45

3.2.5 Starting the Zagreus services ... 45

3.2.6 Starting the Zagreus clients ... 45

3.3 Installation on Linux ... 47

3.3.1 Creating the target installation folder ... 47

3.3.2 Unpacking the archive file ... 48

3.3.3 Editing the set_environment.sh file .. 48

3.3.4 Opening ports in the firewall ... 49

3.3.5 Starting and administering Zagreus .. 49

3.4 Sending the licence key .. 50

3.5 Standalone installation of the client modules ... 51

3.5.1 Copying the installation files ... 51

3.5.2 Setting the JAVA_HOME environment variable 52

3.5.3 Starting the Zagreus clients ... 52

3.6 Troubleshooting ... 53

3.6.1 Issues independent of the operating system .. 53

3.6.2 Issues on Windows .. 53

3.6.3 Issues on Linux ... 54

4. Configuration .. 55

4.1 Zagreus Server configuration ... 56

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 4

4.1.1 General properties .. 56

4.1.2 Server startup and shutdown properties .. 57

4.1.3 SSL properties .. 57

4.1.4 MySQL properties .. 58

4.1.5 Queue group properties .. 58

4.1.6 Password policy properties ... 59

4.1.7 Trigger and watcher properties ... 60

4.1.8 Miscellaneous properties .. 60

4.1.9 Server-level execution options .. 61

4.1.10 Server-level and queue-level variables ... 61

4.2 Zagreus Worker-Controller configuration .. 63

4.2.1 General properties .. 63

4.2.2 Worker-related properties .. 64

4.3 Zagreus Worker configuration.. 66

4.3.1 Property lists .. 66

4.3.2 Property declaration for specific Worker instances 66

4.3.3 Worker startup properties .. 67

4.3.4 Connection properties ... 68

4.3.5 Miscellaneous properties .. 69

4.3.6 Worker-level execution options .. 70

4.3.7 Worker-level variables ... 70

4.4 File paths ... 72

5. System setup and administration ... 74

5.1 Licencing ... 75

5.1.1 Content of a Zagreus Licence .. 75

5.1.2 Installing and listing a Zagreus Licence ... 76

5.2 Administrative scripts ... 79

5.2.1 Connections ... 79

5.2.2 Time schedules .. 80

5.2.3 Scripts .. 80

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 5

5.2.4 Error handling .. 81

5.3 Concepts of user and group management ... 82

5.3.1 Users in the Zagreus System ... 82

5.3.2 Groups in the Zagreus System ... 83

5.3.3 Ownership of Zagreus resources ... 84

5.3.4 Password policy ... 84

6. Resources .. 86

6.1 Resource types ... 87

6.2 Resource properties ... 90

6.2.1 List of resource properties .. 90

6.2.2 Resource properties in the Zagreus Client .. 92

6.3 Resource versioning ... 93

6.3.1 Version format ... 93

6.3.2 Current version .. 93

6.3.3 Resource ID and version .. 94

6.3.4 Versioning in the Zagreus Client .. 95

6.4 Resource storaging ... 98

6.4.1 Embedded MySQL database ... 98

6.4.2 Local filesystem in the Zagreus Server .. 98

6.4.3 Local filesystem in the Zagreus Worker .. 101

7. Queuing and jobs .. 104

7.1 Job properties ... 106

7.1.1 Caller and caller type ... 108

7.2 Job lifecycle ... 110

7.3 Queue ... 112

7.3.1 Queue groups .. 112

7.3.2 Queue-level variables .. 113

7.3.3 Priority and priority algorithm... 113

7.4 Hidden jobs ... 115

7.4.1 The job_monitoring execution option ... 115

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 6

7.4.2 The invisible result message .. 115

7.5 Skipped jobs .. 117

7.5.1 Skipped jobs in the Zagreus Monitor .. 117

7.5.2 Skipped jobs in the Zagreus Client .. 118

7.5.3 Setting the tolerance ... 120

7.6 Cancellation .. 122

7.6.1 Manual cancellation .. 122

7.6.2 Multiple cancellation by job statuses .. 123

7.6.3 Cancellation by the zs:cancel action ... 124

7.6.4 Zagreus Server startup and shutdown cancellation 124

7.6.5 Zagreus Worker automatic restart cancellation 125

8. Scripts ... 126

8.1 Actions .. 127

8.1.1 Action groups and action name .. 127

8.1.2 Action attributes .. 127

8.1.3 Action content ... 130

8.2 Order of execution, result flow .. 134

8.2.1 Ordering numbers ... 134

8.2.2 Execution of an action ... 134

8.2.3 Result of an action ... 135

8.2.4 result-message of the script .. 135

8.2.5 Basic traversal of the actions ... 136

8.2.6 Special control flow statements .. 137

8.2.7 Parallel threads in the z:foreach action ... 144

8.2.8 Templates .. 146

8.2.9 Result flow ... 148

8.2.10 Result attributes .. 151

8.3 Includes ... 154

8.3.1 Including connections .. 154

8.3.2 Including templates ... 155

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 7

8.3.3 Including scripts ... 156

8.4 Error handling ... 158

8.4.1 on-error-next-sibling attribute .. 158

8.4.2 on-error-next-child attribute ... 159

8.4.3 z:on-error action .. 159

8.4.4 errorMessage and errorTrace variables .. 161

8.4.5 z:raise action .. 162

8.5 Variables ... 163

8.5.1 z:variable action ... 163

8.5.2 Variable scopes .. 164

8.5.3 Monitoring variables ... 166

8.5.4 Common attributes that create new variables 166

8.6 Engine expressions ... 168

8.6.1 Basic expressions ... 168

8.6.2 Operators ... 169

8.6.3 Lists, records and tables .. 170

8.6.4 Function calls ... 171

8.6.5 Expressions and statements .. 171

8.6.6 Data types .. 173

8.7 Script Logging .. 177

8.7.1 job-log file .. 177

8.7.2 z:log action... 178

8.7.3 log attribute ... 179

8.7.4 Logging levels and loglevel .. 179

8.7.5 z:logfile action .. 182

8.7.6 logfile attribute .. 182

8.7.7 log-attributes attribute .. 183

8.7.8 log-result-attributes attribute ... 183

8.8 XML representation .. 185

9. Connections .. 187

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 8

9.1 Defining connections .. 189

9.1.1 Creating a connection resource .. 190

9.1.2 General connection attributes .. 192

9.2 Using connections... 194

9.2.1 Test connection feature .. 194

9.2.2 Referencing to a connection ... 195

9.2.3 Inserting connections to a script ... 196

9.2.4 Closing a connection .. 198

9.2.5 Opening connections in the Zagreus browser 199

9.3 Secure connections ... 206

9.4 zs connection .. 207

9.5 Tips and tricks ... 208

9.5.1 Creating standalone connection resources ... 208

9.5.2 Using subfolders .. 208

9.5.3 Using meaningful names ... 208

9.5.4 Using resource versioning ... 208

9.5.5 Keeping connections up-to-date ... 209

10. Zagreus Client ... 210

10.1 Zagreus browser window ... 212

10.1.1 Toolbar ... 213

10.1.2 Basic navigation ... 216

10.1.3 Common resource management operations 218

10.1.4 Opening resources ... 225

10.1.5 Searching for resources ... 226

10.1.6 Drag-and-drop operations ... 229

10.1.7 Script-specific operations .. 230

10.1.8 Connection-specific operations ... 237

10.1.9 Operations for event-type resources .. 237

10.1.10 Showing dependent resources .. 238

10.1.11 Send context submenu .. 239

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 9

10.1.12 Context menu of the server definition node 239

10.1.13 Context menu of a user node .. 241

10.1.14 Context menu of a group node ... 242

10.1.15 Recycle bin ... 243

10.2 Editor area .. 244

10.2.1 Script Editor ... 244

10.2.2 Simple text editor .. 246

10.2.3 Other editors ... 247

10.3 Extension windows of the Script Editor ... 248

10.3.1 Outline window ... 248

10.3.2 Attributes window ... 249

10.3.3 Variables / Functions window ... 249

10.3.4 Breakpoints window .. 251

10.3.5 Watch window ... 251

10.4 Monitoring .. 253

10.4.1 Active jobs window.. 253

10.4.2 Active logs window .. 257

10.4.3 Execution engines window .. 260

10.4.4 Finished jobs window .. 265

10.4.5 Finished logs window .. 272

10.4.6 Skipped jobs window ... 273

10.5 Main menu bar ... 277

10.5.1 File menu ... 277

10.5.2 Edit menu ... 277

10.5.3 Window menu ... 278

10.5.4 Tools menu .. 279

10.5.5 Help menu ... 280

10.6 Main toolbar ... 281

10.6.1 Views .. 281

10.6.2 Open/close the Zagreus browser window .. 283

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 10

10.6.3 Open/close the Active jobs window .. 284

10.6.4 Open/close the Active logs window .. 284

10.6.5 Open/close the Engine status window .. 284

10.6.6 Open a new Finished jobs window .. 284

10.6.7 Open a new Finished logs window .. 285

10.6.8 Open/close the Skipped jobs window ... 285

10.6.9 Save resource to the server ... 285

10.6.10 Save as… resource to the server ... 285

10.6.11 Save a new version of the resource .. 287

10.6.12 Save and run resource ... 288

10.6.13 Run script ... 289

10.6.14 Resume .. 289

10.6.15 Step to the next action .. 289

10.6.16 Stop debugging .. 289

10.6.17 Create new resource ... 289

10.6.18 Zoom display .. 291

10.6.19 Zoom in and Zoom out .. 292

10.7 Options dialog ... 293

10.7.1 Graph Editor tab .. 293

10.7.2 Download / upload tab .. 298

10.7.3 Copy tab ... 300

10.7.4 General behaviour tab ... 301

10.7.5 Palette tab ... 301

10.8 Keybindings ... 303

11. Zagreus Monitor ... 304

11.1 Main menu bar ... 306

11.2 Sections of the Zagreus Monitor .. 308

11.2.1 Zagreus Server Connections .. 308

11.2.2 Timeline area ... 310

11.2.3 Filter area ... 319

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 11

11.2.4 Execution Engines window .. 323

12. Other Zagreus clients .. 325

12.1 Command-line tools ... 326

12.1.1 Executable files .. 326

12.1.2 Examples for Windows .. 327

12.1.3 Examples for Linux ... 329

12.2 Zagreus HTML application .. 331

12.2.1 Run script and get info tab .. 333

12.2.2 Job info tab .. 334

12.2.3 Fire event tab ... 335

12.3 Troubleshooting ... 337

13. Script Editor .. 338

13.1 Layout ... 339

13.1.1 Canvas .. 340

13.1.2 Palette .. 340

13.1.3 View selector tabs ... 341

13.2 Actions .. 343

13.2.1 View modes ... 343

13.2.2 Basic operations .. 347

13.2.3 Editing .. 352

13.3 Action help .. 359

13.4 Formatting .. 361

13.4.1 Alignment operations .. 361

13.4.2 Size operations .. 362

13.5 Additional displaying options ... 365

13.5.1 Outside displaying option for a child action.. 365

13.5.2 Showing sibling links .. 366

13.5.3 Opacity ... 366

13.5.4 Displaying goto expressions .. 367

13.5.5 Attribute as child element ... 370

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 12

13.6 Special operations .. 373

13.6.1 Find in script .. 373

13.6.2 Set breakpoint ... 374

13.6.3 Encrypt password .. 375

13.6.4 Paste path .. 376

13.6.5 Show path in status line .. 376

13.7 Configuration options ... 377

14. Debugging in the Zagreus Client ... 378

14.1 Features .. 379

14.2 Debugging concepts and terms .. 380

14.3 Starting a debug session ... 382

14.4 Debug Editor ... 384

14.4.1 Main toolbar .. 384

14.4.2 Debug Editor and the execution workflow ... 385

14.4.3 Action context menu ... 386

14.4.4 Breakpoints window .. 387

14.4.5 Watch window ... 388

14.5 Best practices .. 390

15. Initiating script execution ... 391

15.1 Overview ... 392

15.1.1 Manual execution .. 392

15.1.2 Execution by event-type resources ... 393

15.2 Execution options ... 395

15.2.1 Declaration levels .. 395

15.2.2 Precedence order for resolution ... 396

15.2.3 List of execution options ... 397

15.2.4 Prefixes .. 400

15.3 Start-up variables ... 401

15.3.1 Declaration levels .. 402

15.3.2 Precedence order for resolution ... 403

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 13

15.3.3 Prefixes .. 404

15.3.4 Automatically set start-up variables ... 405

15.3.5 List of resolved start-up variables ... 408

15.4 Subscriptions .. 410

15.4.1 Subscriptions from the perspective of scripts 410

15.4.2 Subscriptions from the perspective of event-type resources 415

15.5 Execution by event-type resources .. 417

15.5.1 Event schedule ... 417

15.5.2 Time schedule .. 419

15.5.3 Mail watcher .. 420

15.5.4 Database watcher .. 426

15.5.5 File trigger .. 433

15.5.6 Special events .. 435

15.5.7 Administrative tools for event-type resources 437

15.6 Manual script execution ... 443

15.6.1 Execution in the Zagreus Client ... 443

15.6.2 Execution with the .sendscripts file ... 444

15.6.3 Execution from the command-line client .. 446

15.6.4 Execution from the Zagreus HTML Application 446

15.6.5 Execution from external systems .. 447

15.7 Execution from a Zagreus script ... 451

15.8 Summary ... 452

15.9 Best practices .. 453

15.9.1 Choosing the appropriate event-type resource 453

15.9.2 Monitoring watchers and triggers ... 454

15.9.3 Quarterly settings for a time schedule .. 454

15.9.4 Using special subscription features ... 455

15.10 Troubleshooting ... 457

15.10.1 Practices for event-type resources ... 457

15.10.2 Command-line tools .. 458

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 14

15.10.3 The HTML application .. 458

16. Special features .. 459

16.1 Standalone Worker ... 460

16.1.1 How to use ... 460

16.1.2 Configuration ... 461

16.1.3 Licencing .. 461

16.1.4 Limitations ... 462

16.1.5 Notes .. 462

16.2 External script execution .. 464

16.2.1 How it works .. 464

16.2.2 Configuration ... 465

16.2.3 tempfilename attribute ... 465

16.2.4 params attribute ... 466

16.2.5 Synchronous and asynchronous execution ... 467

16.2.6 Examples .. 467

16.3 Document URL feature ... 472

16.3.1 How to use ... 472

16.3.2 docurl variable ... 473

16.3.3 docurl_replace variable ... 474

16.3.4 Examples .. 475

16.4 Bank holidays feature ... 479

16.4.1 Common European holidays ... 479

16.4.2 Specifying additional bank holidays .. 480

17. Server administration in the Zagreus Client ... 481

17.1 Administrator options .. 482

17.1.1 Group management .. 482

17.1.2 User management ... 485

17.1.3 Cancel all jobs .. 491

17.1.4 Stop / start server components .. 491

17.1.5 Manage certificates ... 491

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 15

17.1.6 Monitor watchers, triggers .. 493

17.1.7 Configuration testing ... 497

17.2 Get licence information .. 499

17.3 Server information ... 500

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 16

1. Introduction

IT departments and their managers face a challenging issue in the rapidly evolving

field of information technology: satisfying rising expectations with limiting budgets.

Organizations seek for success in a competitive market by shifting multiple processes

to IT, with the goal of improving speed, precision, and cost-effectiveness. While

investments in technological infrastructure continue to be approved, the need for

more human resources sometimes falls on deaf ears. This shortage necessitates more

ingenuity, which leads to what is frequently viewed as an outstanding solution:

automation.

Automation, unquestionably recognized for its ability to save time and money,

becomes a significant concern. However, the pressing question remains: how could

automation be implemented successfully in the face of time and money constraints?

The urgency of the issue frequently encourages the selection of the simplest and

quickest choices, including new features via software products, open-source code, in-

house development, or customized systems with restricted capability. Unfortunately,

the quickest solution is not always the best. Although short-term savings may be

realized, negative long-term consequences are more likely to arise.

To avoid falling into the automation trap — attaining short-term goals at the price

of long-term issues — a fundamental change toward centralization is required.

Sustainable automation is based on centralizing all processes within a dedicated

system, which provides a variety of benefits such as process simplification, easy

definition of interdependencies, cost-effective development and maintenance,

integrated error handling with logging functionality, comprehensive monitoring at a

central point, and unparalleled flexibility through scalability.

Enter Zagreus, a cutting-edge process platform precisely created for businesses of

all sizes and types. Zagreus, with its extensive library of capability, enables the quick

mapping of all digitally controllable business processes. This platform is distinguished

by many significant advantages:

• Low-code platform

Zagreus avoids the need for heavy programming by utilizing a low-code platform

that allows users to develop and alter processes without considerable coding

skills.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 17

• Utilization of existing system components

Zagreus readily interfaces with diverse data storage and operating systems,

improving compatibility and lowering implementation hurdles.

• Centralized administration

By streamlining administrative activities, Zagreus enables businesses to manage

and monitor their automated operations from a single location, improving control

and efficiency.

Zagreus stands out as a standard software solution with great flexibility, recognizing

the individuality of each enterprise. Zagreus is a plug-and-play solution with rapid

installation and quick utilization, avoiding the need for lengthy, costly projects. Old

procedures are quickly changed, and new ones are flawlessly incorporated, showcasing

Zagreus's expertise in this area.

Zagreus's flexible REST API interface expands its possibilities even further, allowing

for smooth connectivity with a variety of systems. This versatility distinguishes Zagreus

as a dynamic and future-ready solution that meets the changing demands of modern

organizations.

In essence, Zagreus is more than a software solution: it is a strategic enabler that

allows organizations to navigate automation issues with exceptional efficiency and

agility. As more is learned about Zagreus, its disruptive impact on business process

automation becomes clear, bringing in a new era of IT solutions.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 18

2. Zagreus as a whole system

Zagreus is a modular system, consisting of several main parts that are constantly

communicating with each other. This design has the following advantages:

• different modules are responsible for their own processes only,

• the modules can be installed on different hosts,

• the whole system contains indirectly interfering asynchronous tasks. The proper

implementation for this needs separate main execution processes (Java Virtual

Machines). Therefore, all Zagreus modules are implemented as Java applications

running on separate JVMs.

Figure 1 – The main structure of the Zagreus modules

In Figure 1., the main modules are shown. In the following chapters, these modules

are introduced and described in details.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 19

2.1 Zagreus Server

The Zagreus Server is the main module of the Zagreus System. The Server module

installation is neccessary in order to have a minimal working system, it maintains an

embedded database (see → Embedded MySQL database) for its resources and job

information (see → Job properties).

The Zagreus Server is performing the following tasks:

• embedded database management

• web server management

• user authentication and authorization

• resource management in database and in local filesystem

• job queue management

• maintaining connection for Zagreus Workers

• storing job-log files, results

• running time schedule events and subscriptions

• managing watcher and trigger type resource events

2.1.1 Communication

The Zagreus Server uses two different communication protocols:

• The Zagreus Client modules communicate with the Zagreus Server via HTTP /

HTTPS webservice protocol. Therefore the clients and the Server can be installed

anywhere throughout the Internet.

• The Zagreus Workers and Zagreus Worker Controller communicate with the

server by Java RMI protocol, so these modules need to be installed on the same

intranet, or preferably on the same machine.

The Zagreus Server is the central module to which all other modules connect.

Therefore, it is recommended to start the Zagreus Server first , right before all other

modules.

2.1.2 Logging

The Zagreus Server module generates log-files as it is running. They contain events

and possible error messages as well as information about job execution and user

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 20

interaction. This is crucial for monitoring system performance, diagnosing issues, and

ensuring security.

There are two different types of log-files:

• server log-file

The server log-file contains information about the server module: starting up and

shutting down, events in the job-queue, user logins and logouts. It is located in

the <zagreus_home>/server/log folder, under the file name srv.

The log-file is maintained by the log4j system, and it is archived regularly by

rolling file appender feature: when the size of the log-file exceeds 10 megabytes,

or a full day has passed, a new .gzip archive is automatically generated from

the actual log-file. The content of the log-file will be stored in the archive, and a

log-file itself will be reset to empty. The name of the archive .gzip file uses the

format of srv_<yyyyMMdd>.log.gz, where the timestamp in the filename

follows the creation date of the archive. Archived log-files older than 30 days are

deleted automatically.

• job-log files

For each job executed in the Zagreus System, a separate job-log file is generated.

The file name is the ID of the job, and the file is located under

<zagreus_home>/server/log/job unless it is set otherwise, see → General

properties . For more information about job-logs, see → job-log file.

2.1.3 Components

There are several larger parts of the Zagreus Server that can be categorized as

system components.

2.1.3.1 Job queue

The job queue is the main component in the Zagreus Server. It stores and manages

the tasks (the so-called jobs) to be executed by the Zagreus Workers, see → Zagreus

Worker. For further details, see → Queue.

2.1.3.2 Quartz scheduler

Quartz Scheduler is the component which manages the execution of recurring, time-

based tasks. The Scheduler component registers crontime-based definitions (see →

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 21

Time schedule) and triggers events at the specified time points. These events can

execute a Zagreus script (see → Execution by event-type resources) or check out a mail-

or database watcher condition, see → Mail watcher and → Database watcher.

Zagreus System uses the Quartz Scheduler, which is a robust, open-source job

scheduling library for Java applications, enabling flexible scheduling of jobs with

simple, interval-based, or cron-like expressions.

The scheduler can be temporaliry switched off from the Zagreus Client (see → Stop

/ start server components) and from the Zagreus Monitor (see → Additional options)

applications.

2.1.3.3 Embedded MySQL database

The Zagreus Server stores its resources and metadata information in an embedded

MySQL database, which is starting and shutting down together with the Zagreus

Server. For more details, see → Embedded MySQL database.

2.1.3.4 Local filesystem

Another important component of the Zagreus Server is the connection with the local

filesystem, that allows managing files and folders on the local installation machine. For

more details, see → Local filesystem in the Zagreus Server.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 22

2.2 Zagreus Worker

The Zagreus Worker is responsible for executing a Zagreus script type resource, see

→ Scripts. Multiple Zagreus Worker instances can run at the same time, at least one is

needed to allow script execution. Each Worker instance runs as a separate JVM (Java

Virtual Machine), so they are independent processes on the OS level. The number of

Zagreus Worker instances depends on the Zagreus licence (see → Licencing) and the

configuration (see → Configuration).

The Zagreus Worker module is designed to be a constantly running process which is

connecting to the Zagreus Server job queue (see → Queue) and waiting for a new job

to execute. When there is no such job, it stays in idle mode and keeps waiting for a

task.

The Zagreus Worker contains an execution processor called the Zagreus Execution

Engine which provides the main functionality for executing Zagreus scripts.

The Zagreus Worker is performing the following tasks:

• In idle mode, it is constantly connecting to the Zagreus Server, waiting for a new

job to execute.

• If there is a job to execute, it passes the script content of the job to the Zagreus

Execution Engine.

• The Zagreus Execution Engine processes the script content.

• After the execution has been finished or failed, the status and the result of the

job are sent to the Zagreus Server, and the Zagreus Worker switches back to idle

mode, waiting for the next job to execute.

2.2.1 Communication

The Zagreus Worker communicates both with the Server and the Zagreus Worker-

Contoller, and uses the Java RMI protocol:

• The Zagreus Worker as a client connecting to the Zagreus Server

The Worker is constantly connected to the Zagreus Server job queue (see →

Queue) via the Java RMI protocol. This RMI port is defined in server configuration

(see → Zagreus Server configuration), but the same port has to be set in the

Zagreus Worker configuration (see → Zagreus Worker configuration) in order to

Worker could connect to the Server properly.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 23

• The Zagreus Worker behaves as a server when the Zagreus Worker-Controller is

connecting to a Worker instance

The Worker-Controller also maintains a communication to the Zagreus Worker

instances to be able to monitor and manage them. The Worker-Controller is using

Java RMI communication. The RMI port is different for each worker instance and

it is derived from the specified server RMI port and the Worker ID; so if the pre-

defined Zagreus Server RMI port is 6666, then the RMI port is 6667 for Worker

(ID: 1), 6668 for Worker (ID: 2), respectively.

Each job is assigned to the Zagreus Worker instances with round robin assignment,

except when a specific Zagreus Worker group is selected (see → Queue groups).

2.2.2 ID of the Zagreus Worker

Each Zagreus Worker has an ID which is an numeric integer value starting from 1.

When the Zagreus Worker-Controller starts the Zagreus Workers (see → Starting

Zagreus Workers), the Worker IDs are consecutive numbers, such as 1, 2, … N where N

is the the maximum number of the allowed Workers defined in the Zagreus Licence,

see → Licencing.

Zagreus Workers can be stopped, restarted by the user → Worker information tab,

so the Worker IDs might not be consecutive any more. However, when the user

manually starts a new Zagreus Worker, its ID needs to be unique and in the range of

[1, N] where N is the maximum number of allowed Workers.

In some cases. a fully qualified Worker ID is neccessary which is specified in the form

of:
<Worker-Controller ID>.<Worker ID>

This format can unambigously identify the given Workers even if they belong to

different Worker-Controllers.

2.2.3 Logging

Each Zagreus Worker module instance generates a log-file as it is running. It contains

events and possible error messages as well as information about job execution. This is

crucial for monitoring system performance, diagnosing issues, and ensuring security.

The module log-file contains information about the actual Worker instance: starting

up and shutting down, initiating and finishing job execution, as well as stacktraces of

module-related errors. It is located in the <zagreus_home>/worker-

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 24

controller/worker/log folder, under the file name worker_<worker-

id>_<yyyyMMdd>.log, where the timestamp in the filename follows the creation

date of the log-file.

2.2.4 Statuses

The Zagreus Worker undergoes a life-cycle with distinct statuses. These statuses are

the following:

• Initializing

The Zagreus Worker is starting up. It lasts only for a few seconds.

• Idle

The Zagreus Worker has successfully started and is waiting for a job to execute.

• Busy

The Zagreus Worker is currently executing a job.

• Shutting down

The Zagreus Worker is shutting down.

For most of the time, the Zagreus Worker switches between Idle and Busy statuses.

The status of the Zagreus Workers can be seen in the Execution engines window in

the Zagreus Client application, see → Zagreus Client.

Aside from these statuses, there is another property which defines the availability

of the particular Zagreus Worker. The Enabled property tells if the Worker can receive

any job. By default, the Enabled property is true, but the user can manually set it to

false in the Zagreus Client (see → Worker information tab). In the latter case the

Zagreus Worker is in Idle status, but will not accept any job for execution.

2.2.5 Memory handling

The Zagreus Worker has a few settings in terms of memory handling. Each Worker

instance manages its memory independently.

Because of the fact that a Zagreus Worker is a JVM, the memory settings are

specified as standard Java options in the Zagreus Worker configuration, see → Worker

startup properties.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 25

There might be a need for restarting a Zagreus Worker if it has exceeded a pre-

defined memory consumption after a job execution. For such cases, a special

configuration property can be set, see → Miscellaneous properties.

The actual memory consumption of each Zagreus Worker can be monitored in the

Execution Engines window in the Zagreus Client (see → Execution engines window) and

in the Zagreus Monitor applications (see → Execution Engines window).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 26

2.3 Zagreus Worker-Controller

The Zagreus Worker-Controller module is responsible for managing the instances of

Zagreus Worker modules. Although the execution of a Zagreus script is performed by

a Zagreus Worker module, the Zagreus Worker-Controller module installation is

neccessary to start and manage the Zagreus Worker instances themselves.

The Zagreus Worker-Controller is performing the following main tasks:

• starting and managing Zagreus Workers

• canceling a running job on a Zagreus Worker

• collecting real-time information about Zagreus Workers and sending them to the

Zagreus Server module

Besides these, it also handles minor tasks like managing SSL certificates (see →

Manage certificates) and testing the integrity of both the configuration files of itself

and of the Zagreus Worker (see → Configuration testing).

2.3.1 Communication

The Zagreus Worker-Controller communicates both with the Server and the Zagreus

Workers via the Java RMI protocol. The RMI port of the Zagreus Server can be defined

in the configuration file, see → General properties.

2.3.2 Logging

The Zagreus Worker-Controller module generates a log-file as it is running. It

contains events and possible error messages as well as information about job

execution and user interaction. This is crucial for monitoring system performance,

diagnosing issues, and ensuring security.

The module log-file contains information about the Worker-Controller module:

starting up and shutting down, commands from the Zagreus Server and the OS

Info: When the Zagreus Worker-Controller module starts up, it starts the

number of worker instances set in the configuration. When the Worker-

Controller is shut down, it first stops all worker instances.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 27

commands which start the Zagreus Worker processes. It is located in the

<zagreus_home>/worker-controller/log folder, under the file name wc.

The log-file is maintained by the log4j system, and it is archived regularly by rolling

file appender feature: when the size of the log-file exceeds 10 megabytes, or a full day

has passed, a new .gzip archive is automatically generated from the actual log-file.

The content of the log-file will be stored in the archive, and a log-file itself will be reset

to empty. The name of the archive .gzip file uses the format of

wc_<yyyyMMdd>.log.gz, where the timestamp in the filename follows the creation

date of the archive. Archived log-files older than 30 days are deleted automatically.

2.3.3 Statuses

The Zagreus Worker-Controller undergoes a life-cycle with distinct statuses. These

statuses are the following:

• Starting

The Zagreus Worker-Controller is starting up. It lasts only for a few seconds.

• Running

The Zagreus Worker-Controller has successfully started and is running.

• Suspended

The Zagreus Worker-Controller can not establish an active connection to the

Zagreus Server, see → Suspended mode.

• Shutting down

The Zagreus Worker-Controller is shutting down.

The status of the Zagreus Worker-Controller can be seen in the Execution engines

window in the Zagreus Client application, see → Execution engines window.

2.3.4 Starting Zagreus Workers

A Zagreus Worker is started by the Zagreus Worker-Controller module via a

command-line command as a separate Java child process. The structure of this

command is:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 28

<Java executable> -cp <classpath> <Java options> <Worker class name>

<Worker ID> <Worker-Controller ID> <Server address> [<parameters>]

All of this is performed automatically by the Worker-Controller. However, it is useful

for the end-user to know about this command structure in case there is a need to

configure or add parameters for the starting Zagreus Workers, which can be done by

editing the appropriate configuration properties (see → Worker startup properties).

The elements of this command are the following:

• <Java executable>

The OS path of the Java executable, shipped with Zagreus.

• <classpath>

The Java classpath of the Zagreus Worker.

• <Java options>

The various Java options passed to the Zagreus Worker. Besides the user-

configured values (see → Worker startup properties), further parameters are

added:
-Dworking.folder

-Djava.folder

-Dworker.id

-Dworker.date

-Dworker.timestamp

• <Worker class name>

The fully qualified name of the main Java class of the Zagreus Worker.

• <Worker ID>

The ID of the actual Zagreus Worker.

• <Worker-Controller ID>

The ID of the Zagreus Worker-Controller.

• <Server address>

The address of the Zagreus Server.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 29

2.3.4.1 Number of Zagreus Workers

The Zagreus Worker-Controller is a standalone module, thus it is starting up in itself,

and it tries to connect to the Zagreus Server as soon as possible. The number of possibly

running Zagreus Worker instances is limited by the Zagreus license (see → Licencing),

which is installed in the Zagreus Server module database. Before reaching the Zagreus

Server, the Worker-Controller module is not aware of the maximum number of Zagreus

Workers allowed. However, the Zagreus Worker-Controller can start the Zagreus

Worker instances before connecting to the Server module. The number of started

instances can be set in the Worker-Controller configuration (see → Zagreus Worker-

Controller configuration) with the workercontroller.defaultworkercount property.

When the connection between the Zagreus Worker-Controller and the Zagreus

Server is finally established, the limitation of the Zagreus Licence is automatically

applied if the number of started Zagreus Worker instances is greater than the allowed

number (it can only happen by misconfiguration), so some of the Workers are stopped

by the Worker-Controller.

Setting the default number of starting Zagreus Worker instances, however, can be

practical in the following cases:

• The user can manually configure the proper load-balance settings when multiple

Worker-Controller instances are installed. In this case, the total count of Zagreus

Worker instances managed by each Worker-Controllers cannot exceed the limit

set in the Zagreus licence.

• When there is one Worker-Controller instance in the Zagreus ecosystem, this

setting can manually be matched to the allowed number of Zagreus Worker

instances defined in the Zagreus licence. In this case, all Worker instances are

already running when the Worker-Controller establishes the connection to the

Zagreus Server.

Info: The actual command-line command used to start the Zagreus

Worker instances can be seen in the log file of the Worker-Controller

module.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 30

2.3.5 Managing Zagreus Workers

The Worker-Controller module is responsible for managing the worker instances by

receiving commands from the Zagreus Server.

These command can be one of the following:

• Start: starts a new worker instance.

• Stop: stops an already running worker instance.

• Restart a worker instance: stops the worker instance, and then starts it again.

• Disable a worker instance: the worker instance is kept running, but does not

accept any job from the Zagreus Server

• Enable a worker instance: enables the disabled Zagreus Worker

• Cancel a job: cancels a job running on a worker instance.

The Worker-Controller is also checking the availability of the worker instances:

• When a worker instance is not available (the connection is lost between the

Worker-Controller and the worker instance), the Worker-Controller restarts the

particular worker instance.

• When any worker instance has been exceeding a configurable maximum memory

consumption limit for its lastly executed job, the Worker-Controller restarts that

Worker in order to avoid any memory issues for its future jobs.

2.3.6 Collecting and sending worker information

The Worker-Controller module collects the actual status and further information

about the worker instances (i.e. worker information), and forwards them to the

Zagreus Server. The following information are collected:

• the ID of the worker instance

• whether the worker instance is enabled

• the status of the worker instance, see → Statuses

• the ID of the currently executed job (if any)

• the status of the currently executed job (if any), see → Job lifecycle

• the ID of the currently executed script (if any)

• the full path of the currently executed script (if any)

• the number of log lines produced by the currently executed job (if any)

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 31

• the time when the worker instance was started

• the actual time when the worker information was sent

• the maximum allowed memory of the worker instance

• the total memory of the worker instance

• the free memory of the worker instance

• the number of available processors

Furthermore, the Worker-Controller sends information about itself to the Server as

well, consisting of:

• the ID of the Worker-Controller

• the status of the Worker-Controller

• the time when the Worker-Controller was started

• the actual time when the Worker-Controller information was sent

• the maximum allowed memory of the Worker-Controller

• the total memory of the Worker-Controller

• the free memory of the Worker-Controller

This information can be viewed in the Execution Engines view of the Zagreus Client,

see → Execution engines window.

The frequency of collecting and forwarding this information can be defined in the

configuration file, see → Zagreus Worker-Controller configuration.

2.3.7 Suspended mode

When the Worker-Controller is unable to send the worker information to the

Zagreus Server multiple times in a row, it switches into suspended mode. When in

suspended mode, the Worker-Controller module suspends all forms of communication

with the Server: it does not send the worker and worker-controller information, does

not accept (and forward) commands related to the Workers, and does not accept

commands controlling its own behavior (e.g. shut down). The suspended Worker-

Controller is trying to establish the lost connection regularly, and when it can be

repaired, all suspended services are revoked.

The properties for timeouts and polling frequencies in suspended mode are

configurable, see → Worker-related properties.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 32

2.4 Zagreus Client

The Zagreus Client is the main user interface in the Zagreus System. The Zagreus

Client is implemented only for Windows operating systems.

The end-user or administrator can use the following functionality with the Zagreus

Client:

• creating and maintaining Zagreus Server connections

• browsing the embedded database and local OS filesystems (see → Resource

storaging) and performing file operations (e.g. copy, move, create folder)

• viewing and editing Zagreus resources

• managing and browsing external connections (see → Opening connections in the

Zagreus browser)

• creating, editing and debugging Zagreus scripts

• monitoring the active and finished jobs

• monitoring the Zagreus Worker-Controller and Zagreus Worker instances

• doing administrative tasks like user and group management (see → User

management)

2.4.1 Communication

The Zagreus Client communicates with the Zagreus Server by using the HTTP / HTTPS

webservice protocol.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 33

2.5 Zagreus Monitor

The Zagreus Monitor is a standalone client application for monitoring script

execution including finished and active jobs as well as scheduled estimations. The

Zagreus Monitor is the secondary user interface in the Zagreus System and is

implemented for Windows operating systems only.

The end-user or administrator can check the following in the Zagreus Monitor:

• the job executions on the timeline with user-defined filters

• the future estimations of subscribed scripts on the timeline, see → Timeline area

• the skipped jobs on the timeline, see → Skipped jobs in the Zagreus Monitor

• the properties of jobs including start-up variables, see → Start-up variables

• the monitoring variables, see → Monitoring variables

• the job-logs of any finished job, see → job-log file

2.5.1 Communication

The Zagreus Monitor communicates with the Zagreus Server by using the HTTP /

HTTPS webservice protocol.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 34

2.6 Other Zagreus clients

Apart from the Zagreus Client and Zagreus Monitor modules, there are a few other

client applications in Zagreus. Due to the fact that there are several common

functionalities of the Zagreus Server which are used quite often (initiating a script

execution, firing an event, etc.), these functionalities can be accessed via multiple client

applications.

2.6.1 Communication

All other client applications communicate with the Zagreus Server by using the HTTP

/ HTTPS webservice protocol.

2.6.2 Command-line tools

The Zagreus command-line tools consist of a collection of simple executable files. To

support both Windows and Unix platforms, there is a .bat and an .sh script file

available for every functionality supported. There are batch files and shell scripts for

administrative tasks as well as for running scripts and firing events. For further details,

see → Command-line tools.

2.6.3 Zagreus HTML Application

The Zagreus HTML Application is a web-based user interface for initiating script

execution, triggering event schedules and get information about jobs. It is hosted by

the Zagreus Server. For further details, see → Zagreus HTML application.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 35

2.7 Security

Securing online communications is essential to protect sensitive information from

cyber threats. This chapter focuses on the critical role of SSL certificates in ensuring

secure connections over the internet. SSL certificates encrypt data transmitted

between users and websites, establishing a trusted and secure environment for online

transactions.

Zagreus uses several connection types between its modules as well as external

connections from the system. Besides that, there is always a user who is using the

connection. There are the following points where any security risk can emerge in terms

of connections and users for the Zagreus System:

• HTTP / HTTPS connections among modules

The connection between the Server and the clients are HTTP / HTTPS, see →

Communication, which needs to be secured, specially if the client modules are

installed on different hosts over the internet.

The goal here is to protect the transmitted data by using a trusted SSL protocol.

• HTTP / HTTPS external connections

In the Zagreus System, the user has the possibility to use external connections,

such as IMAP, POP3, FTP, etc., see → Connections.

In most of the cases, these external connections require an installed certificate

on the client (Zagreus) side in order to open a secure connection, see → Secure

connections.

• Security on the user level, authentication and authorization

On a fine-tuned system, there are multiple users, each of them performing

specific tasks. Users need to authenticate by their user name and password. The

administrator user needs to authorize common resources (i.e. groups) for them

(see → Groups in the Zagreus System) as well as applying password policy.

The goal is to fine-tune the system properly and maintain user accessibility.

2.7.1 SSL Certificates

SSL is a protocol used to encrypt data transmitted over the internet, providing

security and privacy. When SSL is combined with HTTP, it forms HTTPS (HyperText

Transfer Protocol Secure). HTTPS is the secure version of HTTP, ensuring that all data

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 36

exchanged between a user's client application and a web server is encrypted and

secure from eavesdropping or tampering.

Each module has a specific file location for storing the SSL certificates. These files

are called truststores.

• for Zagreus Server:
<zagreus_home>\server\service\conf\ssl\client.trustedservers

In this truststore, both the Zagreus Server self-signed certificate (public and

private key) and the certificates for external connections (see → Certificates for

external connections) are installed.

The truststore filename can be changed in the Zagreus Server configuration, see

→ SSL properties

• for Zagreus Workers:
<zagreus_home>\worker-controller\worker\conf\ssl\client.trustedservers

In this truststore, both the Zagreus Server self-signed certificate (public key) and

the certificates for external connections (see → Certificates for external

connections) are installed.

The truststore filename can be changed in the Zagreus Worker configuration, see

→ Miscellaneous properties

• for Zagreus Client:
<zagreus_home>\gui\configuration\client.trustedservers

In this truststore, the Zagreus Server self-signed certificate (public key) is

installed.

• for Zagreus Monitor:
<zagreus_home>\monitor\conf\client.trustedservers

In this truststore, the Zagreus Server self-signed certificate (public key) is

installed.

• for Zagreus command-line tools:
<zagreus_home>\command-line\keystore\client.trustedservers

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 37

In this truststore, the Zagreus Server self-signed certificate (public key) is

installed.

• for Zagreus HTML application:

By using the recommended HTTPS URL for the Zagreus HTML application (see →

Zagreus HTML application), the connection is already trusted.

2.7.1.1 Certificates for communication between modules

There is a pre-configured SSL certification installed for the connection between the

Zagreus Server and the client applications. This is a self-signed certificate, meaning that

it is signed by the same entity whose identity it certifies, therefore the issuer and the

subject of the certificate are the same. Self-signed certificates, in general, can safely be

employed for internal use.

If the Zagreus System is installed in a way that the client applications are not on the

same host as of the Zagreus Server is installed on, there is the possibility to install an

official CA-signed certificate. In order to do this, the system administrator needs to

perform the following steps:

• obtain the official CA certificate (public and private keys)

• connect to the Zagreus Server with the Zagreus Client, and open the Manage

certificates dialog box, see → Manage certificates. This process can be done with

the keytool command-line application as well

• delete the pre-installed self-signed Zagreus Server certificate (with the alias

zagreus_server)

• install the official public and private key to Zagreus Server truststore file with a

selected alias

• using the keytool command-line application, the user needs to install the

official CA certificate (public key) into the truststore file of each client module

2.7.1.2 Certificates for external connections

Only the Zagreus Server and the Zagreus Worker modules use external connections.

Therefore, the certificates for external connections need to be installed for these two

modules. The most straightforward way to do this is via the Manage certificates dialog

box, see → Manage certificates. This process can be done with the keytool

command-line application as well; the locations of the truststore files were already

listed above in this chapter.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 38

2.7.2 Encrypted passwords, cpassword

Just like in any system, passwords are considered as sensitive data in the Zagreus

System. User passwords are stored in the following locations:

• in the embedded MySQL database (encrypted in AES-256)

• in the connections.dat files for the Zagreus Client and Zagreus Monitor

applications (encrypted as cpasswords)

• in the Zagreus script connections (can be encrypted as cpasswords)

The user needs to take care about the last occurences only. There is a way to hide

the password values declarared in a Zagreus script by encrypting them as cpassword,

see → username, password and cpassword attributes.

2.7.3 Users and password policy

It is the responsibility of the administrator user to create and manage the non-

administrator users (see → Users in the Zagreus System) for the system. The password

policy (see → Password policy) is an important aspect of the security. Besides their own

home folder, each user has authorization for the groups they are the member of, see

→ Groups in the Zagreus System.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 39

3. Installation

In this chapter the installation and configuration of specific Zagreus modules, the

Zagreus Server, Zagreus Client and Zagreus Monitor are described.

The Zagreus Server and the Zagreus Worker-Controller module can be run both on

Windows and Linux platforms, while the Zagreus Client and the Zagreus Monitor

modules are available only for the Windows operation system.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 40

3.1 Downloading Zagreus

The installation packages and instructions can be downloaded from the following

web address: https://support.etixpert.com/zagreus/download-1.5.php , see Figure 1.

To obtain a username / password pair for accessing the page content, please contact

support@etixpert.com .

Figure 1 – The download page of the Zagreus Support site as of the writing of the documentation

On this site, the following archive types can be downloaded (the link title also

contains the name of the operation system and the version of Zagreus):

• All

Contains the Zagreus Server, Zagreus Client, Zagreus Monitor, Zagreus

Commandline and Zagreus Worker-Controller (and the embedded Zagreus

Worker) modules.

• Clients

Contains the Zagreus Client and the Zagreus Monitor modules.

https://support.etixpert.com/zagreus/download-1.5.php
mailto:support@etixpert.com

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 41

• Command Line

Contains the Zagreus Command Line module.

• Server

Contains the Zagreus Server module with the embedded MySQL database.

• Server Without Database

Contains the Zagreus Server module without the embedded database.

• Worker-Controller

Contains the Zagreus Worker-Controller and the embedded Zagreus Worker

modules.

Since the Zagreus Client and the Zagreus Monitor modules are available only to

Windows OS, not all of above-listed archive types can are available for Linux platform

either.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 42

3.2 Installation on Windows

Under the ‘Installation files (Windows)’ section, download the ‘Zagreus All for

Windows v1.5.x.x’ installation package. After downloading, the following steps are

required to install the Zagreus System on a Windows environment:

• copying the files to the target installation folder

• setting the proper configuration parameters

• setting up the Windows services

Next, these steps are described in details.

3.2.1 Copying the installation files

First, the user has to select a folder which Zagreus will be installed in. By default, the

OS path of this folder is C:\Programme\zagreus . All the contents of the

downloaded installation .zip archive must be extracted to this target installation folder.

3.2.2 Setting the configuration parameters

After copying the Zagreus files to the target installation folder, specific configuration

parameters might be set. These parameters are pre-configured in the downloaded

Zagreus installation .zip archive; editing them is required only when the Zagreus target

installation folder path differs from the default one (i.e. C:\Programme\zagreus).

These particular settings are located in three files:

• the setenvironment.bat file in the installation root folder

• the wrapper.conf configuration file of the Server module

• the wrapper.conf configuration file of the Worker-Controller module

Warning: When Zagreus is installed in a different folder than the default

one (such as C:\Program Files\zagreus), the configuration files

must be changed accordingly.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 43

3.2.2.1 setenvironment.bat

First the file setenvironment.bat (located in the root folder of the Zagreus

target installation folder) has to be reviewed: the variables JAVA_HOME and

ZAGREUS_HOME must be defined accordingly, when the target installation folder path

differs from the default value of C:\Programme\zagreus . For example, if the target

installation folder path is C:\Program Files\zagreus, the edited part of the

setenvironment.bat file should look like:

set JAVA_HOME="C:\Program Files\zagreus\java\openjre11"

set ZAGREUS_HOME="C:\Program Files\zagreus\server"

3.2.2.2 wrapper.conf (Server module)

The file wrapper.conf (located in the server/service/conf folder within the

Zagreus target installation folder) also has to be reviewed: the properties

wrapper.java.command and wrapper.java.additional.1 must be defined

accordingly, when the target installation folder path differs from the default value of

C:\Programme\zagreus . For example, if the target installation folder path is

C:\Program Files\zagreus, the new values should look like:

wrapper.java.command=”C:/Program Files/zagreus/java/openjre11/bin/java”

wrapper.java.additional.1=-Dworking.folder="C:/Program

Files/zagreus/server"

Note, that in the wrapper.conf file, the OS paths contain ‘/’ characters in the

paths unlike in the setenvironment.bat previously.

3.2.2.3 wrapper.conf (Worker Controller module)

The file wrapper.conf (located in the worker-controller/service/conf

folder within the Zagreus target installation folder) may also need to be reviewed: the

properties wrapper.java.command, wrapper.java.additional.1 and

wrapper.java.additional.2 must be defined accordingly, when the target

installation folder path differs from the default value of c:\Programme\zagreus .

For example, if the target installation folder path is c:\Program Files \zagreus,

the new values should look like:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 44

wrapper.java.command=”C:/Program Files/zagreus/java/openjre11/bin/java”

wrapper.java.additional.1=-Dworking.folder="c:/Program

Files/zagreus/worker-controller"

wrapper.java.additional.2=-Djava.folder=”c:/Program Files/zagreus/java”

Note, that in the wrapper.conf file, the OS paths contain ‘/’ characters in the

paths unlike in the setenvironment.bat previously.

3.2.3 Setting up Zagreus Windows services

The two main modules of the Zagreus System, the Zagreus Server and the Zagreus

Worker-Controller are designed to run as Windows services on the Windows OS

system.

To install these two modules as Windows services, execute the following scripts in

command line with administrator privileges (the paths are relative to the Zagreus

target installation folder):

• InstallApp-NT.bat in the server/service/bin folder

• InstallApp-NT.bat in the worker-controller/service/bin folder

After installing the Windows services, the proper administrator rights for both

services have to be set by the following steps:

1) Start the Run Windows application and type services.msc to run the Services

system application.

2) If necessary, navigate to the Extended tab in the Services window, then right-click

on the Zagreus-Server service and select the Properties menu item from the

context menu.

3) Click on the Log On tab on the opened Properties dialog box and set up the

Administrator account (or an account with administrator rights) of the current

Windows installation, see Figure 2.

Warning: If the installation path contains space characters, quotations

must be used, as shown in the samples above.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 45

Figure 2 – Setting up administrator privileges for the Zagreus-Server service

4) Repeat steps 2) and 3) for the Zagreus-WorkerController service.

3.2.4 Opening ports in the firewall

To allow external connections to the Zagreus Server, its HTTP connection port must

be allowed via the firewall. By default, the Zagreus Server module communicates over

the port 7323 for HTTP and port 7443 for HTTPS connections, but these can be

modified (see → General properties).

For instructions how to open specific ports on Windows, consult your system

administrator.

3.2.5 Starting the Zagreus services

After installing Zagreus, the Zagreus Server and the Zagreus Worker-Controller

modules can be started / stopped by starting / stopping the corresponding services (i.e.

Zagreus-Server and Zagreus-WorkerController). The services can be configured to be

automatically started when the Windows system boots up. Alternatively, these

services can be started manually by the Services system application, accessible either

from the Task Manager (and by selecting the Services tab) or via the Run application

by starting the services.msc command.

3.2.6 Starting the Zagreus clients

To start the Zagreus Client or the Zagreus Monitor applications, the following batch

files have to be executed from the target installation root folder:

• startgui_en.bat : Starts the Zagreus Client application (English version)

• startgui_de.bat : Starts the Zagreus Client application (German version)

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 46

• startmonitor.bat : Starts the Zagreus Monitor application

Note that the Zagreus Client and the Zagreus Monitor modules can be downloaded

as standalone applications as well. For detailed instructions, see also → Downloading

Zagreus.

Warning: If the Zagreus installation folder is located under the Windows

default program folder (e.g. C:\Program Files) then client applications

must run with administrator privileges – Run as Administrator!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 47

3.3 Installation on Linux

Under the ‘Installation files (Linux)’ section, download the ‘Zagreus All for Linux

v1.5.x.x’ installation package to a temporary folder. Note: it is not possible to install

the Zagreus Client and the Zagreus Monitor modules for Linux, as these modules

support only the Windows operation system. After downloading, the following steps

are required to install the Zagreus System on a Linux environment:

• creating the target installation folder

• unpacking the archive and copying the unpacked files to the target installation

folder

• setting the proper configuration parameters

Next, these steps are described in details.

3.3.1 Creating the target installation folder

First, the root user has to create the folder which Zagreus will be installed in. The

recommended OS path of this folder is /home/zagreus , which path is pre-configured

in the shipped configuration files. For a different installation folder path, the steps must

changed accordingly.

su root

mkdir /home/zagreus

Due to the limitations of MySQL (the embedded SQL database shipped with

Zagreus), Zagreus cannot be started as the root user. Therefore, it is recommended

to configure the hostmaster user to start the Zagreus System. The installation steps

shown below are still performed by the root user though.

As the first step, the target installation folder needs to be created, and the

ownership of this folder must be handed over to the hostmaster user and the users

group.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 48

chown hostmaster /home/zagreus

chgrp users /home/zagreus

After setting up the correct privileges it is recommended to switch to the

hostmaster user, otherwise the files that will be copied later will belong to the root

user.

su hostmaster

3.3.2 Unpacking the archive file

Next, the downloaded archive (e.g. zagreus_linux_install.tar.gz) has to be

unpacked into the temporary folder which it was downloaded to (assumed to be the

current folder):

tar -xzvf zagreus_linux_install.tar.gz

The user then needs to copy the unpacked files (i.e. the contents of the zagreus

folder) to the target installation folder:

cp -ra zagreus/* /home/zagreus

3.3.3 Editing the set_environment.sh file

After copying the Zagreus files to the target installation folder, the file

set_environment.sh (located in the root folder of the Zagreus target installation

folder) has to be reviewed: the variable ZAGREUS_INSTALLATION_HOME must be

defined accordingly, when the target installation folder path differs from the default

value of /home/zagreus . For example, if the target installation folder path is

/home/zagreus_installation, the edited part of the set_environment.sh

file should look like:

export ZAGREUS_INSTALLATION_HOME=/home/zagreus_installation

Warning: Zagreus cannot be started as the root user due to the limitations

of the MySQL server!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 49

3.3.4 Opening ports in the firewall

To allow external connections to the Zagreus Server, its HTTP connection port must

be allowed via the firewall. By default, the Zagreus Server module communicates over

the port 7323 for HTTP and port 7443 for HTTPS connections, but these can be

modified (see → General properties).

For instructions how to open specific ports on Linux, consult your system

administrator.

3.3.5 Starting and administering Zagreus

The Zagreus Server and Zagreus Worker-Controller modules can be started, stopped

and restarted by using the zagreus.sh script, located in the Zagreus target

installation folder root. The user has to provide one of the following commands as the

only command line parameter for the aforementioned script (e.g. issuing the command

‘./zagreus.sh start’):

• start: starts the Zagreus Server module

• stop: stops the Zagreus Server module except when there are queued or running

jobs (about job statuses, see → Job lifecycle)

• forcestop: forces the Zagreus Server module to stop without checking any queued

or running jobs

• start-wc: starts the Zagreus Worker-Controller module

• stop-wc: stops the Zagreus Worker-Controller module

• status: prints the status of the following processes: Zagreus Server, Zagreus

Worker-Controller, Zagreus Workers and the embedded MySQL database

Warning: When the Zagreus Server is installed in a Linux environment, the

Zagreus Client and Zagreus Monitor applications have to be installed

separately, in a Windows environment.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 50

3.4 Sending the licence key

The various features of Zagreus are accessible depending on the installed Zagreus

licence. The properties of the Zagreus licence is managed via the Zagreus licence key,

issued by Etixpert GmbH. By default, the downloaded Zagreus Server is shipped with a

demo licence key to allow the user to perform the very basic operations. When the

administrator user obtains a new custom licence key, this licence key needs to be sent

to the Zagreus Server. This can be done in the Zagreus Client application: after right-

clicking the server definition node, the user has to select the Get licence information…

menu item from the appearing context menu, that opens the Licence info dialog box,

see Figure 3.

Figure 3 – The Licence info dialog box

The Licence status textbox contains the details of the currently installed (demo)

licence. To install the obtained custom licence key, the user needs to paste the key into

the Licence key text area and click on the Send license key button, see Figure 3.

For further details on the Zagreus licence features, see → Licencing.

Send licence key

button

Licence

details

Licence

key

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 51

3.5 Standalone installation of the client modules

The Zagreus Client and the Zagreus Monitor modules can be downloaded and

installed separately as standalone applications in order to connect to a remotely

installed Zagreus Server. This is useful when the Zagreus Server is installed on a Linux

environment, or any of the Zagreus client applications is installed on multiple PCs,

which need to access the same Zagreus Server remotely.

To install one or both of these client applications separately, the user first needs to

navigate to the section ‘Installation files (Windows)’ in the download page of the

Zagreus Support site (see → Downloading Zagreus) and download the ‘Zagreus Clients

for Windows v1.5.x.x’ installation package. After downloading, the following steps are

required to install the Zagreus client applications:

• copying the files to the target installation folder

• setting the proper JAVA_HOME environment variable (only for the Zagreus

Client application)

Next, these steps are described in details.

3.5.1 Copying the installation files

First, the user has to select a folder which the Zagreus client applications will be

installed in. All the contents of the downloaded installation .zip archive must be

extracted to this target installation folder (e.g. C:\Programme\Zagreus Clients

).

The installation .zip archive contains three folders:

• gui: contains the Zagreus Client application

• monitor: contains the Zagreus Monitor application

• java: contains the Java Runtime Environment (JRE) recommended for the

Zagreus Client and Zagreus Monitor applications

Warning: The Zagreus Client and Zagreus Monitor applications can be

installed only on Windows operating system!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 52

If the user wants to install only one of the Zagreus client applications, it is enough

to copy the content of the corresponding application folder and the java folder to the

target installation folder.

3.5.2 Setting the JAVA_HOME environment variable

To run the Zagreus client applications, the value of the JAVA_HOME system variable

has to be set properly in the setenvironment.bat file. For example, if the target

installation folder path is C:\Programme\Zagreus Clients, the edited part of the

setenvironment.bat file should look like:

set JAVA_HOME=”C:\Programme\Zagreus Clients\java\openjre11”

3.5.3 Starting the Zagreus clients

After proper installation and configuration, the client applications can be started by

executing the following batch files:

• startgui_en.bat : Starts the Zagreus Client application (English version)

• startgui_de.bat : Starts the Zagreus Client application (German version)

• startmonitor.bat : Starts the Zagreus Monitor application

Info: When installed as standalone applications, the Zagreus Client and

the Zagreus Monitor modules do not use the ZAGREUS_HOME setting,

therefore the definition of this property can be ignored.

Warning: If the Zagreus installation folder is located under the Windows

default program folder (e.g. C:\Program Files) then client applications

must run with administrator privileges – Run as Administrator!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 53

3.6 Troubleshooting

The installation might enounter some specific problems. Next some suggestions will

be described in details for these possible cases.

3.6.1 Issues independent of the operating system

3.6.1.1 RMI port conflict

In rare cases it can happen that Zagreus server cannot start up because RMI ports

are already used. In this case, new RMI ports need to be defined for Zagreus. Please,

check configuration section for further information – see also → Configuration

3.6.2 Issues on Windows

3.6.2.1 Enabling logging for the Java Service Wrapper

If Zagreus services cannot start up and there are no log files generated for the Server

and Worker-Controller, the user can analyse the problem by enabling logging for the

Java Service Wrapper by editing the following configuration files:

• for Zagreus Server:
<zagreus_home>\server\service\conf\wrapper.conf

• for Zagreus Worker-Controller:
<zagreus_home>\worker-controller\service\conf\wrapper.conf

Uncomment the logging-related variables in the configuration files, i.e.:

in the Server wrapper.conf

wrapper.logfile=log/srv_YYYYMMDD.log

in the Worker-Controller wrapper.conf

wrapper.logfile=log/wc_YYYYMMDD.log

After starting the services again, the following wrapper log files will be created:

• for Zagreus Server:
<zagreus_home>\server\log\srv.log

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 54

• for Zagreus Worker-Controller:
<zagreus_home>\worker-controller\log\wc.log

3.6.3 Issues on Linux

The content of the set_environment.sh file should be double-checked, see →

Editing the set_environment.sh file.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 55

4. Configuration

Zagreus consists of several modules (for an overview, see → Zagreus as a whole

system). The user can configure the modules by editing specific configuration files for

each module.

After installation, the configuration files of these modules are already prepared for

a fully functional Zagreus System. However, further fine-tuning of these configuration

files might be necessary, depending on the actual requirements.

Next the available parameters available in the three configuration files will be

described in details.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 56

4.1 Zagreus Server configuration

The OS path of the Zagreus Server module configuration file is

server/conf/conf.properties (relative to the Zagreus target installation folder).

In it, the following properties can be set:

4.1.1 General properties

• server.listener.port

The HTTP port of the Zagreus Server module. This port must be specified for the

client applications like for the Zagreus server definition node in the Zagreus

Browser window in the Zagreus Client application. Note that this value applies

only when the specified connection is not in secure mode; when the connection

is secure, the value of the ssl.listener.port property is used.

Default value: 7323

• server.rmi.port

The Java RMI port, which is used by the Zagreus Worker-Controller and Zagreus

Worker instances when connecting to the Zagreus Server. This setting also has to

be configured consistently in the Zagreus Worker-Controller and the Zagreus

Worker configuration files (see → Zagreus Worker-Controller configuration and

→ Zagreus Worker configuration).

Default value: 6666

• filesystem.root

The OS path of the Zagreus local filesystem root. This path can be absolute, but it

is recommended to use the ${working.folder} subtitution string, see → File paths.

Examples: (on Linux)

filesystem.root=/your/absolute/path/to/filesystem

filesystem.root=${working.folder}/filesystem

Default value: ${working.folder}/filesystem

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 57

• job.logpath

The OS path of the folder where the job-log files are stored. This path can be

absolute, but it is recommended to use the ${working.folder} subtitution string,

see → File paths.

Default value: ${working.folder}/log/job

4.1.2 Server startup and shutdown properties

• startscheduler

Sets whether the scheduler component starts up when the server is started.

Setting this property to false is useful when the Zagreus System needs to be

started without any automatic script execution, e.g. debugging.

Possible values: true / false

Default value: true

• server.canceljobs.onstop

Sets if all running and queued jobs should be canceled when the server is shutting

down.

Possible values: true / false

Default value: true

• server.canceljobs.onstart

Sets if all running and queued jobs should be canceled when the server is starting.

These can be useful when there are stuck jobs in the job queue.

Possible values: true / false

Default value: false

4.1.3 SSL properties

• ssl.listener.port

The port for secure Zagreus HTTPS connection. This port must be specified for the

client applications like for the Zagreus server definition node in the Zagreus

Browser window in the Zagreus Client application. Note that this value applies

only when the specified connection is in secure mode; when the connection is not

secure, the value of the server.listener.port property is used.

Default value: 7443

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 58

• ssl.listener.cipher-suites

The list of accepted SSL cipher suites.

Default value:

SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA,SSL_DHE_RSA_W

ITH_3DES_EDE_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

• ssl.listener.algorithm

Sets the keystore file management algorithm for the embedded webserver.

Default value: ssl.listener.algorithm=SunX509

• trustedstore.filename

The name of the SSL truststore file. This is the file which the additional SSL

certificates have to be installed into for secure external connections, see →

Secure connections. The location of this file is always
/zagreus_home/server/conf/ssl

Default value: client.trustedservers

4.1.4 MySQL properties

The Zagreus Server is shipped with an embedded MySQL database for storing its

internal data. The following properties can be used to configure the MySQL database.

• mysql.port

The port of the MySQL database.

Default value: 3336

• mysql.basedir

The OS path of the root directory of MySQL database. This path can be absolute,

but it is recommended to use the ${working.folder} subtitution string, see → File

paths.

Default value: ${working.folder}/mysql

4.1.5 Queue group properties

It is possible to group workers into queue groups (see → Queue groups). The specific

settings of grouping workers are the following:

• queue.groups.num

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 59

The number of worker groups for the queue.

Default value: 1

• queue.groups.<WorkerGroupID>.worker

This property defines the worker identifiers for each queue group.

The following example defines two worker groups with four and two workers,

respectively:

queue.groups.1.worker=1.1, 1.2, 1.3, 1.4

queue.groups.2.worker=1.5, 1.6

4.1.6 Password policy properties

The following properties configure the settings of the password policy. Password

policy can be switched on for any user in the Zagreus Client, see → Zagreus Client.

• password.validity

The number of days after the password expires.

Default value: 90

• password.expiration.reminder

There is a reminder for the user before the password expires. The user gets this

reminder as a warning dialog box when conneting to the Zagreus Server in the

Zagreus Client. The number of days before the reminder starts to show up can be

configured by this property.

Default value: 7

• password.reusable.after

The number of password changes after which the same password can be used

again.

Default value: 6

• password.minimum.length

The minimum length of the password.

Default value: 10

• password.minimum.capital

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 60

The minimum number of upper-case characters in the password.

Default value: 1

• password.minimum.numeric

The minimum number of numeric characters in the password.

Default value: 1

• password.minimum.special

The minimum number of special characters in the password, which are: & @ #

' " + % / = () . , ; : ? ! * < > - _ and space.

Default value: 1

4.1.7 Trigger and watcher properties

• filetrigger.double.trigger.limit

Sets the minimum time difference between two subsequent trigger events for

the same file to treat them as two different events, see also → Server-side

configuration. This value is defined in milliseconds.

Default value: 500

• watcher.counter.policy

Sets when the actual value property of a watcher is supposed to be decreased,

see → Scheduling section . The possible values are:

o evaluate: when the condition is evaluated

o condition_true: when the condition is evaluated to true

o script_run: when the condition is evaluated to true and at least one script is

going to be executed

4.1.8 Miscellaneous properties

• userecyclebin

Sets whether the server uses the recycle bin (see → Recycle bin) when deleting a

resource.

Possible values: true / false

Default value: true

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 61

• bankholidays.path

Defines the full path of the optional bank holidays descriptor file, see → Bank

holidays feature.

• variable.server.docurl

Sets the URL for the optional Document URL feature, see → Document URL

feature.

• variable.server.docurl_replace

Sets the additional substring replacements for the optional Document URL

feature, see → docurl_replace variable.

• queue.skippedjobs.threshold

Defines time threshold when a job must be marked as skipped in Zagreus

Monitor, see → Skipped jobs in the Zagreus Monitor. The value is defined in

milliseconds.

Default value: 5000 (5 seconds)

4.1.9 Server-level execution options

The configuration file of the Zagreus Server can contain server-level options as well

(see → Declaration levels). These are optional, and defined in the same key=value

format as the aforementioned properties. The keys defining these options must start

with the option.server prefix. The following example defines the execution option

running_timeout set to 50000:

option.server.running_timeout=50000

For more details on the option resolution precedence order, see → Precedence

order for resolution.

4.1.10 Server-level and queue-level variables

The configuration file of the Zagreus Server can contain server-level and queue-level

variables as well (see → Declaration levels). These are fully optional, and defined in the

same key=value format as the aforementioned properties. The keys defining these

variables must start with the variable.server or variable.queue prefix,

respectively. The following example defines a server variable x with the value 2:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 62

variable.server.x=2

For more details on the start-up variables resolution precedence order, see →

Precedence order for resolution.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 63

4.2 Zagreus Worker-Controller configuration

The OS path of the Zagreus Worker-Controller module configuration file is worker-

controller/conf/workercontroller.properties (relative to the Zagreus

target installation folder). In it, the following properties can be set:

4.2.1 General properties

• workercontroller.id

The ID of the Worker-Controller, which must be unique (to avoid conflict if there

are multiple Worker-Controller instances installed).

Default value: 1

• server.host

The URL of the Zagreus Server host (accessed through Java RMI protocol).

Default value: rmi://localhost

• server.rmi.port

The Java RMI port of the Zagreus Server to which the Worker-Controller is

connecting. This setting also has to be configured consistently in the Zagreus

Server and the Zagreus Worker configuration files (see → Zagreus Server

configuration and → Zagreus Worker configuration).

Default value: 6666

• workercontroller.servercommandservicepolltimeout

Defines the timeout when the Worker-Controller is trying to reconnect to the

Zagreus Server in suspended mode, see → Suspended mode. This value is defined

in seconds.

Default value: 60

• workercontroller.serverconnectioncheckfrequency

Defines the time period between two trials when the Worker-Controller is trying

to reconnect to the Zagreus Server in suspended mode. This value is defined in

milliseconds.

Default value: 5000

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 64

4.2.2 Worker-related properties

• worker.rootfolder

The folder where the Zagreus Worker is installed. By default, it is located in the

/worker subfolder in the Worker-Controller module installation root folder. This

path can be absolute, but it is recommended to use the ${working.folder}

subtitution string, see → File paths.

Default value: ${working.folder}/worker

• workercontroller.defaultworkercount

Defines the number of workers which are started when the Worker-Controller

module starts up, see → Number of Zagreus Workers. If it is set to -1, no Zagreus

Workers are started by default before the connection to the Zagreus Server is

established; after the connection is made, the maximum number of Zagreus

Workers allowed in the Zagreus Licence will be started, see → Licencing.

Default value: -1

• workercontroller.autokillcommand

When the Worker-Controller module is starting up, it automatically checks if

there is any running Zagreus Worker instance (accidentally stuck and could not

be stopped). For safety reasons, the module can automatically execute a

command-line command to kill any of these stuck Worker instances. This

property defines this OS command.

Recommended value on Windows:

workercontroller.autokillcommand=taskkill /f /im \"zagreus-worker.exe\"

Recommended setting on Linux/Unix:

workercontroller.autokillcommand=killall -9 zagreus-worker

• workercontroller.workerrestarttimeout

Defines the time threshold after which the Worker-Controller restarts a particular

Worker in case when the connection between the Worker-Controller and any of

the Zagreus Workers is lost. This value is defined in milliseconds.

Default value: 30000

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 65

• workercontroller.softcanceltimeout

When a job is canceled, the Zagreus Server sends a cancel command to the

Worker-Controller module. The Worker-Controller first tries to do a soft

cancelation, and if it is not successful, it restarts the whole JVM of the particular

Zagreus Worker instance. This property defines how long the Zagreus Worker-

Controller waits for the soft cancelation. This value is defined in milliseconds.

Default value: 1000

• workercontroller.workerpollingfrequency

Defines the frequency at which the Worker-Controller module obtains

information from the Zagreus Worker instances, see → Collecting and sending

worker information. This value is defined in milliseconds.

Default value: 2000

• workercontroller.monitorinfofrequency

Defines the frequency at which the Worker-Controller module sends the worker

information to the Zagreus Server module, see → Collecting and sending worker

information. This value is defined in milliseconds.

Default value: 2000

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 66

4.3 Zagreus Worker configuration

The OS path of the configuration file of the Zagreus Worker-Controller module is

worker-controller/worker/conf/worker.properties (relative to the

Zagreus target installation folder).

4.3.1 Property lists

In the worker.properties configuration file, there are special properties which

belong together as a parameter list, such as worker.javaoptions and

worker.parameters . The general declaration format of these property lists is worker.

<property-name>.<property-index> , for example:

worker.javaoptions.1=-Xmx4096M

worker.javaoptions.2=-Xms256M

worker.javaoptions.3=-Djava.io.tmpdir=temp

4.3.2 Property declaration for specific Worker instances

Most property keys in the worker.properties file can be declared either in a

general or in an instance-specific way. Instance-specific declaration allows the user to

configure any particular Worker instance differently when needed. Configuring Worker

instances with specific parameter values can be useful in combination with queue

groups, see use case → Queue groups.

The general format is worker.<property-name>, while the instance-specific format

contains the particular Worker ID: worker.<worker-ID>.<property-name> . Resolving

the value of a specific Worker property is performed in the following order:

• instance-specific property declaration

• general property declaration

• default value of the general property

For example, the MSTR classpath of the Worker instances can be declared generally

in the following way:

worker.classpath.mstr=lib/mstr/11.3.0760/*

For Worker ID=2, it can be overridden with another value:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 67

worker.2.classpath.mstr=lib/mstr/11.2.0/*

For property lists, overriding a specific list element can be declared in the format

worker.<worker-ID>.<property-name>.<property-index> . For example, overriding the

second Java option for Worker ID=3 can be done with the following declaration:

worker.3.javaoptions.2=-Xms512M

4.3.3 Worker startup properties

When the Zagreus Worker-Controller starts the Zagreus Worker instances one by

one (see → Starting Zagreus Workers), it reads the following property values from the

worker.properties configuration file:

• worker.javabin

Defines the local OS path for the Java executable (by default it is set to use the

one shipped with Zagreus). The user should avoid using backslashes in the path.

This path can be absolute, but it is recommended to use the ${working.folder} or

the ${java.folder} subtitution string, see → File paths.

• worker.classpath

Defines the main classpath for Zagreus Worker execution. This path can be

absolute, but it is recommended to use the ${working.folder} or the ${java.folder}

subtitution string, see → File paths.

• worker.classpath.mstr

Defines the classpath specifically for MicroStrategy libraries. Since MicroStrategy

external libraries change more often than other libraries, in such cases the user

only needs to update the value of this property. This path can be absolute, but it

is recommended to use the ${working.folder} subtitution string, see → File paths.

For example, to use the libraries for MicroStrategy 11.3.0760 version, specify the

following:

worker.classpath.mstr=lib/mstr/11.3.0760/*

Warning: To set the worker.classpath property under Linux, use colons

(‘:’) instead of semicolons (‘;’) as delimiters!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 68

On Linux/Unix systems, use the following format:

worker.classpath.mstr=${working.folder}/lib/mstr/11.3.0760/*

• worker.javaoptions

Defines additional JVM command line options. This is a property list, see →

Property lists, so different numbers must be used as postfixes. For example:

worker.javaoptions.1=-Xmx4096M

worker.javaoptions.2=-Xms256M

Instance-specific way (see → Property declaration for specific Worker instances)

of property declaration is also possible:

worker.1.javaoptions.5=-Dworker.self.id=1

worker.2.javaoptions.5=-Dworker.self.id=2

• worker.classname

Defines the fully qualified name of the main Java class of the Zagreus Worker

module. Instance-specific way of declaration is not accessible for this property.

Default value: com.etixpert.zagreus.worker.impl.Worker

• worker.parameters

Defines additional start-up command-line parameters for the Zagreus Worker

module. This is a property list, see → Property lists, so different numbers must be

used as postfixes. For example:

worker.parameters.1=additional_testparam1

worker.parameters.2=additional_testparam1

Currently this property is not used.

4.3.4 Connection properties

• worker.serverport

The http port of the Zagreus Server module. Must match the value of the

server.listener.port property defined in the Zagreus Server configuration (see →

Zagreus Server configuration). This port is used for creating the default zs local

connection, see → zs connection.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 69

Default value: 7323

• server.rmi.port

The Java RMI port of the Zagreus Server. Must match the value of the

server.rmi.port property defined in the configuration file of the Zagreus Server

(see → General properties) and the server.rmi.port property defined in the

configuration file of the Zagreus Worker-Controller modules (see → General

properties).

Default value: 6666

4.3.5 Miscellaneous properties

• worker.maxmemorytorestart

After the job execution has finished, a Zagreus Worker module can restart itself

when its memory allocation exceeds a certain limit. This property sets the

memory limit of this feature. Value -1 indicates that the given Worker should

never be restarted, while value 0 indicates that the Worker must be restarted

after each job execution. This value is expressed in bytes, but the following

postfixes are recommended to use :

o k or K: 1024 (i.e. kilobytes)

o m or M: 1024 kilobytes (i.e. megabytes)

o g or G: 1024 megabytes (i.e. gigabytes)

For example, the following setting sets the memory limit to 500 megabytes:

worker.maxmemorytorestart=500M

Default value: -1

• trustedstore.filename

The name of the SSL truststore file. This is the file which the additional SSL

certificates have to be installed into for secure external connections, see →

Secure connections. The location of this file is always /zagreus_home/worker-
controller/worker/conf/ssl

Default value: client.trustedservers

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 70

• worker.filesystem.path

Specifies the worker filesystem path (see → Local filesystem in the Zagreus

Worker) relative to the Zagreus Worker root folder.

Default value: /filesystem

• worker.standalone.joblog.path

Specifies the joblog path that the Standalone Worker module (see → Standalone

Worker) uses, relative to the Zagreus Worker root folder.

Default value: /joblog

4.3.6 Worker-level execution options

The configuration file of the Zagreus Worker can contain one specific worker-level

option: log_level, see → List of execution options. This is optional, and it must start

with the option.worker prefix. The following example defines the execution option

log_level set to debug:

option.worker.log_level=debug

For more details on the option resolution precedence order, see → Precedence

order for resolution.

4.3.7 Worker-level variables

The configuration file of the Zagreus Worker can contain worker-level variables as

well (see → Declaration levels). These are fully optional, and defined in the same

key=value format as the aforementioned properties. The keys defining these

variables must start with the variable.worker prefix. The following example

defines a worker variable x with the value 3:

variable.worker.x=3

For more details on the variable resolution precedence order, see → Precedence

order for resolution.

The worker variables can be declared in an instance-specific way, just like most of

the other properties listed above. The following examples show different variable

declarations for different worker instances:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 71

variable.worker.1.x=3

variable.worker.2.x=6

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 72

4.4 File paths

In the various configuration files there are properties which need to specify a local

OS path. If the user does not like to use an absolute OS path, there is the possibility to

use a substitution for the working folder root of the corresponding module: if the string

${working.folder} is present in the path definition, that will be substituted. For

example, in the following example:

filesystem.root=${working.folder}/filesystem

If the working folder of the Zagreus Server module is C:\Program

Files\zagreus\server, the value will be resolved as:

filesystem.root=C:\Program Files\zagreus\server\filesystem

The properties which support this substitution are the following:

• filesystem.root in the Zagreus Server module

• job.logpath in the Zagreus Server module

• mysql.basedir in the Zagreus Server module

• worker.rootfolder in the Zagreus Worker-Controller module

• worker.classpath in the Zagreus Worker module

• worker.classpath.mstr in the Zagreus Worker module

• worker.javabin in the Zagreus Worker module

Furthermore, for properties worker.javabin and worker.classpath, there is the

possibility to refer to the OS path of the Java root folder in the Zagreus target

installation root folder. If the string ${java.folder} is present in the paths of these

properties, that will be resolved as <zagreus_home>/java . For example, in the

following example:

worker.javabin=${java.folder}/openjre11/bin/zagreus-worker.exe

If the working folder of the Zagreus Server module is C:\Program

Files\zagreus\server, the value will be resolved as:

worker.javabin=C:\Program Files\zagreus\server\java\openjre11\bin\zagreus-

worker.exe

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 73

Info: In the Zagreus System, Java executables appear with names like

zagreus-server, zagreus-wc, zagreus-worker and zagreus-monitor (with

.exe extension in Windows) for better maintainability.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 74

5. System setup and administration

After the installation and configuration has been successfully performed, Zagreus

needs a proper system setup including licence installation and basic user management.

Optionally, recurring administrative tasks can be configured for the Zagreus System.

Next, these features will be discussed in detail.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 75

5.1 Licencing

Zagreus has plenty of features and provides efficient solutions for many possible

problems. Most of its functionality is offered by the large selection of actions and

actions groups. The customer needs to buy a Zagreus Licence to be able to use the

Zagreus System. The Zagreus Licence defines the feature-sets that the customer needs,

expiration date and some other personalized information. The licence is sent as an

encoded licence key to the customer and it needs to be installed on the already

configured Zagreus System.

5.1.1 Content of a Zagreus Licence

The Zagreus Licence contains the following information:

• Licence type

The type of the Zagreus licence. It can be one of the following:

o Registered:

This is the standard licence type. A company needs to request a registered

licence to be able to use specific action groups and specific number of

Zagreus Workers. The licence also contains settings for all the other listed

features.

o Demo:

This type of licence allows the trying of Zagreus components for a short

period of time. The downloadable Zagreus installation provides a demo

licence by default.

• Company

The name of the company that Zagreus is registrered for.

• Licence generated date

The time the license was created.

• Expiration date

The time the license will be expired.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 76

• Execution engines

The maximum number of Execution engines running at the same time (see →

Number of Zagreus Workers).

• Parallel loops

This specific property constraints the maximum number of parallel threads in

the z:foreach action. This powerful feature allows the script to be executed

efficiently in a parallel manner.

• Maximum users

The maximum number of users that can be created on the Zagreus Server.

• Enabled action groups

The list of action groups that are allowed to be executed.

5.1.2 Installing and listing a Zagreus Licence

The first time the user connects to a newly installed Zagreus Server, the Zagreus

Client shows a notification dialog box that a licence key needs to be installed (see

Figure 1.). Zagreus is deliberately shipped with an expired licence key to trigger this

message.

Figure 1 – The Licence key expired dialog box

After clicking on the OK button, the Licence info dialog box will appear and the new

licence key can be inserted in the Licence key field, see Figure 2.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 77

Figure 2 – The Licence info dialog box

The Licence Info dialog box serves two purposes:

• Listing the contents of the currently installed licence

The Licence status textbox shows the details of the currently installed licence.

When the customer needs to install a new licence key for the first time, the

information in this textbox is not relevant. Otherwise, the important features of

the licence are listed here, as listed in the previous chapter.

• Providing a way to install a new licence key

The new licence key should be pasted into the Licence key textbox. After pressing

the Send licence key button, a notification message reinforces the user that the

licence key has been sent succesfully. The newly installed licence information is

automaticcally refreshed in the Licence status textbox. The Zagreus Server does

not need to be restarted.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 78

Info: The action groups enabled by the installed Zagreus Licence are

listed in the Licence status textbox of the Licence Info dialog box in the

Zagreus Client.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 79

5.2 Administrative scripts

The Zagreus System is shipped with pre-installed administrative scripts that help the

administrator user to perform specific administrative tasks for system maintenance.

These scripts are installed under admin/administration folder in the embedded

database filesystem, see → Embedded MySQL database. The scripts use some external

resources as well from the same folder.

Figure 3 – The administration subfolder in the admin user home folder

5.2.1 Connections

There are two pre-installed connections in the connections subfolder:

• DB MYSQL metadata

This is the database connection initialized to reach the local embedded MYSQL

database, see → Embedded MySQL database. This is neccessary for the delete

jobs script. When the mysql.port server configuration property is not set to the

default 3336 value, this connection needs to be modified accordingly.

• MAIL connection

This is a connection that is needed for sending error reports when necessary. This

connection is not initialized (because the SMTP settings are installation

dependent), so this must be configured properly!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 80

5.2.2 Time schedules

There are two pre-installed time schedule resources in the schedules subfolder:

• backup time schedule

This is the pre-installed time schedule for the backup metadata script, which is

subscribed to this time schedule in the shipped Zagreus installation. The time

schedule triggers the backup script every day at 3:00 AM, but it can be modified

to suit the needs of the actual system.

• delete jobs and logs schedule

This is the pre-installed time schedule for the delete jobs and delete logs scripts,

which are subscribed to this time schedule in the shipped Zagreus installation.

The time schedule triggers the backup script every day at 1:00 AM, but it can be

modified to suit the needs of the actual system.

5.2.3 Scripts

The administrative scripts are located in the root of the administration folder:

• backup metadata

This script performs a database backup of the embedded MYSQL database. The

DaysToKeepJobs script variable defines the number of days to keep existing

backups. The instructions are written in the first action of the script.

• cancel all jobs

This script cancels all jobs that are in the queue (i.e. with statuses running or

queued, see → Job lifecycle). The instructions are written in the first action of the

script.

• delete jobs

This script deletes the jobs from the embedded database metadata that are older

than the value of the DaysToKeepJobs script variable (defined in days). The

instructions are written in the first action of the script.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 81

• delete logs

This script deletes log files from different log folders that are older than the values

defined in the appropriate script variables (defined in days). The detailed

instructions are written in the first action of the script.

• job report

This script generates a detailed job report and sends it in e-mail to a pre-defined

address. A job report is a tabular data with special filters, similar to the Active jobs

and Finished jobs windows in the Zagreus Client (see → Zagreus Client). The

detailed instructions are written in the first action of the script.

• jobs with errors

This script is a special case of the job report script: it filters only the jobs with

status error and sends it in e-mail to a pre-defined address. The detailed

instructions are written in the first action of the script.

• long running jobs

This script is a special case of the job report script: it filters only jobs with status

finished that have been running for a longer time than the running_time script

variable (defined in seconds). The detailed instructions are written in the first

action of the script.

5.2.4 Error handling

There are helper script ’snippets’ in the error handling subfolder. These script

behave as templates, their contents can be inserted into other administrative scripts.

With the help of them, the administrator can further customize the existing

administrative scripts, e.g. a specific error handler can easily be implemented, see →

Error handling. The detailed instructions are written in the README text file in the

same folder.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 82

5.3 Concepts of user and group management

In the Zagreus System, a user is an entity (typically a person) that interacts with the

Zagreus System via a client application to perform tasks, access resources and initialize

script execution. The user admin is the default user in a Zagreus sytem.

A group is a shared folder, to which users can be assigned, therefore gaining access

to shared resources. All users in the Zagreus System are assigned to the public group

by default.

This organizational structure helps streamline the administration of user accounts

and enhances security and efficiency.

5.3.1 Users in the Zagreus System

Zagreus provides the possibility for creating multiple users, which is necessary to

build up a safe and efficient system. In Zagreus, there are two types of users: simple

users and administrators.

The only existing user in a freshly installed Zagreus System is the user admin, which

is a default user with administrator rights. This user has the default password admin,

which is recommended to change as soon as possible, see → Password policy. The

admin user can create new users to build up a multi-user system, giving each users only

the necessary rights. Creating new users are described in details here → Create new

user. Users can only be managed by an administrator user, except for changing their

own password, see → Context menu of a user node.

Each user has its own dedicated home folder, in which it can store its own resources.

The user home folder is located in the embedded database under /users/<user-name> .

The only exception is the home folder of the default admin user, whose path is /admin .

Each user has its own dedicated filesystem root mapping as well, see → Mapping of

the root folder. The entry point of this mapping is located in the home folder of the

particular user.

Aside from the unique user name, each user is identified by a user ID as well. For the

user admin it is 1, the ID-s of the newly created users start from 100.

There is the possibility to define variables on the user level, see → Declaration levels.

It can be done in the Zagreus browser window in the Zagreus Client, see → Context

menu of a user node.

5.3.1.1 User rights

Any user in a Zagreus sytem has the rights to:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 83

• Browse all the resources located in its own user home folder.

• Browse all the resources located in the group home folders that the user is

assigned to.

• Open, edit, copy, move, delete all these aforementioned resources.

• Execute the scripts it can access.

• Create and delete subscriptions for the scripts and schedules it can access.

• Manage the jobs it started and check out the logs of these jobs.

5.3.1.2 Administrator user rights

The administrator-type user (see → Administrator user rights) has the additional

rights to:

• Access all the resources in the embedded database and in the local filesytem. The

administrator user can open, copy, move, delete all of the resources of all other

users.

• Execute any of the scripts in the Zagreus System.

• Create and delete subscriptions for any scripts and schedules.

• Manage all the jobs and check out the logs of any job.

• Manage all users and groups.

• Start and stop system components.

• Manage the SSL certificates of the Zagreus Server and Worker-Controller.

• Monitoring all watcher and trigger resources, see → Monitor watchers, triggers.

5.3.2 Groups in the Zagreus System

Zagreus users can be assigned to Zagreus groups. User group assignments can only

be managed by an administrator user, see → Modify existing user.

Zagreus groups facilitate resource sharing and collaboration among members with

similar responsibilities or tasks.

There is the possibility to define variables on the group level, see → Declaration

levels. It can be done in the Zagreus browser window in the Zagreus Client, see →

Context menu of a group node.

Each group has its own dedicated home folder, in which the shared resources are

stored. The group home folder is located in the embedded database under

/groups/<group-name> .

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 84

Each group has its own dedicated filesystem root mapping as well, see → Mapping

of the root folder. The entry point of this mapping is located in the home folder of the

particular group.

5.3.3 Ownership of Zagreus resources

Each Zagreus resource has an ownership property (owner, see → Ownership of

Zagreus resources), which governs the access to that particular resource. The

ownership of a Zagreus resource depends on the folder where it is located. If the given

resource is located in the home folder of a user, the resource is owned by that

particular user; this means that only that user (and all the administrator users) is

allowed to access it. If the given resource is located in the home folder of a group, the

resource is owned by that particular group; this means that only users who are

assigned to this group (and all the administrator users) is allowed to access it.

5.3.4 Password policy

The primary goal of a password policy is to enhance the security of user accounts by

promoting the use of strong and secure passwords. In the Zagreus System, the

password policy rules can be switched on for each particular user, see → Modify

existing user. When the password policy is activated, the password must satisfy several

conditions; the password must:

• be at least 10 characters long,

• contain at least one upper case letter,

• contain at least one digit,

Info: When the storing home folder is changed for a Zagreus resource

(because e.g. the resource was moved), the ownership of the resource

changes as well.

Warning: Ownership (owner property) and who created a resource

(created by property) are two distinct properties!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 85

• contain at least one special character (i.e. one of the following: & @ # ' " + %

/ = () . , ; : ? ! * < > - _ and space).

An active password policy also affects password expiration and reusability. Fine-

tuning the properties of this feature can be set in the configuration of the Zagreus

Server, see → Password policy properties.

• The user needs to upgrade its password after a certain time period (configurable).

Otherwise the password will be expired and cannot be used for logging in.

• Whenever the user logs in via the Zagreus Client and the time of password

expiration is approaching, a warning message is shown. The time period threshold

of this warning is also configurable.

• The user cannot set a password used recently. The number of password changes

after which the same password can be used again can be configured as well.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 86

6. Resources

Resources are the basic blocks of related information. They are like files and folders

in a filesystem. In Zagreus, resources are stored either in the embedded database or in

the local filesystems (both on server or worker module side). Both are located on the

server side. See → Resource storaging.

Automated workflows need a properly defined and configured underlying resource

system which includes resources containing data, resources for executable content and

also resources which are responsible for trigger mechanisms. See → Execution by

event-type resources.

The easiest approach is to treat resources as files with specific role and behaviour in

a complex automated workflow.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 87

6.1 Resource types

There are several types of resources in the Zagreus System. Different types are used

for different roles in the execution workflow. Resource types can be grouped in the

following categories:

• folder types: They are mainly for organizing other resources.

• types with general data storage: Simple files with content that is unrelated with

the inner mechanism of the Zagreus System. For example an uploaded pdf, xlsx

or a binary file.

• resources with executable content: They store the content which the system can

execute. Scripts, templates and the separated connection resource.

• trigger types: They are responsible for defining trigger mechanisms for script

execution. They can be time-related or event-related.

Resources that are stored in the database can be all types of the following list,

however resources in the local filesystems (server or worker) can only be a folder or a

file (mapped from the operating system file system).

• Folder

Folders are ’virtual locations’. They can help in storing and organizing other

resources or folders. They have basically the same function as the operating

system folders. All local filesystem folders are mapped to this type as well.

• User home folder

This is a special folder type. It represents the home folder of a particular user. The

path of the user home folder of the ’admin’ user is ’/admin’; for all other users it

is ’/users/username’.

• Group home folder

This is a special folder type. It represents the home folder of a particular group.

Its path is ’/groups/groupname’.

• Filesystem root

This is also a special folder type. It represents the root of a particular user’s

filesystem mapping. It is located in the root of the user home; the name is always

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 88

<-filesystem->. Its content is mapped to the user’s server filesystem folder. See

also → Mapping of the root folder

• File

Files are used to store general-purpose data. They can contain binary /

textual data. Also, all local filesystem (server or worker) files are mapped to

this resource type, regardless of their purpose.

• Script

Script is the resource type where the user can define what tasks should be

executed. Scripts can be edited in the Graph Editor, and they contain the actions

in a hierarchical structure. Script content can be viewed graphically or in an xml

format. See also → Scripts.

Script variables and execution options can be assigned to a script resource, see

→ Start-up variables and → Execution options.

• Connection

Connections can be viewed in two ways:

o a specific resource which stores connection parameters

o a separate part of the script, containing the connection action for reusability

Connections can also be edited in the Graph Editor, but they most have only one

action, a connection type action (i.e. their name ending with ’connection’).

Some connections can be opened (like a folder) in the Zagreus Browser. See also

→ Connections and → Opening connections in the Zagreus browser

• Template

Templates are separated, reusable parts of a script. They can be imported and

executed from a script, with passing parameters as well. See also → Templates

• Time schedule

Time schedule is an event-type resource, allowing automatic script execution (see

also → Execution by event-type resources). It defines a Cron-type time-based

trigger such as repeating time intervals, time ranges, specific times etc. It uses a

Quartz Cron expression. See also → Time schedule

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 89

• Event schedule

Event schedule is also am event-type resource. Events can be fired from multiple

sources (manual, from a script, through a webservice call), and that is what is

triggering it. See also → Event schedule

• Mail watcher

A mail watcher is a special type of an event-type resource. It uses a mail

connection that it is periodically checking and it triggers when its specified

condition evaluates to true. See also → Mail watcher

• Database watcher

A database watcher is another special type of an event-type resource. It uses a

database connection that it is periodically checking and it triggers when its

specified condition evaluates to true. See also → Database watcher

• File trigger

A file trigger is checking a specified filesystem folder and triggers on specific

events e.g. file creation or deletion. See also → File trigger

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 90

6.2 Resource properties

6.2.1 List of resource properties

All resources have specific properties in the Zagreus System. Resources stored in the

database are slightly different from the ones are located in the local filesystem.

Not all properties are accessible for the local filesystem resources. The following table

shows the differences:

Property name Database Filesystem

Name √ √
ID √ √

Version √ ×
Type √ √
Full path √ √
Size √ √
Owner name √ √
Creation time √ ×
Modification time √ √
Created by √ ×
Description √ ×

• Name

The name of the resource. It cannot contain the character ‘/’ and the maximum

length is 100 characters.

• ID

The identifier of the resource. For database resources it is a GUID (32 character

long); for referencing resources, usually the version is concatenated at the end of

the ID with delimiter ‘|&’, see also → Embedded MySQL database.

For server filesystem resources, the ID is generated from the operating system

path in the form fs/1/folder/filename.ext, see also → ID and full path format

For worker filesystem resources, the ID is also generated from the operating

system path in the form wfs/folder/filename.ext, see also → ID and full path

format

Some special resources like the admin user home folder or the recycle bin folder

have special, pre-defined IDs.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 91

• Version

The version of the database resource, for example ‘1.2.3.4’.

Non-versionable resources like folders also have a version, but only the default

version ‘1.0.0.0’. See also → Current version

• Type

Resource type, see also → Resource types

• Full path

The full path of the resource. It starts with a ‘/’ and ends with the resource name.

For filesystem resources, the path constructed of the filesystem root folder path

(‘/users/username/<-filesystem->’) and the mapped filesystem resource path

(‘/fileSystemFolderName/localFileName’).

• Size

The size of the resource by bytes.

• Owner name

The owner (user) name of the resource. See also → Ownership of Zagreus

resources

• Creation time

The timestamp when the resource was created.

• Modification time

The timestamp when the resource was last modified.

• Created by

The name of the user who has created the resource.

• Description

The description of the resource, which is a short textual element attached to the

resource. Maximal length is 255 characters.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 92

6.2.2 Resource properties in the Zagreus Client

The resource properties can be checked in the Zagreus Client by right-clicking on the

particular resource, and selecting Resource information from the context menu.

Figure 1 – Resource info dialog

Description property can only be set from this dialog for a resource.

Info: Not all properties are listed for all types. E.g. for folders the ‘size’

property is not shown, or for local filesystem file resources there is no

version property.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 93

6.3 Resource versioning

Certain database resources can have multiple versions. There are several use cases

when creating new versions of an existing resource is useful:

• developing complex scripts

All new changes can be saved into a new (trial) version without losing any details

of the already working script.

• keeping track of the changes over time

Versions can be treated as revisions of the same resource.

• multiple choices for tests:

Using multiple versions of the same connection resource (e.g. with different user

credentials) helps in testing different use cases. Switching between test cases is

easy by setting the current version of the resource.

6.3.1 Version format

The format of the version is like ‘1.0.0.0’, so it is a

n.n.n.n

format, where n is an unsigned integer number in the range of 0-99.

6.3.2 Current version

Current version is a special version among all the versions. There are built-in rules

for the resource versioning and the current version:

• Each resource has an initial version (aka default version). This is always version

1.0.0.0 .

Info: Only database resources can have versions, because local filesystem

resources are mapped from the OS filesystem (which natively does not

have built-in versioning).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 94

• Each resource has to have a current version. If there is only one (the default)

version for a resource, that must also be the current version.

• Only one current version can exist for a resource. When there are multiple

versions of a resource, all other versions are non-current.

• The current version can be freely selectable among versions. See also → Setting

the current version

• The resource id contains a 32 character long GUID concatenated with the

resource version by the delimiter |&

• A resource can be referenced by only its GUID and in this case it always refers to

the current version

6.3.3 Resource ID and version

The resource ID and the version are stored together in the database in the following

format:

323eab314a5749b68fd1830408d43619|&1.0.0.0

where the first part is the generated 32 character long GUID, the last part is the version,

and they are concatenated by the special delimiter: |&. This fully qualified format is

the truly unique identifier for a resource. When there are multiple versions created for

a resource, their ID-s will have the same GUID part with different version parts like:

323eab314a5749b68fd1830408d43619|&1.0.0.0

323eab314a5749b68fd1830408d43619|&1.0.0.1

323eab314a5749b68fd1830408d43619|&1.0.0.2

This kind of ID structure assures that the versions of the same resource belong to

each other (hence the same GUID) but differ from each other (by their version

numbers).

Info: There is a useful simplification built-in to the Zagreus System:

resource referencing can be done by only the GUID part of the whole ID,

in this case it means the current version of the resource.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 95

6.3.4 Versioning in the Zagreus Client

6.3.4.1 Listing resource versions

Versioned resources are displayed in a parent-child structure in the Zagreus Client.

If there is more than one version of a resource, the resource itself becomes a container

node for all its version.

For example, in Figure 2. the script test_script has only the default version, but

test_script_with_versions has multiple versions:

Figure 2 – Versioned resources are expandable tree nodes

When expanded (by clicking on the > sign), the versions are listed as child nodes,

the version numbers are shown, and the current version is marked. The current version

is always the first element of the list, all other versions are sorted by the version

number.

Figure 3 – All versions are listed as child nodes

6.3.4.2 Setting the current version

Setting the current version can be done by right-clicking on the particular (non-

current) child node, and selecting Set to current version:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 96

Figure 4 – Changing the current version

The child nodes are refreshed after this operation and the current mark is changed

accordingly.

Figure 5 – The current version is 1.0.0.1

6.3.4.3 Creating a new version

Creating a new version can be done from the Script editor by clicking the icon tool

(‘Save a new version for the resource…’) or by pressing the CTRL+Shift+V hotkey.

In the ‘Set resource version’ dialog box, the following parameters can be set:

• the new version number

• if the new version would be the current version

• a description for the resource, see also → Resource properties

A list of the currently saved versions are displayed at the bottom of the dialog box.

The new version number must differ from any of the existing ones, and must satisfy

the version format. See also → Version format

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 97

Figure 6 – Creating and saving a new version

6.3.4.4 Deleting a version

Deleting a version is only possible for a non-current version. The user needs to right-

click on one of the versions of the resource and select the Delete menu item from the

context menu, see Figure 7.

Figure 7 – Deleting a script version

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 98

6.4 Resource storaging

For flexible resource-handling, Zagreus supports three kinds of resource storage:

database, server filesystem and worker filesystem (from Zagreus Version 1.5.6.0).

6.4.1 Embedded MySQL database

The database (as of Zagreus Version 1.5.6.0) is an embedded MySQL database which

is managed by the Zagreus Server module. For database settings see → MySQL

properties

The advantages of the database storage:

• Typed resources can be saved (e.g. scripts, connections, time schedules) for

specific roles in the workflow.

• Standard filesystems do not support a number of resource-related Zagreus

features: specific properties (e.g. description), variables and options for scripts,

and versioning for resources.

• It is easier to include database resources for more complex workflows like

creating a job when executing a script, filtering with properties when running a

job report, etc.

• Using resource IDs intead of paths (that filesystems only have) opens more

possibilites for synchronizing different systems (like test and production servers).

• Resources, triggers, jobs and automation are embedded into one system.

6.4.2 Local filesystem in the Zagreus Server

Each user and group has a filesystem root folder that does not overlap with

filesystem folders of other users and groups. Symbolic links under Linux / shortcuts

under Windows are supported.

The advantages of the local filesystem storage:

• Direct access for operating system files (easy access for externally generated file

resources such as Excel, PDF, etc.).

• More efficient for handling large input/output files.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 99

• Output files with an external source or target platform (.pdf, .xlsx, images) can be

checked swifter from the local filesystem.

• Symbolic links or shortcuts for extension of the filesystem is easy.

6.4.2.1 Mapping of the root folder

When the user logs in by the Zagreus Client, the filesystem is visible in the home

folder’s root:

Figure 8 – Filesystem root folder is located in the user home folder

The OS filesystem is mounted under the <-filesystem-> node, so the <-filesystem->

folder node is the point where the local database folder structure and the OS filesystem

are connected together.

The path of the OS folder which is mounted to this node is located in the server

module under the path

/zagreus_home/server/filesystem/<userId>

The OS folder relative to the Zagreus Server module root folder can be configured

in the configuration of the Zagreus Server by the filesystem.root setting, see →

General properties.

The <userId> part is resolved by the unique user ID, see → Users in the Zagreus

System.

filesystem root folder mapping

listing of

server/filesystem/<userId>:

..

/backup

/common

/images

/pdf

/temp

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 100

6.4.2.2 ID and full path format

Since the external OS files and folders are mapped to Zagreus file and folder types

(see → Resource types), the Zagreus System is generating IDs and full paths in its own

format for these files and folders. Also, the OS files are identified by their OS path only,

so a specific OS resource can be identified in multiple ways:

OS path:
zagreus_home/server/filesystem/101/folder/file.txt

Zagreus resource full path:
/users/testuser/<-filesystem->/folder/file.txt

Zagreus resource ID:
fs/101/folder/file.txt

The following terms explain the relation among the different identifiers:

• Local OS filesystem root

The main mapping root point for all the user and group filesystems of the external

operating system, see → Mapping of the root folder.

• User / group ID

The unique identifier of the particular user / group to which the filesystem

belongs.

• Local OS user / group filesystem root

The main mapping root point for the particular user or group filesystem. It is

derivated from the local OS filesystem root and the user / group ID (the

concatenation of the two).

• Relative OS path

The path of the actual resource relative to the local OS user / group filesystem

root.

• Local database filesystem folder

The Zagreus full path to the filesystem mapping folder node, see → Mapping of

the root folder.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 101

• ‘fs’ prefix

In the case of filesystem resources, the Zagreus resource ID is generated from the

relative OS path and the user / group ID. The ’fs’ prefix indicates that it is an

identifier. The ID is the concatenation of the three elements.

The Zagreus filesystem ID and full path can be used as general identifiers for

resources in the scripts.

6.4.3 Local filesystem in the Zagreus Worker

From Zagreus Version 1.5.6.0, a further storage type is accessible: the worker

filesystem. The worker filesystem is similar to the server filesystem, the main

difference being that it is located on the worker module side. It does not appear in the

Zagreus browser window, nor it is mapped under any browseable node.

The main advantages of using the worker filesystem:

• Large files (such as results of actions) can be stored immediately without

transferring them to the server side storage systems. This results in faster and

safer file I/O operations.

• This feature is neccessary for the Zagreus Standalone Worker (see → Standalone

Worker) to be able to perform file operations.

• Worker filesystem is also essential for the External Script Execution feature (see

→ External script execution). Using locally stored files is inevitable for the external

execution engines to read their inputs, and their result output files are also

generated locally. They can be accessed only via the worker filesystem.

The Zagreus Execution Engine provides worker filesystem-related operations only

via the wfile action group. In the actions of this action group, worker filesystem paths

must be used, which are relative to the worker filesystem root folder, see below.

6.4.3.1 Mapping of the root folder

The location of the worker filesystem root folder can be set in the configuration of

the Zagreus Worker (see → Zagreus Worker configuration): the

worker.filesystem.path property specifies the file system root folder name

relative to the root folder of the Worker module. If this property is not specified, the

folder name filesystem will be used as default. Thus, in this case, the worker filesystem

is under:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 102

/zagreus_home/worker-controller/worker/filesystem

In this case, the worker filesystem path /folder/file.txt will be translated to:

/zagreus_home/worker-controller/worker/filesystem/folder/file.txt

Similarly to the server filesystem, symbolic links or shortcuts can be used.

6.4.3.2 ID and full path format

Similarly to the server filesystem resource identifiers, worker filesystem resources

also have Zagreus IDs and full paths. These can only be used in the dedicated wfile

action group.

The Zagreus System is generating IDs and full paths in its own format for these files

and folders. Also, the OS files are identified by their OS path only, so a specific OS

resource can be identified in multiple ways:

• OS path:
zagreus_home/worker-controller/worker/filesystem/folder/file.txt

• Zagreus resource full path in the worker filesystem:
/folder/file.txt

• Zagreus resource ID in the worker filesystem:
wfs/folder/file.txt

The following terms explain the relation among the different identifiers:

• OS worker filesystem root

The main mapping root point for the worker filesystem of the external operating

system, see → Mapping of the root folder.

• Relative OS path

The path of the actual resource relative to the OS worker filesystem root. This is

also the Zagreus worker filesystem resource full path.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 103

• ‘wfs’ prefix

In the case of worker filesystem resources, the resource ID is generated from the

relative OS path. The ’wfs’ prefix indicates that it is a worker filesystem identifier.

The ID is the concatenation of the two elements.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 104

7. Queuing and jobs

After initiating the execution of a script (see → Initiating script execution), Zagreus

generates a job. A job represents a task to be executed.

The system submits this task into a job queue (basically a FIFO data structure: first-

in first-out, so the first job which is put into the queue is the first one that is taken from

the queue. this can be overridden by priority execution option, see → Execution

options). Once a Zagreus Worker successfully takes a job from the queue, the execution

of the job can finally be started by the Execution Engine of the Worker, see → Zagreus

Worker.

It is important to see the difference between the script and the job. The term script

can refer to the resource type as well as the resource content. On the other hand, the

term job means the task for executing a particular script. For example, if a script is

executed three times in a row, that results in generating three different jobs. Because

of the fact that the execution of the script depends on the actual state of the

environment (for example the content of a mailbox folder, or the actual Zagreus

Worker occupancy), the results of the jobs can be very different from each other.

Figure 1 – Finished jobs in the Finished jobs window in the Zagreus Client

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 105

Figure 2 – The relation of the scripts, the queue and the Zagreus Workers

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 106

7.1 Job properties

The job can be considered as a data structure with properties. This properies are

stored in the local database, the administrator can even check them using the local

database connection (see → Connections)

• job id

A unique identifier of the job. The format follows the GUID standard.

• script id and script path

The ID and path properties of the script whose execution was initiated.

• script content

The content of the script which execution was initiated. It is saved for the job,

since the content of the script (i.e. the Zagreus resource) might change after job

execution.

• script start-up variables and execution options

The starting variables and options which were used for the script execution. There

are many ways to specify these, such as the variables saved for the script itself in

the Zagreus local database, or the ones defined for subscriptions, as well

zs:runscript action parameters (see → Start-up variables and → Execution

options).

• begin queue time and end queue time

At the moment when the job is created, it is automatically put into the queue.

This point of time is the begin queue time of the job. When the job is taken by a

Zagreus Worker to be executed, it is no longer in the queuing state (see job

statuses below). That point in time is the end queue time of the job.

• begin execution time and end execution time

The point in time when the execution of the job started by the Zagreus Worker is

the begin execution time. When the execution is finished, the end execution time

is set.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 107

• job status

The status shows the current state of the job, see → Job lifecycle. It starts with

status queued then changes accordingly to the execution stages of the job.

• worker id and worker-controller id

When a Zagreus Worker gets the job to execute, its worker id is stored to the job.

In default configuration, there is only one Worker-Controller set up to the system,

which has worker-controller id = 1.

• user id

The id of user who manually executed the script or whose subscription initiated

the execution, see → Users in the Zagreus System

• parent job id

If the execution was initiated from another script via a zs:runscript action,

the id of that job is the parent job id.

• caller and caller type

caller type describes the type of how the execution was initiated, see → Caller

and caller type. The property caller stores additional information about the

initiation.

For more details on these two properties, see the following sub-chapter.

• execution mode

describes the execution mode of the job. The possible values are: direct,

scheduled, fired and triggered.

• priority

It is an integer value (from 1 to 1000). The lower the value the higher the job

priority is.

• result and result-message of the execution

When the job successfully finished (the job status is finished), the result and

result-message of the executed script is stored. See → Result flow

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 108

7.1.1 Caller and caller type

The caller-type job property defines the type of how the execution was initiated, see

→ Initiating script execution. Its value can be one of the following list elements:

• scheduler: initiated by a time schedule trigger

• gui: initiated by a user manually from the Zagreus Client

• webservice: execution initiated from the html pages or other external source, see

→ Execution from external systems

• script: initiated from a zs:runscript action using local zs connection, see →

Execution from a Zagreus script

• remote script: initiated from a zs:runscript action using remote zs

connection, see → Execution from a Zagreus script

• autorun: execution initiated by the autorun funcionality of Zagreus, see → Script

execution by autorun configuration files

• event: the execution was initiated by an event schedule, see → Event schedule

• file trigger: a certain file event triggered a file trigger (see → File trigger) which

initiated the execution of this script

• db watcher: execution was initiated by a database watcher whose condition was

evaluated to true, see → Database watcher

• mail watcher: execution was initiated by a mail watcher whose condition was

evaluated to true, see → Mail watcher

The caller job property provides additional information about the execution.

Depending on the caller type, the value of the caller property can be:

Caller type Caller property value

scheduler the time schedule id : subscription id

gui the client ip

webservice custom text, in case of a html call, it is ’html’

script the caller script id

remote script caller script id @ ip address

autorun the constant ’ServerAutorun’

event event id : subscription id

file trigger file trigger id : subscription id

db watcher database watcher id : subscription id

mail watcher mail watcher id : subscription id

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 109

The caller and the caller type properties can be checked out and seen both the in

the Job Properties dialog in the Zagreus Monitor, see → Job properties dialog and in

the Finished jobs window in the Zagreus Client, see → Finished jobs window.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 110

7.2 Job lifecycle

Each job has a lifecycle from the creation of the job till the job ends. When the job

is created, basic properties are filled like job id, script id, script path, script content, user

id, caller type, execution mode, priority and parent job id (if there is any).

• The job lifecycle starts with the status ’queued’. It means that the job is put into

the Zagreus job queue, waiting for taken out by a Zagreus Worker for execution.

The job property begin queue time is set at this point.

• If the job is waiting in the queue for too long (the time exceeds the queue timeout

set for the script, see → General properties), the job status is set to ’queue

timeout’. The job is removed from the queue and it will not be executed. The job

property end queue time is set at this point.

• When the job is successfully taken from the queue by a Zagreus Worker, its status

is set to ’starting’ for a very short period of time, then it is set to ’running’. The

execution of the job is starting now. The job properties end queue time and begin

execution time are set at this point.

• If the execution finished successfully, the job status is set to ‘finished’. The result,

result message of the executed script (see also → Order of execution, result flow)

is stored in the local database along with the property end execution time.

• If the execution does not finish successfully (an error has been thrown, or the

status attribute of the z:exit action was set to ’error’, see → z:exit and z:return

actions), the job status is set to ‘error’. The result message property of the

executed script is set only if it was specified by the z:exit action. The job

property end execution time is set as well.

• If the job is running for too long (the time exceeds the running timeout set for the

script, see → General properties), the job status is set to ’running timeout’. The

system interrupts the execution of the job, and the job property end queue time

is set.

• A job can be cancelled in several ways, such as manual cancellation from the

Zagreus Client, server shutdown automatic cancellation or the zs:cancel action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 111

(see → Server startup and shutdown properties and → Cancellation by the

zs:cancel action). The job status is set to ’cancelled’. The system interrupts the

execution of the job, and the job property end queue time is set.

There are two further, special statuses: suspended and debugging. These are

available only if the script has been run in debug mode, see → Starting a debug session

.

Figure 3 – The job statuses in the same structure as in Figure 2

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 112

7.3 Queue

The queue (or job queue) is a data structure managed by the Zagreus Server. It is

basically a priority queue (see → Priority and priority algorithm) stored in the memory

and in the local database as well. The Zagreus Workers (with their Execution Engines,

see → Zagreus Worker) are connected to the queue, and are constantly trying to get a

new job to execute. When a Zagreus Worker finally obtains a job, it starts to process it

and the status of the Worker is turning to busy. The particular job is removed from the

queue.

The job queue can be stopped from the Zagreus Client (see → Stop / start server

components) and from the Zagreus Monitor (see → Additional options) applications.

When the queue is stopped, it can not receive any new jobs and the currently queued

jobs will not be passed to any Zagreus Workers.

7.3.1 Queue groups

All the Zagreus Workers are connected to the aformentioned job queue. Therefore,

each given job can be assigned to any of the Workers. However, sometimes there is a

need to override this default behavior of the dispatcher mechanism.

For example, there may be a need for a specific Worker to be configured using a

different library path than the others (such as libraries of different MicroStrategy

versions). Defining queue groups can be a solution for this scenario.

A queue group is a set of Zagreus Workers. By default, there is only one queue group

in the system (the default group), and all Workers belong to this group. However, the

user can define custom queue groups. This means that the Zagreus Workers will be

split into groups.

Custom queue groups can be defined in the Zagreus Server configuration, see →

Zagreus Server configuration.

Example: Suppose the Zagreus System allows to use up to five Zagreus Workers.

Defining two queue groups would look like this in the configuration file:

queue.groups.num=2

queue.groups.1.worker=1.1,1.2,1.3

queue.groups.2.worker=1.4,1.5

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 113

This means that two different queue groups are defined. Group 1 is associated with

Worker 1.1, Worker 1.2 and Worker 1.3 while Group 2 is associated with Worker 1.4

and Worker 1.5. For fully qualified Worker numbers, see → ID of the Zagreus Worker .

Overlapping between two queue groups is not allowed, i.e. one worker can only be

assigned to one worker group. All the workers need to be assigned to a group.

When there are two or more groups, the jobs can still be executed by any of the

Workers until an additional setting is specified: assigning a script to a specific queue

group. Since any group is associated with specific Workers, the script can only be

executed by those Workers.

The execution option queue_group_id needs to be set in order to assign a script to

a queue group, see → List of execution options.

In the example above, if the user wants a script to be assigned to Worker 1.4 or

Worker 1.5, the execution option queue_group_id needs to be set to 2.

7.3.2 Queue-level variables

Variables can be defined on the queue level. They must be declared in the

configuration of the Zagreus Server. Variable resolution and their precedences are

described in details, see → Precedence order for resolution.

Example:

This is a queue-level variable (resolved as ’x’ in the script)

variable.queue.x=1

7.3.3 Priority and priority algorithm

The job queue is a priority queue. It is very similar to a standard FIFO (first in – first

out) queue but with an added feature: each element has a priority associated with it.

Elements are dequeued based on their priority rather than just their order in the

queue.

The priority of the job can be set by the priority execution option (see → List of

execution options) which is a numeric value, set to the value 10 by default. If the

default value of this option is not overriden, the queue will behave accordingly to the

FIFO behaviour: the first queued job will be achievable to a Zagreus Worker first, then

the second one and so on. But if there are jobs in the queue with different priority

values, jobs with lower priority values will be taken out from the queue earlier (so the

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 114

queue is ordered by the priorities). This way, more important jobs can be put to the

beginning of the queue.

There is a case, though, which should be avoided. Assume that there are many jobs

in the queue with different priorities, and high-priority jobs (i.e. those with low priority

values) are regularly put into the queue. Because the number of Zagreus Workers is

limited, these high-priority jobs will always occupy the Workers, so the low-priority

jobs would be waiting for a very long time. To prevent this case, Zagreus offers a built-

in feature called priority algorithm. The priority algorithm works in the following way:

each new job passed to a Zagreus Worker automatically decreases the priority value of

all the other, queued jobs. Therefore, over time, the relative importance of these jobs

will be slowly increased against the newly queued jobs.

This algorithm can be switched on or off from the Zagreus Client (see → Stop / start

server components) and from the Zagreus Monitor (see → Additional options)

applications.

Warning: The word priority can be misleading, as high-priority jobs have

low prioritiy values and vice versa.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 115

7.4 Hidden jobs

There may be cases when specific jobs are scheduled to run quite often, and this

makes monitoring the other jobs in the Zagreus Client and in the Zagreus Monitor

challenging. Zagreus offers two solutions for hiding these jobs from monitoring.

7.4.1 The job_monitoring execution option

Hidden jobs can be defined by setting the job_monitoring execution option. By

default, it is true. When it is set to false, the executed job is only visible if the client

applications explicitly ask for it.

For the Zagreus Client application, this explicit option can be set by the Show hidden

jobs checkbox in the Finished job report parameters dialog box, see Figure 4.

Figure 4 – The Show hidden jobs setting in the Zagreus Client

For the Zagreus Monitor application, this explicit option can be controlled by the

Show hidden jobs checkbox on the main toolbar of the connected server pane:

Figure 5 – The Show hidden jobs setting in the Zagreus Monitor

Execution options can be set in several ways in Zagreus, see → Declaration levels .

7.4.2 The invisible result message

The Zagreus Client also provides an application-level solution for the

aforementioned problem. By default, the Finished jobs window also filters out jobs

which have a specific result message: invisible. A predefined condition is set for the

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 116

Result message column in the Finished job report parameters dialog, as shown in Figure

6. Since it is an application-level solution, this filter can be changed (or solved by

another filter) to match special user requirements.

This filter works only if the particular script has a result-message set to ‘invisible’,

see → Result flow for understanding result-message and → z:exit and z:return actions

for setting the result-message in z:exit action.

Figure 6 – The condition for the Result message column in the Finished job report parameters dialog

Figure 7. shows an example for using the z:exit action to set the result-message

of the script to ‘invisible’.

Figure 7 – The result-message invisible set by the z:exit action in a script

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 117

7.5 Skipped jobs

Skipped jobs is a concept in the Zagreus System: these are scheduled jobs which

were not executed, mostly due to an unexpected server shutdown. The user can check

these non-executed (i.e. skipped) jobs by the Zagreus Client and the Zagreus Monitor

applications.

Since the Zagreus Server and its database were down, there are no possible

database entries or log messages about which jobs were skipped. Because of this, the

list of skipped jobs can only be estimated later on, when the Server has been restarted.

The system examines all the calculated points in time according to script subscriptions

and their underlying time schedule definitions, and tries to figure out if a job associated

with the corresponding script has been queued at the given moment of time.

7.5.1 Skipped jobs in the Zagreus Monitor

In the Zagreus Monitor application, skipped jobs are automatically displayed on the

Timeline (depending on the state of the skipped checkbox in the Status filter, see →

Status filter). As it is seen in Figure 8., skipped jobs are represented by red triangles.

Figure 8 – Skipped jobs

By clicking on the red triangle icon, the Skipped job dialog opens, see Figure 9. All

the fields which make sense are filled the same way as for the Job properties dialog

(see → Job properties dialog). Note that the Begin Queue Time field shows the

estimated scheduled time, indicating that the job has never actually run.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 118

Figure 9 – The Skipped job dialog box in the Zagreus Monitor application

7.5.2 Skipped jobs in the Zagreus Client

In the Zagreus Client, a dedicated window can show the skipped jobs for a specified

time interval. By default, this window is not open, the user needs to select the Skipped

jobs window menu item from the main Window menu. The appearing Skipped jobs

window (see Figure 10.) shows the list of the skipped jobs from the last 24 hours.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 119

Figure 10 – Cancelling a running job by right-clicking on the job in Active jobs window

The skipped jobs are shown in a tree-table, where the skipped jobs belonging to the

same script are grouped together. The script nodes can be expanded or collapsed. Each

row then contains the following information in its columns:

• Script path: the path of the script that is associated to the skipped job

• Subscription id: the ID of the subscription that should have initiated the execution

of the script

• Schedule path: the path of the time schedule that is associated to the subscription

• Skipped scheduled time: the time when the job should have been created

The default grouping and the time interval of the skipped jobs can be modified in

the Skipped jobs window preferences dialog (see Figure 11.), which can be open by

clicking on the icon.

Figure 11 – Cancelling a running job by right-clicking on the job in Active jobs window

In the Skipped jobs window preferences dialog, the user can set the following

properties for the skipped job estimation:

• From server drop-down list

The user can select the Zagreus Server connection from the list of opened

connections.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 120

• Range from time selectors

The user can set the start time for the skipped job estimation. By clicking on the

 icon, the user can select the start date from the appearing date picker widget.

• Range to time selectors

The user can set the end time for the skipped job estimation. By clicking on the

 icon, the user can select the end date from the appearing date picker widget.

• Use always current time as ‘to’ checkbox

If set, the skipped job estimation will always take the current time as the end

date, ignoring the value in the Range to time selector.

• Group result drop-down list

The user can select the field on which the skipped jobs will be grouped together.

Possible values are: By script, By subscription and By schedule.

7.5.3 Setting the tolerance

There is a certain tolerance used for the calculation of the skipped job list, set by the

queue.skippedjobs.threshold property in the configuration of the Zagreus

Server, see → Miscellaneous properties. The default value is 5000 (in milliseconds).

This tolerance value is used when the system is checking if any jobs has been created

at a given calculated point in time according to the subscriptions and time schedules.

Example:

A script called script_1 was subscribed and scheduled to be executed at every

hour on weekdays, and the server was down for two hours on a Friday from 10:55 to

13:10. Assuming that no further issues were experienced with Zagreus Server on this

day, there are three skipped jobs for script_1 (at 11:00, at 12:00 and at 13:00).

After the Zagreus Server has been restarted, and the client applications are

connected again, there are ways to check if there was any skipped jobs during the

shutdown period (see → Skipped jobs). Possible skipped jobs are always calculated in

a user-defined time range. So, if the user likes to see the skipped jobs from e.g. on

Friday, the system calculates points in time when script_1 should have been

queued: 00:00, 01:00, 02:00, … 11:00, 12:00, 13:00, etc. To find out, the mechanism

checks if there were any corresponding scheduled jobs queued around these times.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 121

Because of the fact that queuing is not happening immediately, the checkout for

finding these jobs needs to use a tolerance: if the tolerance is set to 5000 milliseconds,

it means that a job corresponding to script_1 (started by the corresponding

subscription) queued at 09:00:04.100 is accepted as one started at 09:00, since the

time difference is only 4100 milliseconds.

Example:

This setting increases the tolerance to 10 seconds

queue.skippedjobs.threshold=10000

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 122

7.6 Cancellation

Job cancellation can be initiated by the user manually or the automatically by the

Zagreus System. Cancellation is especially useful when:

• the job is running for an unreasonable long period of time

• the job execution is hanging and not responsive

• the job has been started accidentally

• the memory consumption of a Zagreus Worker exceeds the configured limit

7.6.1 Manual cancellation

The user can cancel a single job manually in several ways:

• in the Zagreus Client, via right-clicking on the job in the Active jobs window:

Figure 12 – Cancelling a running job by right-clicking on the job in Active jobs window

• in the Zagreus Client, via right-clicking the particular Worker row in the Execution

engines window, on Worker Information tab:

Figure 13 – Cancelling a running job by right-clicking on the job in Execution engines window

• in the Zagreus Monitor, clicking on the Cancel job button in the Job properties

dialog box, see → Job properties dialog:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 123

Figure 14 – Cancelling a job with the Cancel job button in Zagreus Monitor

7.6.2 Multiple cancellation by job statuses

In the Zagreus Client, there is a way to cancel multiple jobs at once. The Cancel jobs

dialog box (see Figure 15.) can be opened by the following menu items:

• right-clicking the job in Active jobs window (see Figure 12.) and select Cancel all

jobs…

• right-clicking the worker in Execution engines window (see Figure 13.) and select

Cancel all jobs…

• right-clicking the server definition node and select Administration options /

Cancel all jobs…

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 124

Figure 15 – The Cancel jobs dialog box

In the Cancel jobs dialog box, the user can filter which running statuses are going to

be cancelled. For a list of job statuses, see → Job lifecycle.

7.6.3 Cancellation by the zs:cancel action

Cancelling can also be done using the zs:cancel action in a script. Figure 16. shows

the case when the action cancels one particular job, identified by its job id.

Figure 16 – Cancelling a job with the zs:cancel action by job-id

The zs:cancel action can also cancel multiple jobs just like using the Cancel jobs

dialog in the client applications (see → Multiple cancellation by job statuses). Figure

17. shows an example for cancelling all the jobs with queued and running statuses.

Figure 17 – Cancelling all jobs with the zs:cancel action by job statuses

7.6.4 Zagreus Server startup and shutdown cancellation

Jobs can be cancelled automatically on Zagreus Server startup at shutdown. This can

be configured in the configuration of the Zagreus Server (see → Zagreus Server

configuration). The following settings are configurable:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 125

• server.canceljobs.onstop

If this boolean setting is true, the server will cancel all jobs on shutdown that have

one of the following job status: queued, starting, running, suspended and

debugging. The default value is true.

Cancelling the jobs during shutdown is recommended in order to prevent jobs

remaining in an inconsistent state. Though a Zagreus Worker can still continue to

execute a job when the Zagreus Server is shut down, the queue is not active on

the server side, so the Server and the Worker cannot be synchronized anymore.

• server.canceljobs.onstart

If this boolean setting is true, the server will cancel all jobs on startup that have

one of the following job status: queued, starting, running, suspended and

debugging. The default value is false.

This is useful when there are jobs left in the queue (stored in the queue in the

database when the Server was down) which the user does not want to execute.

Practically most of these jobs are in an inconsistent state anyways, so cancellation

of all jobs is highly recommended by using the server.canceljobs.onstop setting.

7.6.5 Zagreus Worker automatic restart cancellation

The job status can be canceled in the rare case when the communication between

the Zagreus Worker-Controller and the Zagreus Worker has been lost. If the duration

of communication outage exceeds the default 30 seconds value, the Worker-Controller

automatically restarts the particular Zagreus Worker. If there was a running job on the

given Worker, the status of this job will be set to canceled.

The default threshold of this behavior can be set in the Zagreus Worker-Controller

configuration (see → Worker-related properties), with the

workercontroller.workerrestarttimeout property.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 126

8. Scripts

Scripts are the most important resources in the Zagreus System. They contain

executable actions in a flexible structure which makes possible to define a proper

execution order for the actions and the dataflow pipeline among the logical parts of

the script.

Scripts use a hierarchical model to define a sequence of executable actions. Actions

are the basic building blocks of the script, so the script resource is a container for its

own actions. Scripts contains all the actions that belongs to the same logical workflow.

Scripts are stored in a XML format (see → XML representation), but they are viewed

and edited in the fully-featured Script Editor in the Zagreus Client, see → Script Editor.

Though templates are technically different resource types, they strictly belong to

the script execution mechanism, so they are described in this chapter as well.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 127

8.1 Actions

An action represents a basic function or feature that can be executed. It can

transport or transform data as well as perform complex operations in the background.

8.1.1 Action groups and action name

Actions are divided into logical groups (Action groups, e.g. file, mail or db).

Each action has a unique, fully qualified name containing two parts separated by the

“:” character: the action group title and the action name like file:read or db:sql.

All actions in the same group have the same action group qualifier. The basic form is

then:

<actionGroupTitle>:<actionName>

Figure 1 – Actions are listed in groups on the palette

Technically this is stored as a namespace-prefix and element name in the XML

correspondingly. Fully-qualified names are useful to avoid collisions (for example,

db:connection and ldap:connection actions are different actions). This name is

always written on the action icon or container (depending on which view mode is used,

see also → View modes)

8.1.2 Action attributes

Attributes are the input parameters of the action, they store name-value pairs,

similary to the case of XML attributes. The user can set a parameter by selecting the

attribute name and specifying its value.

Action documentation can be displayed by right-clicking on the action name in the

palette (see also → Action help).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 128

8.1.2.1 Predefined and common attributes

There are predefined attribute names for each action, which are action-specific

inputs for the particular feature, and there are also common attributes which can

freely be used for every action. These latter define some common functionality, e.g.

the output common attribute is used for storing the result of the action in a file

resource.

Figure 2 – File:dir action with a common attribute

For example, in Figure 2., the file:dir action has four pre-defined attributes

(path, filename, details and recursive), while output is a common attribute which was

added manually.

The pre-defined attributes are shown in the Script Editor after drag-and-dropping

an action from the palette (when the view mode is set to Full, see also → The full view

mode). The common attributes can be drag-and-dropped to an action from the palette

too.

Attributes can be edited in several ways in the Script Editor, see → Attributes.

8.1.2.2 Required and optional attributes

There are attributes which are required (mandatory) to be able to process the given

action. These attribues must be filled by the user. Sometimes these values are already

filled when the action is created in the Script editor. Required attributes are indicated

in the Documentation dialog, see → Action help. If the value of a required attribute is

left empty, an error will be thrown.

Other attribues are optional, i.e. they can be left empty. Optional attributes can still

have a default value even when they are not specified, see also the Documentation

dialog → Action help.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 129

8.1.2.3 Attribute value types

Textual, numeric and date types are stored as textual values and checked only

during the execution of the script.

There are some special types though, which can restrict the value selection:

• elements from a list

there are attributes that expect their values from a predefined list. The user can

select a list element from the Attributes dialog box, see → Attributes

Figure 3 – An example for the list selection of an attribute in the Attributes dialog box

• boolean

other attributes can have a boolean type logical value as true/false. This is also

selectable from a combo box in the Attributes dialog box, see → Attributes

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 130

Figure 4 – An example for a boolean type attribute in the Attributes dialog box

8.1.3 Action content

Actions can contain further elements inside. In some cases, child content is needed

for the proper action performance (for example, mail:body is needed as a child

action of mail:send parent action), while in some other cases a dataflow pipeline is

implemented by this way (a mail:attachment parent action contains a file:read

child action, in order to attach a file to the email). Sometimes a simple textual content

is enough as an input for the particular action (for example z:log action).

8.1.3.1 Textual content

An action can contain a simple textual content just like PCDATA in an XML element.

Some actions expect text content only (e.g. z:log, db:sql), while others can process

textual content and other child action content together (e.g. rest:call).

Textual content is processed in UTF-8 encoding.

Figure 5 – Textual content of a z:log action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 131

Textual content can be edited in several ways in the Script Editor, see → Text content

8.1.3.2 Child action content

Actions can also contain child actions. They are special or general inputs for the

given action. The ouput result of the child actions serve as the input of the parent

action.

For the order of processing actions, see → Order of execution, result flow, for

checking the result pipelines, check → Pipelining actions.

Figure 6 – An example for a child action serving as an input to the parent action

There are several types of child actions:

• A child action which provides output for further usage

This is the most general case: a child action generates an output which is used as

an input of the parent action. See result flow → Result flow .

Figure 7 –A zip:file parent action uses the outputs of the zip:item actions.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 132

They also pipeline data from their own file:read action children

• Some child actions can be used with a particular parent

these child actions make sense only with the parent action together, and the

parent actions may need them as a mandatory child action or as an optional one.

For example, action z:in can and must be the child of action z:foreach, just

as the relation between mail:body and mail:send:

Figure 8 – Child actions belonging to particular parent actions

• A child action that behaves as an attribute

In some rare cases, setting an attribute value is not possible or not convenient for

an action. In these cases, an attribute can be changed to a child action which has

the same name as the attribute was. There is a context menu to do it in the Script

editor, see → Attribute as child element

These are so-called pseudo-actions because they do not exist in the palette and

there is no list of their possible names. Any predefined attribute can be converted

to a child element. Figure 9. shows a use case where an attribute value would be

read from a file. The first and second picture behave just like the same, the pdf-

name attribute was converted to a pdf:pdf-name child action. Then in step 3,

the original value was replaced for one that is set by a file:read action output.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 133

Figure 9 – Usage of an attribute converted to a child action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 134

8.2 Order of execution, result flow

In Zagreus, script execution follows a comprehensive logical pattern in terms of

execution order of actions and input-output data flow. The order of execution can be

imagined horizontally (sibling actions are executed one after the other), but the data

flow is going vertically, from inside to outside – from the child action to the parent

action. This way, a wide variety of use cases can be implemented easily in a Zageus

script.

8.2.1 Ordering numbers

Each action has an ordering number. This is visible before the action name in the

Script editor.

On the root level (i.e. canvas) the ordering numbers are simple ordinal numbers like

1, 2, 3 etc. Following the hierarchical model, child actions are numbered with prefixes

of the ordering number of the parent. Thus, the first child of Action 2 will have the

ordering number of 2.1.

In Figure 10., a general structure is demonstated:

Figure 10 – Parent-child actions and siblings

8.2.2 Execution of an action

The execution of an action consists of three different steps:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 135

1) Processing and evaluating the attributes

All attributes from the pre-defined list of the action are read by the processing

engine. If needed, variable references in attribute values are resolved at this

point.

2) Processing child elements

If the action contains any child elements (i.e. child actions or textual content),

they are executed.

3) Processing the actual action

After processing all possible inputs for the action (i.e. attributes and child

elements), the processing engine finally executes the actual action.

8.2.3 Result of an action

Executing an action does not only mean that the given action performs a specific

task, but it can also produce an output called action result. For example, the result of

a file:read action is the content of the specified file. The type of the action result is

one of the Zagreus data types, see → Data types .

The result can be accessed in one of the following ways:

• Implicitly propagated

If an action has a result, it is always implicitly propagated upwards to the parent

action, see → Pipelining actions.

• alias and alias-global attributes

The action result can manually be stored in a script variable (see → Variables) by

the alias and alias-global attributes, see → alias and alias-global attributes.

• output, debug-output and worker-output attributes

The action result can manually be stored in a simple file by the output, debug-

output (see → output, debug-output and output-encoding attributes) and worker-

output (see → worker-output attribute) attributes.

8.2.4 result-message of the script

The script itself can also have an output that is stored in a job property called result-

message (see → Job properties). The result-message of the script is a textual value

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 136

which can provide useful feedback for the user about how the execution went. It can

be set in the script by the z:exit action, or by the exit-message attribute of any

action, see → exit and exit-message attributes. It can be read from the finished job by

the Finished Jobs window in the Zagreus Client (see → Finished jobs window), the Job

properties dialog of the Zagreus Monitor (see → Job properties dialog) or by the

zs:jobinfo and zs:joblist actions.

For example, if the script ran successfully, the last action can be a z:exit action

with a human-readable message that can be seen in the Finished Jobs window in the

Zagreus Client. This way, not only the job status would inform the user about the status

of the script, but also the result message can reinforce the successful execution.

Another possible use case could be to distinguish multiple scenarios where the script

execution was successful.

8.2.5 Basic traversal of the actions

Script execution always starts with executing Action 1. This is the entry point of

the execution for the whole script.

Actions with child contents are processed in the following way:

• The parent action processes its own child actions first (if any) in the order of their

ordering numbers. This happens in a recursive manner.

• Then the action itself is processed, i.e. it is performing its own function.

In the example of Figure 10., the execution order is the following:

1) Execution starts with Action 1. This action has child actions, so it processes

them first. Action 1.1 and Action 1.2 are processed one after the other.

2) Then Action 1 itself is executed. If there were any outputs of its children, it can

use it as its own input, see → Pipelining actions

3) Execution is followed by Action 2. It has a child action, Action 2.1, so

Action 2 starts to process its child first.

4) Action 2.1 also has children, so it processes them first. Action 2.1.1 and

Action 2.1.2 are processed respectively.

5) Action 2.1 is executed. If there was any output from its child actions, it can

use them as its own input, see → Pipelining actions

6) Action 2 is executed last. It can also use the output of Action 2.1 as its own

input.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 137

So the execution order is:

 Action 1.1

 Action 1.2

Action 1

 Action 2.1.1

 Action 2.1.2

 Action 2.1

Action 2

8.2.6 Special control flow statements

Control flow statements change the flow of execution. Following the logics of

programming languages, Zagreus has several control flow statement actions and

attributes. These structures are used in the script in order to control the flow of

execution based on a condition or a loop definition.

8.2.6.1 z:if action

The z:if action is a conditional control flow action that allows to execute a

different child action of the parent action, based on a specified condition. This

condition is set in the test-expr attribute. The dedicated children elements are z:then

and z:else. For example, the script displayed in Figure 11., prints “less than five”.

Figure 11 – Example for a z:if action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 138

8.2.6.2 test-expr attribute

The test-expr attribute is also common attribute, i.e. it can be set for all actions, not

just for z:if (see previous sub-chapter). The evaluation result of the attribute decides

whether the action is to be executed or not. Figure 12. shows an example for the usage

of this attribute: the Action 4 will not be executed because the expression specified

evaluates to false.

Figure 12 – Example for the test-expr common attribute

8.2.6.3 z:switch action

The z:switch action is a control flow action that allows one selection of several

choices to be executed, based on a specified condition. This condition is set in the test-

expr attribute. The dedicated child elements are z:case and z:else. Former sub-

actions define what to execute on the matching condition, latter is the default / else

branch.

Figure 13 – Example of a z:switch action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 139

8.2.6.4 z:for action

The z:for action is a control flow action that allows to iterate over a range of

numbers. The content of the z:for action is executed within each iteration. For

example, Figure 14. shows a z:for action which logs the numbers 1, 2, …, 10.

Figure 14 – Example of a z:for action

8.2.6.5 z:foreach action

The z:foreach action is a control flow action that allows an iteration over the

elements of a pre-defined list. This pre-defined list has to be defined in the mandatory

z:in first child element which can also be specified as the attribute in. In Figure 15.,

the foreach loop logs the first ten prime numbers.

Figure 15 – Example of a z:foreach action

The z:foreach action has a special parallel thread feature, see → Parallel threads

in the z:foreach action.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 140

8.2.6.6 z:while action

The z:while action is a control flow action that allows to repeatedly execute the

content of the action as long as a given condition is true. The condition is evaluated

before each iteration.

In Figure 16., a four-element list is defined as variable $x. In Action 2, another

variable, $j is used as an index counter, which value is increased by 1 in every loop

iteration in Action 3. The condition in the z:while loop checks if the next list

element is not null, in this case the loop body (children 3.1 and 3.2) is executed and

the condition is checked again. The result of the while loop is the logged $x list

elements one by one.

For better understanding of engine expressions, see → Engine expressions

Figure 16 – Example of a z:while loop

8.2.6.7 z:do-while action

The z:do-while action is a control flow action that allows to repeatedly execute

the content of the action as long as a given condition is true. The condition is evaluated

after each iteration, so (in contrast with z:while) the content of the action is executed

at least once.

8.2.6.8 Goto expressions

If a goto expression is defined in the Script Editor (see → Script Editor), it allows the

execution of the script jump to a different action (on the same sibling level). For

example, Figure 17. shows a goto expression set to Action 2. Since the goto condition

is true, Action 4 will be executed right after Action 2.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 141

Figure 17 – Example of a goto expression

8.2.6.9 z:break and z:continue actions

For loop actions (z:for, z:foreach, z:while, z:do-while) there are two

further actions in order to control the flow of execution. They need to be used inside

the body of the loop.

• z:break

It terminates the execution of the current iteration and the processing engine

continues executing the next action after the loop. So it exits the loop early and

skips any remaining iterations.

In Figure 18., a list $x is defined with mixed elements in it, the 5th element is a

number, all the others are of text type. Inside the z:for loop, a z:if action is

checking whether the current list element is a number. If so, it breaks the whole

loop, until then it logs the corresponding elements of the list. The result would be

’a’, ’b’, ’c’ and ’d’.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 142

Figure 18 – Example for z:break: the first occurrence of a number breaks the loop

• z:continue

It also terminates the execution of the current iteration, but then the engine

jumps immediately to the next iteration. It does not exit the loop itself, only the

current iteration.

Figure 19 – Example for z:continue: numbers are not logged

In Figure 19., a similar example is shown as in Figure 18., but this time, a simple

common attribute test-expr is used to evaluate if the z:continue is executed or not.

In case of a number, the z:log is not executed, so the result is ‘a’, ‘b’, ‘c’, ‘d’, ‘f’ and

‘g’.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 143

8.2.6.10 z:exit and z:return actions

There are two special actions that immediately interrupt job execution: z:exit and

z:return. Aside from the fact that they break the execution flow, they can set the

result or the result-message of the script as well, see → Result flow.

• z:exit exits the execution flow and sets the result-message of the script as well

as the job status (for example ’error’ or ’finished’, see → Job lifecycle). This action

is useful in error handlers: Figure 20. shows an example where, after catching an

error with a z:on-error, the z:exit action immediately interrupts script

execution with error status (see → Job lifecycle) and a custom result message (see

→ result-message of the script).

Figure 20 – z:exit action controls the script status and result-message

• z:return exits the execution flow and sets the result of the script. Figure 21.

demonstrates an example for using z:return. It is highly recommended that the

z:return action should be the last action of the execution flow, as any other

actions after this would not be executed!

Figure 21 – An example for a z:return action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 144

8.2.6.11 exit and exit-message attributes

The exit attribute immediately exits the execution flow, just like the z:exit action

in the previous chapter. If the exit-message attribute is also filled along with the exit

attribute, the result message will be set to the specified value.

8.2.7 Parallel threads in the z:foreach action

The action z:foreach has a special feature: it can use parallel processing for its

iterations. In some important cases, it can make the execution much faster. For

example, there is a long list of email addresses, any simple loop would send emails one

by one which can take a lot of time. In this case, the order of the addresses (as well as

the order of email sending) is not important, so parallel execution threads can do the

job faster.

Normally, the execution of an action is processed in the main thread of the particular

engine. The main thread is the first thread created by the Java Virtual Machine (JVM)

when the engine starts running. All actions are executed one by one in this thread. The

JVM thread id of the main thread is 1. This is called single-threaded or sequential

execution type.

In contrast, parallel execution is when multiple tasks are executed simultaneously.

In order to do this, it is necessary to create and manage multiple threads. There is a

special attribute parallel for z:foreach, it is set to 1 per default (sequential

processing). When it is set to greater than one, the z:foreach action works as

following:

• It creates a new child thread for all iterations (regardless of the parallel setting).

• It allows these threads to be executed at the same time but only according to the

parallel setting. So when parallel=”3” and there are 5 iterations, then each child

thread will be executed in a controlled way, so that only 3 of them can be

executed at the same time.

• Two variables can be obtained in the loops: $threadId (the JVM thread id) and

$parallelThreadId (Zagreus managed parallel thread id).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 145

Figure 22 – Sequential processing in z:foreach

In Figure 22., the sequential processing is shown with the parallel=”1” setting. The

result of the z:foreach loop in the logfile is:

<"1" z:foreach>

<"1.1" z:in>

</"1.1" z:in>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1

</"1.2" z:log>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1

</"1.2" z:log>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1

</"1.2" z:log>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1

</"1.2" z:log>

<"1.2" z:log>

Thread id: 1

Parallel thread id: 1

</"1.2" z:log>

</"1" z:foreach>

It means that there is a main thread (JVM thread id, $threadId=1) and a single-

threaded processing (parallel=1 setting, the $parallelThreadId=1 as well).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 146

Figure 23 – Parallel processing in z:foreach

In Figure 23., three parallel processing threads are set with parallel=”3”. The result

of this z:foreach is the following:

<"1" z:foreach>

<"1.1" z:in>

</"1.1" z:in>

<"1.2" z:log>

<"1.2" z:log>

<"1.2" z:log>

Thread id: 1027

Parallel thread id: 1

</"1.2" z:log>

Thread id: 1028

Parallel thread id: 2

Thread id: 1029

Parallel thread id: 3

</"1.2" z:log>

</"1.2" z:log>

<"1.2" z:log>

<"1.2" z:log>

Thread id: 1031

Parallel thread id: 2

Thread id: 1030

Parallel thread id: 1

</"1.2" z:log>

</"1.2" z:log>

</"1" z:foreach>

It shows that 3 z:log actions started at the same time, and after they were finished,

two others were started in parallel again. So the 5 iteration was executed in a way that

maximum 3 of them were executed at the same time in parallel.

In this case, Zagreus maintains 3 parallel ‘virtual’ threads (numbered as 1,2,3) and

the actual JVM thread id is different for all the iterations (1027, 1028, …, 1030) due to

the implementation of the Java threading system.

8.2.8 Templates

Templates define reusable parts of a script. The action z:template is used for this

purpose. The child actions of z:template will be executed when the template is

Info: The parallel setting is limited by the licence setting as well.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 147

called by the z:call-template action. Action z:template also can handle

parameters with its optional child action z:param.

Figure 24. shows an example for using a template. Action 1 defines the template

and its parameter x, which has a default value “3”. (This default value will be applied if

the given parameter is not specified at the z:call-template action.)

Both Action 2 and Action 3 call the template. Referencing the template is done

by matching the name attributes, which is “template_1” in this example. Action 2

calls the template without specifying any parameter, while Action 3 is calling the

template with x=”2”.

Figure 24 – Calling a template with and without a parameter

The result of executing this script is the following:

<"1" z:template>

</"1" z:template>

<"2" z:call-template>

<"1.2" z:log>

Value of x: 3

</"1.2" z:log>

</"2" z:call-template>

<"3" z:call-template>

<"1.2" z:log>

Value of x: 2

</"1.2" z:log>

</"3" z:call-template>

Action 1 is not executed, hence it is just the definition of the template: without a

z:call-template action it would never be executed. When Action 2 and Action

3 call the template, the content of the template is executed: Action z:log 1.2 is

logging the value of parameter x, which is different in the two calls.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 148

8.2.9 Result flow

8.2.9.1 Pipelining actions

Most of the actions produce output data, which is called their result. This result is

used as the input of the parent action. In this way, the user can create a pipeline-like

processing of data. In Figure 25., the output of the file:read action serves as an

input of the xslt:transform action. Its output is the input of the z:log action.

Figure 25 – Data flows from child to parent action

There can be multiple children within one parent action. In this case, it depends on

the parent action implementation how it will be handled. For example, in Figure 26.,

the file:write parent action can receive multiple chunks of input data from the

corresponding file:read children action, and it can merge them together with the

append=”true” attribute.

Figure 26 – Data flows from child to parent action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 149

8.2.9.2 alias and alias-global attributes

Aside from the pipeline-like dataflow, there are other ways to pass the result data

among actions. Many times it is not practical to produce data directly inside the action

that would use it, or the script is more readable doing it otherwise.

One good solution is to use an alias attribute. It creates a variable (see also →

Variables) out of the result of the action, and that variable can be used at any point in

the script within the same local scope (see → Local scope). In this way, the pipeline-

like result flow can be avoided, and a horizontal result usage can be implemented. In

Figure 27., the three-level pipeline is modified from Figure 25. with the use of the

alias=”result_of_xslt” attribute. It creates a $result_of_xslt variable in the

background that is used in the z:log action later.

Figure 27 – Using an alias attribute for result re-use

8.2.9.3 output, debug-output and output-encoding attributes

When the result is simply needed to be written into a file, the output attribute can

be the solution. It specifies a filename with a path where the output result data will be

written. In Figure 28., the output of the xslt:transform action is written to the

specified output.dat file.

Info:The alias attribute creates a variable with a local scope. If you need

a global scope variable, use the alias-global attribute!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 150

Figure 28 – Using an output attribute for storing the result

The debug-output attribute behaves in the same way as the output attribute does,

but it is processed only when the script is executed in debug mode (see → Debugging

in the Zagreus Client).

If the output is textual data, the output-encoding attribute can be used to set the

encoding of the written file.

8.2.9.4 worker-output attribute

The worker-output attribute behaves the same way as the output attribute described

in the previous chapter. The only difference is that the output is written into the

Zagreus Worker filesystem (see → Local filesystem in the Zagreus Worker) instead of

the embedded database or the local filesystem.

8.2.9.5 no-result attribute

In some cases it is needed to explicitly tell the script processor not to propagate the

result of the action upwards to the parent action. For example, the output is too large

to store it in the memory. In such cases the no-result attribute can be used. This does

not affect the behavior of the output and debug-output attributes.

Info: Even when the alias and output attributes are set, the result of the

action will still be propagated to the parent action.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 151

8.2.9.6 eval-output attribute

If the result of the given action is of a textual type, in some cases it might be useful

to be evaluated as an engine expression (see also → Engine expressions). By using the

eval-output=”true” setting, the result is evaluated before passing as an input to the

parent action. In Figure 29., the result of the file:read action is evaluated before the

parent z:log action processes it, so the message “The value of y is: variable value” will

be logged by resolving the $y string part to the value of variable y.

Figure 29 – Evaluating the file:read result

8.2.10 Result attributes

In many cases, not just one single result is expected as an output of an action, but

many other output parameters related to the result. For example, if a result is a list

type data, it can be useful to know the number of rows of the result, or the number of

processed lines of a complex action like zs:migrate. These additional output data

attributes are set after the execution of a particular action and they are called result

attributes.

Info: Common attributes that are related to logging (like log, log-result-

attributes) might be considered as a special type of result flow as well

during the execution of the Zagreus script.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 152

For the specific list of all possible result attributes for an action, see → Action help

about action documentation.

Contrary to the result data, one must explicitly refer to the result attributes in order

to check their values. The result attributes are mapped together as an associative array

with name-value pairs.

For example, for a zs:list action, there are two result attributes defined: rowcnt

(the number of rows of the result) and execution_time (the execution time of the action

in milliseconds). After the zs:list execution, a special associative array is generated

with values like: [rowcnt:16, execution_time:230]. This whole array can be

referenced as well as its keys inside (the result attributes). For associative arrays, see

→ Engine expressions

This reference can be done in one of the following ways:

• Using the result-attributes attribute

This attribute can specify a variable name which will contain the result

attributes after the execution of the current action. The attribute itself can be

referenced as a whole array, and its keys as the result attributes.

Figure 30 – Using result-attributes attribute to reference the result attributes

In Figure 30., $res_attrs is used as the referencing variable name. The result

of the z:log action is the following:

All result attributes: [rowcnt:16,execution_time:230]

Number of listed items: 16

Execution time: 230

• Using special reference to the last executed action type

Instead of a named variable, Zagreus automatically maps the result attributes

to a special variable name which is derived from the action name:

$nameSpace_actionName

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 153

This automatically generated variable always stores the result attributes of the

last executed action of the specified type. It is useful to quickly check out some

result attribute when testing or debugging.

Figure 31 – Using the special variable name to reference result attributes

Info: the result-attributes attribute sets a variable to a local scope. A

result-attributes-global attribute can set a global scope variable if

needed, just like the alias and alias-global attributes.

Info: The result attributes can also be logged with the log-result-

attributes attribute.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 154

8.3 Includes

Scripts can include the content of other resources as well. A special z:include

action is used for this purpose. The main point of using includes is the reusability of

other resources:

• A connection resource, once defined and configured properly, can be used from

many different scripts.

• A template (see → Templates) can be easily used from other scripts without

modifying the template itself.

• Scripts that are doing simple (or repetitive) jobs can be simply included to other

scripts, they do not need to be implemented all over again.

The easiest way to include a resource to the Script Editor is using drag-and-drop

operation from the Zagreus Browser window, see → Drag-and-drop operations .

8.3.1 Including connections

Connection resources contain a specific connection action with properly set up

parameters so that the Zagreus System can connect to a particular server (database,

ftp, MSTR server, etc.), see → Connections

An already existing and configured connection resource can be included into a script

that can use this connection in its actions. Figure 32. shows the content of a connection

resource that is included into a script in Figure 33. The filename attribute in the

z:include action can be a resource path or a resource id as well.

Figure 32 – A connection resource contains a single connection action with parameters

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 155

Figure 33 – The connection resource is included with a z:include action and used in the db:sql action

Actions that are using the included connections have to refer to the included

connection action by its name. In Figure 32., the name of the db:jdbc-connection

action is “mysql-connection”. In the script in Figure 33., the db:sql action is

referencing the connection action by the attribute connection-name=”mysql-

connection”. For further details, see → Referencing to a connection .

8.3.2 Including templates

Template resources are used as containers for storing one or more z:template

actions (see → Templates), so that they can be reused from multiple scripts as includes.

The example of Figure 24. is changed to demonstrate this use case: Figure 34. shows

the content a template resource, which is included by the z:include action in the

script in Figure 35.

Figure 34 – The template resource, containing a z:template action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 156

Figure 35 – The script uses the included z:template

8.3.3 Including scripts

Script also can be included into other scripts. Contrary to the cases of including

connections or templates, included scripts are executed at the point of inclusion. The

script in Figure 36. is included into the script shown in Figure 37.

Figure 36 – The script to be included

Figure 37 – The script including another script

The log result of executing the script in Figure 37. is the following:

<"1" z:variable>

</"1" z:variable>

<"2" z:include>

<"2.1" z:log>

Value of x: 3

</"2.1" z:log>

</"2" z:include>

The included z:log action was executed as the child element of the z:include

action. This also means that variable $x in the z:log action of the script_to_include

script was treated as a local variable in script_include.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 157

Info: The included action ordering numbers are changed to be matched

to the ordering number of the corresponding z:include action.

Included actions behave as direct children of the z:include action.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 158

8.4 Error handling

Errors (or technically: exceptions) are thrown from any action which has unexpected

problems during execution. This includes missing attributes, runtime errors, broken

connections, etc.

If the error is not handled in the action where it occurred, it will be propagated up

to the parent action. This can continue for several levels. If the error is not handled at

all, the script will be finished with an Error status (see also → Job lifecycle).

Zagreus has two ways to handle possible errors:

• specifying one of these attributes: on-error-next-sibling, on-error-next-child

• having a z:on-error action

In the following, we will demonstrate error handling by a file:dir action with an

incorrect path attribute value, which throws an error.

8.4.1 on-error-next-sibling attribute

The on-error-next-sibling attribute instructs the Zagreus processing engine to

continue script execution on the next sibling action when an error occurs. In Figure 38.,

the error is thrown in Action 1.1, which has the on-error-next-sibling attribute set.

Due to this, the next action to be processed will be Action 1.2 (i.e. z:log), which

will be followed by Action 2.

Figure 38 – An example for error handling with the on-error-next-sibling attribute

Recall that, if the error is not handled on the level it was thrown, it is passed to the

parent action. In Figure 39., the error is thrown in Action 1.1, but it will be handled

by the parent action, i.e. Action 1. Because this action has the on-error-next-sibling

attribute set, execution will continue with Action 2, and Action 1.2 (along with

all possible further child actions of Action 1) will be skipped.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 159

Figure 39 – Another example for error handling with the on-error-next-sibling attribute

8.4.2 on-error-next-child attribute

When the on-error-next-child attribute is specified, execution will continue on the

next child action in the case of an error. This attribute is meant to be used in the parent

action in contrast of using the on-error-next-sibling attribute. (This of course has no

effect if the error occurred within the given action, as its child actions were already

processed; for the order of action execution see → Order of execution, result flow). In

Figure 40., the error is thrown again in Action 1.1, but it will be handled by the

parent action, i.e. Action 1. Because this action has the on-error-next-child attribute

set, execution will continue with Action 1.2, being the next child action of Action

1. After this, Action 2 will also be processed. In this case, the order of action

execution is the same as it was in Figure 36. In general, setting the on-error-next-child

attribute for the parent action is essentially the same as setting the on-error-next-

sibling attribute for all its children.

Figure 40 – An example for error handling with the on-error-next-child attribute

8.4.3 z:on-error action

The z:on-error action allows performing steps in the case of an error (e.g.

logging, writing into a file, sending an e-mail etc.) by adding child actions to the z:on-

error action. The error handling will be done on the parent level where the z:on-

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 160

error action was specified. Script execution will continue with the subsequent action

on the parent level.

Figure 41. shows a simple example of error handling with z:on-error; similarly to

the previous examples, the error is thrown from the file:dir action (now Action

1.2). In this case, the error is propagated up to and handled by Action 1 (i.e.

z:block). After logging the ”error caught!” message, script execution will continue

with Action 2, ”sibling of z:block”.

Figure 41 – Example for error handling with a z:on-error child action

Actions can handle their own exceptions as well: in Figure 42., the z:on-error

action is the child action of Action 1.1 . So when an error occured in Action 1.1,

it can handle it by its own z:on-error child action. Due to this, after logging the

”error caught!” message (Action 1.1.1.1 now), execution will continue with

Action 1.2 (and then with Action 2).

Figure 42 – log 1.1.1.1, then go on with 1.2 and 2

In Figure 43., the z:on-error action is specified on the root level of the script. As

the error is not handled by the file:dir action (i.e. Action 2.1), it will be passed

up to the parent action (Action 2). As it is not handled there either, it will be passed

up further to the root level, where it will be handled by the z:on-error child action.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 161

In this case, both Action 2.2 and Action 3 will be skipped, so the script will finish

after logging the ”error caught!” message.

Figure 43 – Log “error caught” (in action 1.1), then finish the script

Figure 44 – The script is finished with error

8.4.4 errorMessage and errorTrace variables

In case of any error, two variables are automatically set during the script execution:

errorMessage and errorTrace. These two variables are both set in global scope, see →

Global scope. They appear as result attributes as well, with the same names. Figure 45.

demonstrates the logging of all these variables and result attributes.

Info: The z:on-error action has an error-name attribute, which allows

to filter exceptions based on the type of the error (e.g. AttributeRequired,

IO, FileNotFound, JSON, MSTR).

Warning: The z:on-error action should be specified as the first action of

a given level. If the action is not specified up to the point where an exception

is thrown, the exception will not be caught, see Figure 44.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 162

Figure 45 – Using errorMessage and errorTrace

8.4.5 z:raise action

There might be cases when the user intentionally wants to throw (or raise) an error.

It works just as in programming languages: throwing an error stops the normal

execution flow and an error handler (if any) can catch it and continues the execution.

For an example, see Figure 46.

Figure 46 – Using the z:raise action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 163

8.5 Variables

Variables are basic concepts of the Zagreus System, they are data values which can

change or can be changed over time. The variables in Zagreus consist of two parts:

name and value. Names are strings which are accepted as variables in the standard

programming languages (i.e. a sequence of lower- and uppercase letters, underscore

(”_”) and digits, where the first character cannot be a digit). Zagreus variable names

are case sensitive, i.e. a and A refer to two distinct variables. Variables have also types,

see → Data types

 A variable can be defined on many different levels (see → Declaration levels), but

almost all the variable references are finally resolved and processed during the

execution of a script. The result of a script or the flow of execution in a script can be

based on variables entirely.

In this chapter, only the script level variables are discussed. For variable scopes, see

→ Start-up variables. On how to set variables on different levels, see → Server-level

and queue-level variables, → Setting script variables and options, → Context menu of

a user node and → Context menu of a group node.

Variables used in the scipt level has types, see → Data types

8.5.1 z:variable action

The most common way to define a variable is the z:variable action. The variable

name can be specified by the attribute name, and the value is inside the action. Figure

47. shows an example of such a definition and usage. Notice the variable reference $x,

see → Engine expressions.

Figure 47 – Defining a variable with the z:variable action

Variables can also be used in action attributes. Figure 48. displays an example for

referencing variable x in Action 2.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 164

Figure 48 – Referencing a variable in an attribute

8.5.2 Variable scopes

Once a variable is specified, it can be referenced by its name. Variable scope is a

specific region in the script where this reference is valid. Zagreus uses only two scopes:

local and global. In action z:variable, scopes can be specified manually (by using

the scope attribute).

Variables are mapped to the action within they are created. When a reference is

used, Zagreus tries to resolve the variable by checking the already mapped variables of

the parent action. If it does not succeed, it goes up to the parent action again in a

recursive manner. In Figure 49., variable x is mapped to Action 1 (since z:variable is

the child action of Action 1). When Zagreus is trying to resolve the variable reference

in Action 1.2.1.1.1, it first checks Action 1.2.1.1, whether it has a mapped x

variable. Because it is not the case, it goes up one level to Action 1.2.1, …, until it

finds this variable mapped in Action 1.

Figure 49 – Example for variable referencing

8.5.2.1 Local scope

Variables with local scope can be referenced only inside the container action the

variable has been defined in. Outside of this parent action, the variable cannot be

referenced. Figure 50. shows an example such a variable and an embedded reference

to it.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 165

Figure 50 – Local scope variable can be referenced anywhere inside the same container action

A local scope can temporarily override another local scope which is located outside.

In Figure 51., two variables are specified with the name x, in different local scopes.

Referencing for $x in Action 1.2.2 will be resolved as “second”, while referencing

in Action 1.3 will be resolved as “first”. This is due to the fact that the variable

defined in Action 1.1 is mapped to Action 1, while the variable defined in Action

1.2.1 is mapped to Action 1.2.

Figure 51 – Local scope variable can be referenced anywhere inside the same container action

8.5.2.2 Global scope

Variables with global scope can be referenced from all parts of the whole script after

variable creation. Any variable defined outside of the script (e.g. server variables or

script variables, see → Server-level and queue-level variables and → Setting script

variables and options) are on the global scope per default. Inside the script, the scope

attribute of the z:variable action can be used to specify a global scope variable. In

Figure 52., global scope variable x can be referenced outside of Action 1.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 166

Figure 52 – Referencing a variable in an attribute

8.5.3 Monitoring variables

The z:variable action can have a special attribute monitoring. If this attribute is

set to TRUE, the variable can be monitored in real time for running jobs. These

monitoring variables can be checked on the Monitoring variables tab in the Job

properties dialog in the Zagreus Monitor application, see → Job properties dialog.

8.5.4 Common attributes that create new variables

There are common attributes that also create variables in Zagreus System:

• alias and alias-global

These attributes can control the result flow (see → Result flow) by storing the

result of the action in the variable name (that was specified in the alias attribute).

• result-attributes and result-attributes-global

These attributes belong to the result-flow monitoring (see → Result attributes)

by storing the result attributes of the action in the variable name (that was

specified in the result-attributes attribute).

• action-attributes

This common attribute creates a variable with the specified name. After the

action has been executed, this variable contains the original attribute values of

the particular action, see Figure 53.

Figure 53 – Using the action-attributes attribute

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 167

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 168

8.6 Engine expressions

Engine expressions are special expressions in a Javascript-like language, which offer
a wide range of processing functionalities. Every expression has an evaluated return
value.

They can be located in two places: firstly, in the attributes of the actions, and
secondly, in the text content of the actions. By default, these contents are handled
simply as strings; for example, a ”hello” text content inside a z:log action simply
logs the text hello. There are three ways to interpret a string as an engine expression:

• By simply using a $ sign before a variable name; i.e. $a means the value of
variable a. For example the ”value of a=$a, value of b=$b” text content
inside a z:log action logs the values of variables a and b.

• By encapsulating the engine expression in a ${...} block; i.e. ”${a + 10}”
will result in the value of the a numeric variable, increased by 10.

• By adding the ”-expr” suffix to some specific attribute name (e.g. test-expr
instead of test). Setting the ”test” attribute to ”${a + 10}” and setting the
”test-expr” attribute to ”a + 10” will lead to the same result.

Note: to add a $ character to a simple text, $$ should be used; e.g. incoming tax:

$value$$.

8.6.1 Basic expressions

Basic expressions can be the following:

• variables
• numeric literals, e.g.: 1, -2, 0.6, -1.2e-30
• string literals: ”hello”, ’hello’

Inside the string literals which are specified inside double quotes, it is possible to

use special characters using the \ escape character. The available constructions are:

• \n: new line
• \r: carriage return
• \t: tab character

Info: In the following examples, remarks will be indicated with the //

characters at the beginning of the lines. However, Zagreus does not

handle these remarks in scripts.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 169

• \’: the ’ character
• \”: the ” character
• \\: the \ character

For example, the literal ”first\tsecond” leads to a tabular character between

the two words, while the literal ’first\tsecond’ leads to a backslash (i.e. \) and

a t character between the words first and second.

8.6.2 Operators

Inside the engine expressions, the following operators can be used to construct
more complex expressions:

• member access operators: . (dot), [] (for the details, see → Lists, records and
tables)

• multiplicative operators: *, /
• additive operators: +, -
• relational operators: <, >, =, <=, >=, <> or !=, ~ (string matching regular

expression), !~, in
• logical operators: and, or, not
• assignment operator: :=

The operators are processed in a standard priority order, i.e. * is processed before

+ and + is processed before <. Subexpressions using operators with the same priority
are evaluated in direction from left to right, except the assignment operator (which is
evaluated from right to left).

In the following examples all expressions are considered to be inside a ${...}
block.

// variable ”a” is assigned a value of 2.

a := 1 + 1

// variable ”a” is assigned a text (containing a new line character).

a := ”Zagreus\nAutomate your IT”

// the … block is executed if the logical condition is satisfied

if (a < b - 10 or a > b + 10) {

 …

}

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 170

8.6.3 Lists, records and tables

Lists (or indexed arrays) and records (or associative arrays, or maps) are data types
which can contain any type of data. There is no type restriction for the stored elements,
i.e. a list or record might contain numbers, texts and other lists at the same time.

Lists can be created by the list([...]) function, and specific actions have lists
as their result. Element access can be done by the [...] operator; e.g. a[8] refers to
the 8th element of list a. Indexing is one-based.

// new list with different data types

l:=list([1, date, "apple"])

// displaying the current date

println(l[2]);

Records map its elements by keys. If no keys are defined, they are automatically

created as numbers starting from 1. Records can be created either by the
record(...) function, inline in an engine expression, and specific actions have
records as their result. Element access is possible by specifying the corresponding key
either by the . (dot) or the [...] operators; e.g. a[”x”], a[’x’], a.’x’, a.”x”
and a.x all refer to the element of variable a mapped by the ”x” key.

To create a record, use one of the following:

// empty record variable

a := [];

// referencing to a non-existing member will create this item

a.x := 1;

// new record, having keys of 1, 2 and 3

b := [”first”, ”second”, ”third”];

// new record with keys x, y

c := [”x”:1,”y”:2];

// accessing items of c:

cx1 := c.x;

cx2 := c[’x’];

cy1 := c.y;

cy2 := c[”y”];

// new record with function call: x:11, y:12, z:13, 1:14

d := record(['x','y','z'], [11,12,13,14])

Tables are special lists containing records with the same keys. One can see it as a

two-dimensional matrix. Tables are returned by specific actions as their result (e.g.

z:parse). For example, given a table t, t[5].x refers to the field x of row 5. Tables

can be easily logged in a human-readable format, see → Script Logging.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 171

8.6.4 Function calls

Engine expressions might include simple function calls. Parameters are passed

within brackets (i.e. (...)), separated by commas (,). For example:

// a substring function call

s:=substring(’this is a string’, 6, 7)

// displaying ”is”

println(s);

 For a list of the supported functions, see → Variables / Functions window.

8.6.5 Expressions and statements

At its simplest terms, expressions are evaluated to produce a value. In contrast,
statements are executed to make something happen. Statements can be also
evaluated to return a value.

The following simple statements are supported in Zagreus:

• if: runs a statement if a given condition is true.
• switch: processes statements according to the value of a given expression.
• for: takes all items of the specified expression (e.g. list) and processes the given

statement with these items (practically a foreach loop). When iterating through
a record, it processes the values and ignores the keys.

• while: executes a statement while the given condition is true.
• break: stops the execution of the current while, for or switch statement.
• continue: skips the remaining part of the loop and goes to the beginning of the

current for or while statement.

Examples:

// store the absolute value of x in x

if (x < 0) {

 x := x * -1;

}

// store the signum of x in x

if (x < 0) {

 x := -1;

} else {

 x := 1;

}

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 172

// store the text representation of x in y

switch (x) {

 case 1: y := ”one”; break;

 case 2: y := ”two”; break;

 case 3: y := ”three”; break;

 default: y := ”other”;

}

// add up the values stored in x

var act_record := [2, 4, 6, 8, 10];

sum := 0;

for (item in act_record) {

 sum := sum + item;

}

// example for a while loop

var act_record := [”a”: 2, ”b”: 4, ”c”: 6, ”d”: 8, ”e”: 10];

counter := 0;

while (act_record .b > 0) {

 act_record .b := act_record .b - 1;

 counter := counter + 1;

}

println(’iteration count: ’ + counter);

// printing even numbers

var counter := 0;

while (counter < 20) {

 counter := counter + 1;

 if (counter % 2 = 1) continue;

 println(counter);

}

// adding up numbers until they exceed 10 (i.e. 12)

var act_record := [2, 4, 6, 8, 10];

sum := 0;

for (item inlist act_record) {

 sum := sum + item;

 if (sum > 10) break;

}

println(sum);

// printing numbers until the first negative one

var act_record := [2, 4, -6, -8, 10];

for (item inlist act_record) {

 if (item < 0)

 break;

 println(item);

}

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 173

8.6.6 Data types

The values of variables or the result of the actions can be of different types. Most
data types can also be created within engine expressions; others are just returned by
specific Zagreus actions as their results or as their result attributes. The type of a
Zagreus variable can be determined by using the gettype(...) function.

Data types also fall under some categories. These are:

• Comparable

The comparator operators (e.g. <, >, !=, <= etc.) can be applied to them.

• Concatable
The values can be concatenated, primarily by the concat(...) function. For
example, concating the texts ”Zag” and ”reus” results in the text ”Zagreus”,
while concatenating two lists results in a list containing the contents of both
original lists.

• Formatable

They can be formatted with the format(...) function.

• Mergeable
The contents can be merged by the z:union action.

• Iterable

The elements stored inside the variable can be iterated over, for example by a
for(...) engine expression (see → Expressions and statements) or a
z:foreach or z:for action (see → z:for action and → z:foreach action).

8.6.6.1 Simple data types

Most data types in Zagreus are simple ones; next we describe them in details.

• Text
{ Comparable, Concatable, Formatable, Mergeable }
Texts are string, i.e. character sequences. They can be created in engine
expressions with the format ”Zagreus text” or ’Zagreus text’; the
difference among the two syntaxes is that the former one resolves certain specific
characters such as \n or \t. Data belonging to other types can be converted to
text by using the text(...) function. The istext(...) function returns true
iff the type of its parameter is text. Texts can be concatenated with the + operator
(along with the straightforward concat(...) function). There are several text
functions in Zagreus, the Variables / Functions extension window in the Zagreus

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 174

Client lists them and shows their help in the tooltip texts, see → Variables /
Functions window .

• Number
{ Comparable, Formatable }
Numbers hold numeric values; internally they are stored as floating-point
numeric values (i.e. doubles). They can be created in engine expressions with the
formats 1867, 186.7 and 1.867e03 (i.e. scientific notation). Data of other types
can be converted to number by using the number(...) function. The
isnumber(...) function returns true iff the type of its parameter is number.

• Boolean
{ Comparable }
Booleans are a binary type, they can either be true or false. They can be
created in engine expressions in the formats true and false, and as a result of
several comparison operators (e.g. ”dog”!=”cat” will result in the value true).
In attributes expecting a boolean value, the forms yes and no can also be used.
Data of other types can be converted to boolean by using the boolean(...)
function; the number 0 will be converted to false and all other numeric values
to true; the text ”” (i.e. empty string) will be converted to false and all other
textual values to true. The isboolean(...) function returns true iff the type
of its parameter is boolean.

• Date
{ Comparable, Formatable }
Dates are represented internally as Unix timestamps (i.e. the number of
milliseconds passed since 1st of January, 1970, 0:00 GMT). Data of other types
can be converted to date by the functions date (representing the actual date at
the function call), date(datevalue) and date(datevalue,

formatstring). If the parameter is a text, and no format string is specified, the
format ”yyyy-MM-dd” will be used. Besides text values and other dates,
numbers can also be used (and will be interpreted as Unix timestamps). The
isdate(...) function returns true iff the type of its parameter is date.

• BinaryData
{ Comparable, Concatable }
Binary data are mainly returned by specific functions. Data of other types can be
converted to binary by the binary(...) function. The isbinary(...)
function returns true iff the type of its parameter is binary.

• Null
{ Comparable, Formatable }

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 175

Nulls are representing null objects. They can be created in engine expressions by
the token null. The isnull(...) function returns true iff the type of its
parameter is null.

• XML
XMLs represent XML data. They can be created in engine expressions by the
function xmltype: other than other XML data, only text input is supported at
the moment. The isxml(...) function returns true iff the type of its parameter
is XML.

8.6.6.2 Extended data types

Some data types in Zagreus are extended ones, which means that they inherit most
of their properties of another Zagreus type. Besides sharing several details, the most
important consequence is that they can also be considered as their basic data type; for
example, since the time data type extends the date data type, the isdate(...)
function will return true for a variable with a type of time as well.

• Time
{ Comparable, Formatable }
Time data types extend over Date. The main difference is that their default format
is of ”HH:mm:ss.SSS”. Data of other types can be converted to time by the
functions time (representing the actual time at the function call),
time(timevalue) and time(timevalue, formatstring). If the
parameter is a text, and no format string is specified, the format
”HH:mm:ss.SSS” will be used. Besides text values and other dates (including
times), numbers can also be used (and will be interpreted as Unix timestamps).
The istime(...) function returns true iff the type of its parameter is time;
furthermore, as time extends the date type, the isdate(...) function also
returns true if its input is of type time.

• PDF
{ Comparable, Concatable }
PDFs represent binary data with a type of PDF. Due to this, they cannot be created
inside engine expressions, they are only returned by specific actions.

• Excel
{ Comparable, Concatable }
Excels represent binary data with a type of Excel workbooks. Due to this, they

cannot be created inside engine expressions, they are only returned by specific

actions.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 176

8.6.6.3 Compound data types

The following, aforementioned data types contain instances of other data types. See
also → Lists, records and tables.

• Record
{ Comparable, Concatable, Formatable, Iterable, Mergeable }

• List
{ Comparable, Concatable, Formatable, Iterable, Mergeable }

• Table
{ Comparable, Concatable, Formatable, Iterable, Mergeable }

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 177

8.7 Script Logging

In this chapter, the practices for logging inside a script is covered.

8.7.1 job-log file

Script log messages are stored in a file after (and during) execution. These files are

called job-log files, their names are derived from the job ID of the execution, see → Job

properties.

These log files can easily be checked in many ways: double-clicking the job in

Finished jobs window (see → Finished jobs window), checking Active logs (see → Active

logs window) or manually check the logfile in the server subfolder (see → General

properties).

In the job-log file, there are messages from the execution engine itself and also, the

user-initiated log messages are shown here. A typical log file starts with similar

messages as below:

Execution started on script "test"

Zagreus version: 1.5.5.7

Job ID: eae00564-850b-4404-ac31-4bb25772e70e

Job starting variables:

variable_name variable_value

callerType gui

currentUserId 1

executingUserName admin

executionMode direct

…

Default encoding: UTF-8

Default locale / country: United States

Default locale / language: English

The Execution Engine is listing the start-up variables of the script (see → Start-up

variables). After the variables and the locale settings, the script execution messages

are listed. For example:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 178

<"1" z:log>

enter log message here

</"1" z:log>

<"2" z:if>

<"2.1" z:then>

</"2.1" z:then>

<"2.2" z:else>

</"2.2" z:else>

</"2" z:if>

<"3" z:list>

</"3" z:list>

Execution finished on script "test"

Per default, the Execution Engine logs all the action entering and exiting events. If

the user does not want to see these messages, a loglevel setting can be changed to

’user’ or ’error’ or ’warning’, see → Logging levels and loglevel.

The job-log messages are meant for being checked by the user who can see them in

the Active Log window and in the Finished Log window in the Zagreus Client (see →

Active logs window and → Finished logs window).

8.7.2 z:log action

The simplest way to log a message is to use the z:log action. In the text content of

this action, variables, function calls and complex engine expressions can all be used. In

Figure 54., Action 1 logs a simple message while Action 2 is using the $date

variable reference which is resolved into the current date in the resulting log message.

Figure 54 – Examples for the z:log action

The z:log action can also handle more complex inputs, such as the result of a child

action. Figure 55. shows an example for logging the result of the file:read action,

i.e. the content of sample.txt.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 179

Figure 55 – Logging the result of a file:read action

8.7.3 log attribute

Since logging the results of an action is a very common use case, Zagreus provides a

simple common attribute for this purpose. Figure 56. shows an equivalent example as

in Figure 55., using the log common attribute instead of a container z:log action.

Figure 56 – Logging the result of a file:read action using the log common attribute

8.7.4 Logging levels and loglevel

It is important to distinguish between the concept of logging level and loglevel.

Logging levels are used to categorize log messages based on their severity. Different

logging levels represent different levels of severity or importance of the logged

messages. Zagreus defines the following logging levels:

• user

user-intended messages such as a z:log action or the log common attribute.

• error

error messages and the corresponding stack-traces generated by the Zagreus

engine.

• warning

warning messages generated by the Zagreus engine.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 180

• info

normal messages in the Zagreus engine. For example: entering and exiting

actions, starting and finishing processes, opening connections.

• debug

special debug messages.

Loglevel, on the other hand, is the setting which controls which log message

categories will be written into the log file. The value of this setting is one of the logging

level values listed above. Hence the list of the logging levels is a priority list as well, the

loglevel setting works as the following:

• loglevel=user

Only the user logging level log messages are logged into the logfile.

• loglevel=error

User and error logging level log messages are logged into the logfile.

• loglevel=warning

User, error and warning logging level log messages are logged into the logfile.

• loglevel=info

User, error, warning and info logging level log messages are logged into the

logfile.

• loglevel=debug

Every log message is logged into the logfile.

The loglevel is set by an execution option called log_level. The default value of this

option is info, but the user can override it by specifying the log_level option, see → List

of execution options).

Inside the script the default loglevel can be changed with the z:loglevel action

or with the loglevel attribute.

It is important to understand the difference between logging levels and loglevel.

Logging levels are the categories for the messages and loglevel is a filter during

execution that controls which messages are shown in the logfile.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 181

8.7.4.1 z:loglevel action

The z:loglevel action sets the loglevel of the script from that point of the

execution flow onwards. In Figure 57., the z:loglevel action switches the default

’info’ loglevel to ’user’. This means that, from that point on, only the ’user’ logging level

messages are shown in the logfile. The message in the z:log is still visible, because

the default level of z:log (and all other user-initiated log messages) is ’user’.

Figure 57 – Example for setting the loglevel to ‘user’ with the z:loglevel action

On the contrary, in Figure 58. the message in the z:log action is not shown,

because the intended logging level of that is ‘info’, set by the level attribute. The

loglevel is set to ‘user’, which means that the ‘info’ logging level messages are not

shown in the logfile. See → Logging levels and loglevel.

Figure 58 – Example for a log message that is not shown because of its logging level

8.7.4.2 loglevel attribute

The loglevel common attribute sets the loglevel for a specific action and its child

actions. Unlike the z:loglevel action, the loglevel will be reset to the default loglevel

(or the one set in the context) after this action is executed. In Figure 59., the loglevel

of the z:block action is set to ’user’, so only Action 1.2 is logged according to the

priority order of the logging levels (see → Logging levels and loglevel).

Info: The default logging level of user-logged messages is ‘user’. Only the

z:log action can override it with the level attribute. So the user can also

generate log messages on other levels than ‘user’, e.g. ‘error’.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 182

Figure 59 – Setting the loglevel for a z:block action with the loglevel attribute

8.7.5 z:logfile action

Zagreus job-logfiles are stored in a server subfolder, see → General properties. The

user can redirect the log messages to another file at a certain point during the

execution with a specific action z:logfile.

In Figure 60., Action 2 redirects the logging into a new file (newlogfile.txt), so the

log message in Action 3 will be present in this file. Action 4 resets this redirection

with the empty filename attribute, so the message in Action 5 is present in the

standard job-log file again.

Figure 60 – Redirecting logging to another file temporarily with the z:logfile action

8.7.6 logfile attribute

The special attribute logfile also redirects the logging into another file, but unlike

the z:logfile action, this attribute applies only for the given action and its sub-

actions (no need to reset this redirection after the action).

In Figure 61., this attribute is set for Action 2, and the logging for z:block and

all of its child actions is redirected to the new logfile (newlogfile.txt).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 183

Figure 61 – Redirecting logging to another file temporarily with the logfile attribute

8.7.7 log-attributes attribute

The log-attributes attribute is used for logging all name-value pairs of the attributes

of a particular action.

Figure 62 – Example for the log-attributes attribute

In the logfile, the attributes are listed like below:

<"1" file:read>

Attribute: filename, value: /admin/resources/sample.txt

Attribute: binary, value: false

Attribute: encoding, value: UTF-8

Attribute: log-attributes, value: true

Reading file "/admin/resources/sample.txt"

</"1" file:read>

8.7.8 log-result-attributes attribute

The log-result-attributes attribute logs all the result attributes (see → Result

attributes) of the action after execution. In Figure 63., the result attributes of the

z:for action (which are: loopcnt and execution_time) are logged into the logfile

shown as below:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 184

Figure 63 – Example for the log-result-attributes attribute

<"1" z:for>

[loopcnt:10,execution_time:1003]

</"1" z:for>

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 185

8.8 XML representation

Scripts are stored in XML format in the embedded MySQL database of the Zagreus

Server. This XML format corresponds to the one shown in the fully-featured Script

Editor, see → Script Editor. The user can check out the XML representation in the

Zagreus Client in the following ways:

• selecting the XML view in the Script Editor, see → XML view

• opening the script by the XML Editor from the Zagreus browser window, see →

Opening resources

In the next example a simple script is shown:

Figure 64 – An action containing another action

The XML representation of the script in Figure 64. is shown in the following snippet:

<z:block _z="0" _o="1" _x="28" _y="19" _w="231" _h="189" _v="3">

 <z:log _z="0" _o="1.1" _x="20" _y="15" _w="185" _h="128" _v="3"

level="user" null-format="">This is a log message</z:log>

</z:block>

Notice the following details in the XML representation:

• Actions are represented by XML elements.

• Action name is represented by the local name of the XML element.

• Action group is represented by the namespace of the XML element.

Warning: It is highly recommended not to manually edit the XML content

of the script. The main purpose of checking out the XML representation is

debugging.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 186

• Child actions are represented by additional XML elements as the content of the

parent XML element (such as the z:log child action).

• Action attributes are represented by the attributes of the XML element (such as

the level attribute of the z:log action).

• Textual content of an action is represented by the textual content (PCDATA) of

the XML element (such as the “This is a log message” string).

• Attributes of the XML element starting with “_” are strictly for internal usage.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 187

9. Connections

In Zagreus, a connection is the collection of information required to access a

(typically remote) server, such as protocol, Internet address, IP address, port,

username, password, operation folder etc. Using connections is one of the key steps in

creating a Zagreus script. In general, in a Zagreus script the users can access various

kinds of data sources, import data and perform various operations on them. In addition

to gathering, manipulating, and forwarding data, Zagreus can leverage multiple

connections in a single script.

Here are two examples for using different connection types:

• An Excel file, received via e-mail in attachment is downloaded from an e-mail

inbox (IMAP connection). The data stored in the Excel file is read, processed and

changed; this new data is written into a database (SQL) table (database

connection). The new Excel file, containing the modified data, is copied to a

network drive (file connection).

• MicroStrategy (MSTR) reports are collected over the course of a week (MSTR

connection), they are exported and the files are zipped and sent to a remote File

Transfer Protocol (FTP) server (FTP connection). The latest report and its summary

is uploaded to a Confluence page (Confluence connection). Finally, a status report

e-mail is sent to the co-workers (SMTP connection).

By using Zagreus connections, data which is stored on different servers can be

accessed by using different protocols (e.g. IMAP, FTP, SQL). This allows Zagreus users

to automate various types of jobs, and develop multiple workfolws – as demonstrated

in the above examples.

Currently the following connection types are supported by Zagreus:

• confluence:connection: for connecting to a Confluence server and reach

Confluence spaces

• db:jdbc-connection: for connecting to a database server using jdbc database

connection. Supported database environments are: Oracle, Mysql, SQL-Server,

Teradata, db2, SQLite, PostgreSQL, Exasol.

• file:connection: points to a file in the Zagreus external file system

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 188

• ftp:connection: for connecting to an FTP server to manage, upload and download

files

• http:connection: for connecting to an HTTP server

• jira:connection: for connecting to a Jira server and reach its projects

• kafka:connection: for connecting to a Kafka cluster to produce and consume

messages, list topics, etc.

• ldap:connection: for connecting to an LDAP server

• mail:connection: for connecting to an e-mail server. Can be configured as an

SMTP, IMAP or POP3 connection

• msft:connection: for connecting to a Microsoft account in order to access

OneDrive, mails, files, etc.

• mstr:connection: for calling MSTR functions with the MSTR Java Web API

• mstrrest:connection: for calling MSTR functions via REST API

• rest:connection: for connecting to a REST API provider

• ws:connection: for connecting to a server in order to execute web service calls

• zs:connection: for connecting to a Zagreus server

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 189

9.1 Defining connections

Many types of connections are available in Zagreus for making automated processes

– database, FTP, IMAP, SMTP, MSTR, REST, etc. The term connection is used in Zagreus

in two different meanings: as a Zagreus connection action, and as a Zagreus

connection-type resource. In the first sense, the connection action can be handled as

any other Zagreus action: it can be drag-and-dropped from the palette (see → Palette)

to the canvas area of the Script Editor (see → Canvas), its attributes can be edited, etc.

A Zagreus connection resource refers to a special type of Zagreus resource (see →

Resource types), which contains only one action, which is a Zagreus connection action.

Although defining a Zagreus connection is possible as a standalone action (see →

Creating a connection resource) within a Zagreus script, it is recommended to define

each connection as a standalone connection resource; this way, it can be included into

several different scripts. Would some property of the connection change in time (e.g.

changing an expired password), connection management is more straightforward and

easier this way than editing all affected scripts individually.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 190

9.1.1 Creating a connection resource

Perhaps the most straightforward way of creating a Zagreus connection resource in

the Zagreus Client, in the Script editor window (see also → Script Editor → Script

Editor), in the Graph Editor (see → Graph view). Similarly to other actions, connection

actions can be drag-and-dropped from the palette (see → Palette tab), which can be

followed by specifying the content of the action attributes.

To create a Zagreus connection, select the menu item File / New resource... , see

Figure 1.

Figure 1 – Creating a new connection resource by using the main menu bar

Alternatively, the user can select the Create new resource... menu item from the

context menu of the containing folder (see → Creating new resources), see Figure 2.

Figure 2 – Creating a new connection resource by using the context menu

Next, type of the new resource must be selected. The option connection can be

found in the dropdown list, see Figure 3.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 191

Figure 3 – Selecting the connection resource type from the dropdown list

After the new Script Editor tab is opened in the editor area, the particular

connection action can be drag-and-dropped from the palette (→ Palette tab), see

Figure 4.

Figure 4 – Drag-and-drop the connection action from the palette

Finally, the attributes of the connection action must be filled; for a completed

connection as an example, see Figure 5.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 192

Figure 5 – An example of a completed connection

9.1.2 General connection attributes

Most of the connection attributes are unique and connection-specific; however,

there are general attributes which are present for most connection actions (for

example name, server, username or password). Next we will discuss the most frequent

ones.

9.1.2.1 name attribute

The name attribute is used in all Zagreus connection action definitions. This will

serve as a reference of the particular Zagreus connection for the other actions of the

action group / namespace. It is recommended to specify it as a short, concise and easy-

to-read expression. The name attribute is required to specify.

In most actions, the connection-name attribute is used to reference the given

connection. As a notable exception, action zs:migrate (used to migrate resources

across Zagreus servers) uses two Zagreus connections at once: source-connection-

name and target-connection-name.

9.1.2.2 server attribute

This attribute is present for most Zagreus connection actions. It stands for the URL

or the IP address of the target server. There are a few exceptions, which connections

do not use the server attribute, such as the Microsoft connection (action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 193

msft:connection), where the authority attribute identifies the target, or the MSTR

REST connection (action mstrrest:connection), which has the url attribute for this

purpose.

From this perspective, the Zagreus Server connection (action zs:connection) is a

special connection. For this particular connection action, the server attribute can be

left blank, which just indicates the actual Zagreus server, i.e. the hostname “localhost”.

However, if the local Zagreus server instance uses a different port than the default one

(i.e. 7323), further configuration steps are required, see also → Connection properties.

9.1.2.3 username, password and cpassword attributes

The first step of a server-client communication is the authentication of the client

who wants to perform some operations. Perhaps the most common way of

authentication process is to use username and password, which values can be specified

with the username and password attributes for most Zagreus connection actions, e.g.

FTP, database, SMTP, etc.

If the user does not want to display the password as a readable data on screen (and

store it in the Zagreus script as plain text), then encrypted password can be generated

with the built-in Password converter tool (see also → Tools menu). In this case the

attribute cpassword must be filled with this encrypted password, while the attribute

password will be left empty.

9.1.2.4 Authenticating with tokens

In some cases user authentication is done by using tokens, i.e. by specific, generated

identifiers, represented as character strings. For example, in the case of the Microsoft

connection (action msft:connection), Client id and Client secret tokens have to be

generated before creating the connection resource, and the values have to be copied

into the attributes client-id and client-secret of the msft:connection action.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 194

9.2 Using connections

The main benefit of using connection resources is the possibility to reuse them:

several scripts can utilize the same connections, and the necessary changes (e.g. port,

new password) have to be corrected in one file only. Zagreus connection resources

have further advantages in terms of maintenance and administration (comparing to

Zagreus connection actions defined inside scripts): the parameters of the connection

can be verified easier, and connections can be drag-and-dropped from the Zagreus

browser onto an action, allowing users to include the correct resource into the script

with only a single mouse movement.

9.2.1 Test connection feature

It is recommended to test a Zagreus connection resource after it has been created,

before using it. This practically means that the Zagreus server attempts to connect to

the given server with the given parameters, defined in the corresponding Zagreus

connection resource. This function can be accessed in the Browser Window of the

Zagreus Client, by right-clicking the given Zagreus connection resource, and choosing

the Test connection menu item from the context menu, see Figure 6.

Figure 6 – Choosing the Test connection option

The result of a connection test can be successful or failed, and it appears in a pop-

up window, see Figure 7.

Figure 7 – Successful connection test message.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 195

If a connection test fails, a brief error message informs the user about the cause of

the failure; for an example, see Figure 8.

Figure 8 – Failed connection test with a specific error message.

When the server did not respond within 15 seconds during a connection test, the

testing will fail as well (time out). That may indicates that connection definition

contains an error, or the target server is unavailable. For an example, see Figure 9.

Figure 9 – Failed connection test due to time-out.

It is important to understand that the connection test is performed by the Zagreus

Server module (see → Zagreus Server), while script execution (and therefore, actual

connection usage) is done by a Zagreus Worker (see → Zagreus Worker). The

configuration of these modules might be different, for example the firewall settings

might affect the two differently (if they are installed on different machines), or they

can differ in the SSL certificates installed (in case of secure connections, see → Manage

certificates). If the connection test succeeds, but script execution fails for the same

Zagreus connection resource, the reason is probably related to worker settings (see →

Zagreus Worker configuration).

9.2.2 Referencing to a connection

If a script can use a Zagreus connection action (either because it was defined in the

given script, or because it was included in the script via the z:include action (see →

Includes), the corresponding actions can reference it. Of course, they must belong to

the same action group: it makes no sense to reference an FTP connection from a

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 196

MicroStrategy-related action (e.g. mstr:report). Referencing is done by using the

connection-name attribute in the referencing action. Figure 10. shows an example.

Figure 10 – Referencing a connection from another action

In this example, an FTP connection is defined in Action 1 (ftp:connection).

Among the connection parameters, the name attribute has the value

“ftp_connection”, which will be the ID of the given FTP connection. Action 2 (ftp:get)

uses this string in the value of the connection-name attribute to identify which

connection action will be used in the actual FTP step.

9.2.3 Inserting connections to a script

Instead of manually specifying a z:include action (see → Includes), connections

can be included into a script with only a simple drag-and-drop event. This is done by

dragging the resource in the Zagreus Browser window, and releasing it on the attribute

connection-name of the action which should reference this connection (see Figure 11.

and Figure 12.). This will have two effects: firstly, the Zagreus connection resource will

be included in the given script (by adding a z:include action), and secondly, the

connection-name attribute will contain the identifier of the connection. Connections

are included by their resource ID.

Info: As a rule of thumb, a Zagreus connection action is just a definition

of the given connection. Connecting to the specified server is performed

when the first referencing action is executed.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 197

Figure 11 – Drag-and-drop event of a connection resource: it is pulled onto the attribute connection name

Figure 12 – Result of a connection include

For possible other referencing actions, the value of the connection-name attribute

can be copied from one action to the other, or entered manually. Alternatively, drag-

and-dropping the same connection multiple times also works – the connection

resource will be included only once in this case.

Info: The current version of the connection resource is included.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 198

9.2.4 Closing a connection

Some servers are quite sensitive to connections kept open; therefore, it is important

to close a connection after it is used. In Zagreus, there are two ways to close a

connection.

In the first one, the user can manually close a connection by using the appropriate

close action. For example, a MicroStrategy connection (action mstr:connection) can be

closed by the mstr:close action, which will close the connection to the given

MicroStrategy server, when the script execution reaches this action (see → Order of

execution, result flow). Of course, the connection-name attribute of the close action

has to be filled with the name (identifier) of the connection. See Figure 13. for an

example.

Figure 13 – Closing an FTP connection by the ftp:close action

In the other approach, the user can rely on Zagreus to automatically close the open

connections. This will happen at the end of the execution of the containing block, which

has the connection definition as its direct child. (For script structures, see → Actions,

while for script execution, see → Order of execution, result flow.) See Figure 14. for an

example: the FTP connection is defined in Action 1.1 (ftp:connection), but it is

opened only in Action 1.2 (ftp:get). When script execution reaches the end of the

containing action, i.e. Action 1 (z:block), this connection is closed automatically,

therefore it will already be closed in Action 2 (z:log).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 199

Figure 14 – Closing an FTP connection automatically, at the end of the defining block

9.2.5 Opening connections in the Zagreus browser

It is also possible to connect and browse directly in some types of connections in the

Browser window of the Zagreus Client. For this, the user has to create a Zagreus

connection resource. To connect to the given server, the user has to right-click on the

given connection resource, and select the Connect menu item from the context menu,

see Figure 15.

Info: Connections defined or included on the root level will be closed at

the end of Zagreus script execution.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 200

Figure 15 – Connecting to a database server (via a connection resource) in the Browser window

The browsing functionality is limited to specific connection types, and the

functionality of browsing (i.e. items shown) is limited as well.

Zagreus can connect directly to the following server types:

Connection type Available features

Database (i.e. SQL)
Get database information, list properties of tables and views,
list table content

Mail (IMAP)
List folders of INBOX and check folder content, show e-mail
information

Mail (POP3) List e-mail information of INBOX

MicroStrategy

List project objects, list resource information, copy and paste
resource path into the name attribute of mstr actions. Drag-
and-drop MicroStrategy reports and documents onto the
canvas of the graph editor.

9.2.5.1 Database connections

After connecting to a database server (see Figure 15.), listing items of a database

connection can be done in the sub-tree of the opened connection. The browsing tree

goes down to column definition level; for an example, see Figure 16.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 201

Figure 16 – Listing column information of a database table

It is also possible to check the content of a database table by right-clicking a table

name and selecting the Show data menu item from the context menu, see Figure 17.

Figure 17 – Opening the content of a table

The table content will be shown in a separate view in the Zagreus Client; the name

of the window will be the same as the name of the database table. For an example, see

Figure 18.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 202

Figure 18 – Showing the content of a database table

9.2.5.2 Mail connections

It is also possible to connect to a Mail connection in the Zagreus browser, if the type

of the mail connection is IMAP. In this case, the folders of the connection are listed

along with the number of the contained e-mails; for an example, see Figure 19.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 203

Figure 19 – Folders of a Mail (IMAP) connection are listed along with the number of e-mails

Similarly to the case of the database connections, it is possible to get information

about the objects on the server. In this case, this means getting information about the

mailboxes; for that, the user has to right click on the given mail folder, and select the

Show mail info menu item from the context menu, see Figure 20.

Figure 20 – Folders of a Mail (IMAP) connection are listed along with the number of e-mails

9.2.5.3 MicroStrategy connections

When a MicroStrategy connection is opened in the Browser window of the Zagreus

Client, it is possible to list MicroStrategy resources of the given connection. It is also

possible to get further information about specific MicroStrategy resources; for this, the

user has to right click on the given resource and select the Show resource information

menu item from the context menu. This will open the MicroStrategy object info

window, which contains basic properties of the given object, see Figure 21.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 204

Figure 21 – Listing prompts of a MicroStrategy project and displaying object information

It is also possible to drag-and-drop MicroStrategy reports or documents onto the

canvas of the Script Editor, see Figure 22. In this case, the corresponding Zagreus action

(i.e. mstr:report or mstr:document) will be created, and the used connection will

be included in the script automatically.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 205

Figure 22 – Drag and drop a MicroStrategy report from the browser window. Notice that the connection is also included

Resource id and connection-

name are filled correctly

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 206

9.3 Secure connections

For specific connection types in Zagreus (e.g. FTP, MicroStrategy), there is the

possibility to use them in a secure way. To use such a secure connection, the

corresponding certificate(s) must be imported into the keystore file of Zagreus (see →

Manage certificates). Using a secured connection can be set differently in the case of

each connection types. For instance, in the case of an LDAP connection, attribute

protocol has to be set as LDAPS, while in the case of an FTP connection attribute secure

must be set to true. Settings can be checked in the help of the given action, see also →

Action help.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 207

9.4 zs connection

The zs:connection and the zs action group (standing for Zagreus Server, marked

with green headers in the Zagreus Client) are unique among the connection types

supported by Zagreus.

The user can perform actions on a specific Zagreus server initiated from a Zagreus

script using the actions in the zs action group. This is particularly useful for the

following use cases:

• executing another script from the actual script

• obtaining information about jobs, subscriptions and other queue-related server-

side components

• managing subscriptions

• performing file operations on the server side (see → Embedded MySQL database

and → Local filesystem in the Zagreus Server)

• migrating scripts, users, subscriptions or other resources from one Zagreus Server

to another by the zs:migrate, zs:migrate-user-group and zs:migrate-

subscription actions

The zs connection is using the http / https communication protocol (i.e. they are

calling webservice functions of the Zagreus Server).

It is a common use case to perform these actions on the local Zagreus Server (i.e.

the one that the actual Zagreus Worker is connected to). To aid this, it is possible to

reference the local Zagreus Server by leaving the connection-name attribute empty in

in all the actions of the zs action group. In such cases, the so-called local Zagreus

connection will be referenced implicitly.

Warning: The local Zagreus Server runs on its default http / https port and

the local zs connection is counting on these port values. If the Zagreus Server

is not using the default http / https port, the administrator needs to adjust

the worker.serverport property in the configuration of the Zagreus Worker,

see → Connection properties.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 208

9.5 Tips and tricks

This chapter contains some tips for making connection administration and usage

easier. Of course, these practices are merely suggestions, and they are not the only

way of doing the maintenance of connection actions and resources.

9.5.1 Creating standalone connection resources

During the creation of a connection create it as a standalone resource – changes are

easier to make. And changes tend to be necessary from time to time, either due to

different firewall settings, relocated virtual machines or password expiration.

9.5.2 Using subfolders

It is recommended to collect connection resources into a separate folder. It can be

a shared folder for each users or each user can create her/his own connection folder –

depending on the environment.

9.5.3 Using meaningful names

It is advisable to give meaningful names both for the connection resources and for

the connection actions, preferably also containing type of connection in the connection

name, because connections are shown with the same icon in the Zagreus Graph Editor,

and distinguishing them by a meaningful name is easier.

9.5.4 Using resource versioning

Versioning of connection is possible in the same way as, like, script versioning. When

a connection is drag-and-dropped into a script, its current version is included. If the

same connection would be used with minor changes – such as date format or collation

–, then multiple versions of the same connection can be created. This can be a need as

well when the different connection versions refer to the same server, but with

different users (on the remote server). Switching between the connection

configurations can be done easily by setting the current version property of the

connection resource, see also → Resource versioning.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 209

9.5.5 Keeping connections up-to-date

With some simple administrative steps, the usage of connections can be easier and

some problems can be prevented.

Running connection tests periodically – even if the connection is not in use – can

reveal changes in the configuration such as changes in server configuration or in the

user of the connection. In such cases, problems can be revealed before connection

include and script execution, and the necessary steps for fixing the connections can be

performed.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 210

10. Zagreus Client

Zagreus offers an intuitive graphical user interface (GUI - Graphical User Interface),
which allows access to all of the functions of Zagreus Server. The interface of the
Zagreus Client has several main parts, ensuring it is easy to maintain a good overview:

Figure 1 – The parts of the Zagreus Client

1) Zagres browser window

Shows the folders and database / server filesystem resources. The user can open,

manage resources as well as administer the server-side settings such as user and

group management, starting and stopping server components.

2) Editor area

Allows the editing of various types of resources.

3) Extension windows for editor area

It is a container for additional windows related to the opened resource that is

currently edited in the Editor area.

2

1

3

4

5 6

7

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 211

4) Monitoring windows

Displays active services and their logging information, the status of execution

engines and job reports.

5) Main menu bar

The main menu bar of the Zagreus Client application.

6) Main toolbar

The main application toolbar containing tools for managing windows, layouts in

the Zagreus Client as well as tools for editing, saving and debugging the resource

being edited.

7) Status bar

Shows information about the ongoing processes.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 212

10.1 Zagreus browser window

The user can navigate through a tree-like structure of database and server
filesystem resources in the Zagreus browser window (for resource types, see →
Resource types).

The root level contains one or more Zagreus Server definition nodes. Once the user
has successfully connected to a server, the server definition node expands and the
content of the server root level is appearing beneath the particular server definition
node.

The Zagreus browser window has its own toolbar for adding, modifying and

removing server definition nodes. This toolbar can be found in the upper right corner

of the browser window, see Figure 2.

Figure 2 – The location of the Zagreus browser toolbar

Server definition nodes can be opened either by double-clicking on the definition

node or by right-clicking on the node and selecting the Connect to server menu item in

the context menu.

The toolbar of the browser

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 213

10.1.1 Toolbar

The Zagreus browser window has its own toolbar, which contains necessary server

node management tools.

10.1.1.1 Adding a server definition node

To connect to a Zagreus Server, first a new server definition node needs to be

created in the browser. This can be done by clicking on the Add server definition tool,

see Figure 3.

Figure 3 – The Add server definition tool

The following connection parameters must be specified in the appearing Define

Zagreus Server dialog box, see Figure 4.:

• Connection name: the name of the server definition

• Host: the hostname or IP address of the server

• Port: the port of the server

• Secure: must be checked for secure (SSL) connection

• User: the user name

• Password: the password of the user

• Save Password: if checked, the Zagreus Client will store the password in an

encrypted format. If the password is not saved, it will be required to be typed

every time when the user attempts to connect.

Add server definition

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 214

Figure 4 – The Define Zagreus Server dialog box

The connection can be tested by clicking on the Test connection button. The new

server definition node will be created by clicking on the Finish button.

Figure 5 – An opened server definition node after a successfully established connection

10.1.1.2 Modifying a server definition node

For modifying an existing server definition node, the user needs to right-click on a

closed server node and select the Modify server definition menu item in the context

menu or select the Modify server definition tool in the browser window toolbar, see

Figure 6.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 215

Figure 6 – The Modify server definition tool

All the aforementioned parameters of the server definition can be changed in the

dialog box, see Figure 7.

Figure 7 – The Modify Zagreus Server dialog box

10.1.1.3 Removing a server definition node

For removing an existing server definition node, the user needs to right-click on a

closed server node and select the Remove server definition menu item in the context

menu or select the Remove server definition tool in the browser window toolbar, see

Figure 8. The server definition node will be removed after confirmation.

Modify server definition

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 216

Figure 8 –The Remove server definition tool

10.1.2 Basic navigation

The Zagreus browser represents the files and folders of a Zagreus Server in a tree-

like structure. The user can navigate in this structure by the basic operations described

in the next subchapters.

10.1.2.1 Opening and closing a server definition node

Server definition nodes can be opened either by double-clicking on the definition

node or by right-clicking on the node and selecting the Connect to server menu item in

the context menu. If the password is not saved to the definition node, the user will be

prompted to specify it (see Figure 9.).

Figure 9 –The Account Info dialog box

If the connection is successful, the server definition node opens and the base

content of the server root level is appearing under the server definition node (see

Figure 2.). The title postfix of the server definition node is changing from [disconnected]

to [connected].

In addition, the Active jobs, Active logs and Execution Engines windows will change

their respective header postfixes from [not connected] to the [server_node_name] and

Remove server definition

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 217

show actual information from the server (see → Active jobs window, → Active logs

window and → Execution engines window).

To close an open Zagreus connection, the user needs to right click on the server

definition node and select the Disconnect from server menu item from the context

menu.

10.1.2.2 Expanding and collapsing tree nodes

Once the server connection is established, the user can navigate through the tree-

like folder structure. The first level of an opened server connection contains the users,

groups folders and the admin user home folder (if the dedicated admin user logged in).

If the usage of recycle bin is set (see → Recycle bin and → Miscellaneous properties),

the recycle bin folder also appears at the end of the list.

Figure 10 – Base level of a connected server node

These folders arrange the basic structure of the local database files and subfolders.

• groups

This folder contains the available groups for the logged-in user. The group public

is predefined in the shipped Zagreus versions. For group management, see →

Groups in the Zagreus System and → Context menu of a group node.

• users

This folder contains the home folder of the logged-in user (when a non-admin

user is logged in) or the home folders of all the users (when an admin user is

logged in). For user management, see → Users in the Zagreus System and →

Context menu of a user node.

• admin

The admin user home folder is separated from the home folders of other users.

System-wide administrative scripts are mapped under the admin user dedicated

folders, see → Administrative scripts.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 218

• recycle bin

The recycle bin is a system-wide folder that contains the deleted resources. See

→ Recycle bin.

During browsing, the folders can be opened either by double-clicking on the folder

name, or by clicking on the > sign before the folder name. Closing an open folder can

only be performed by clicking on the ˅ sign before the folder name.

Versioned resources behave similarly as folders. Versions are listed under a version

parent resource node, see → Resource versioning.

10.1.2.3 Refreshing tree nodes

The refresh operation can be performed on folders, version parent resources and

other resources as well. In case of refreshing a folder, the content of the folder will be

retrieved from the Zagreus Server. The same applies when refreshing a version parent

node. For other resources, the resource properties are updated.

10.1.3 Common resource management operations

The user can perform specific resource management operations, e.g. creating,

deleting and copying selected resources.

10.1.3.1 Creating new resources

Creating new resources can be initiated by right-clicking on a particulat folder tree

node and selecting either the Create folder… or the Create new resource… menu item

from the context menu, see Figure 11. The latter can also be done by clicking on the

Create new resource… icon on the main toolbar, see → Create new resource.

Figure 11 – Create new resources menu items

Info: if a description is set for a resource, a tooltip is showing the

description text when the user hovers the mouse over the resource name.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 219

Selecting the Create folder… menu item, a New Folder dialog box appears. The name

of the new folder has to be entered, see Figure 12.

Figure 12 – The New folder dialog box

Selecting the Create new resource… menu item opens the Creating new resource

dialog box, see → Create new resource.

10.1.3.2 Deleting resources

In order to delete a resource, the user has to do one of the following operations:

• right-click on the particular resource and select the Delete menu item from the

context menu

• press the Delete key when the selection is on the resource to be deleted, or

• select the Delete menu item from the main Edit menu.

Figure 13 – Deleting multiple resources

The delete operation is then performed after clicking OK on the confirmation dialog

box.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 220

If the usage of the recycle bin is configured (see → Miscellaneous properties), the

deleted resource is first moved into the recycle bin. In this case, permanent deletion is

only accessible from the recycle bin context menu (see → Recycle bin).

10.1.3.3 Copying and moving resources

Copying and moving are performed in two steps in the Zagreus browser window.

First, the resource (or resources) have to be selected, see Figure 14. In case of selecting

multiple resources, the selected resources must be siblings (they must be within the

same folder).

Figure 14 – Selecting a resource to be copied or moved

Then the user needs to click on the target folder (either on the same or on another

connected Zagreus server), and select the Copy selected resources or Move selected

resources menu item to perform the respected operation, see Figure 15.

Figure 15 – Performing the copy resources operation

The behaviour of both operations depends on the settings which can be found in

the Copy tab in the Options dialog box. It can be accessed by selecting the Options…

menu item from the Tools main menu, see also → Copy tab.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 221

10.1.3.4 Renaming resources

In order to rename a resource, the user has to do one of the following operations:

• Right-clicking on the particular resource and selecting the Rename resource…

menu item from the context menu.

• Pressing the F2 key when the selection is on the resource to be renamed.

• Selecting the Rename resource… menu item from the main Edit menu.

The user then needs to type in the new name of the resource, see Figure 16.

Figure 16 – The Rename resource dialog box

10.1.3.5 Uploading and downloading resources

Resources can be uploaded from an external source into the Zagreus embedded

database or into the server filesystem. The Upload local resource… menu item is

accessible for folders only, see Figure 17.

Info: only scripts, folders and simple files are allowed to be copied or

moved from the embedded database to the local filesystem. The script

content will be a simple xml file in this case.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 222

Figure 17 – The Open dialog box for selecting a resource to upload

The user can select a resource in the Open operating system dialog box. After

clicking on Open button, the local resource will be uploaded into the selected target

folder, see Figure 18.

Figure 18 – The Open dialog box for selecting a resource to upload

Simple file resources can be downloaded into the operating system local filesystem

from Zagreus Server. This can be performed by selecting the Download resource…

menu item from the context menu, see Figure 19. The user first select a target folder

in the appearing operation system Save as… dialog box.

Figure 19 – The Download resource… menu item

Also, a new version of a selected simple file resource can be uploaded by right-

clicking on the simple file resource and selecing the Upload new version of the

resource… menu item in the context menu. After selecting a resource in the operating

system Open dialog box, just like in case of simple upload operation, the user needs to

specify the new version number for the resource, see Figure 20. In this dialog, the

description of the new version can also be specified as well as the possibility to set it

to the current version, see → Current version.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 223

Figure 20 – The Set resource version dialog box

After clicking the Save button, the new version will be uploaded and merged to the

existing version in the Zagreus browser list.

10.1.3.6 Resource information

A comprehensive set of resource properties can be displayed by right-clicking on the

selected resource and selecting the Show resource information menu item from the

context menu, see Figure 21. For the list of resource properties, see → Resource

properties.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 224

Figure 21 – The Resource info dialog box

10.1.3.7 Copying the resource path

The Copy path operation is accessible for all the resource types in the Zagreus

browser. This operation allows the user to copy the resource full path into the Script

Editor in a two-step manner: first, the user needs to select the Copy path menu item

from the context menu (see Figure 22.), then the Paste path operation has to be

performed in the Script Editor (see → Paste path).

Figure 22 – The usage of the Copy path menu item

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 225

10.1.4 Opening resources

Resources can be opened in the editor area with their respective editor type. There

are the following editor types in Zagreus:

• Script editor

The default editor for scripts, templates and connections

• XML editor

An alternative editor for XML-based resources (i.e. scripts, templates and

connections)

• Simple text editor

The default editor for simple text files, and an alternative editor for XML-based

resource

• Cron Time editor

The editor for time schedules

• Event editor

The editor for event schedules

• File Trigger editor

The editor for file triggers

• DB Watcher editor

The editor for database watchers

• Mail Watcher editor

The editor for mail watchers

The resource is opening in the default editor by simply double-clicking on it. An

alternative way of opening the resource in the default editor is right-clicking on the

resource and selecting the first menu item, i.e. Open in <editor type>, see Figure 23.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 226

Figure 23 – Opening a resource in its default editor

For those resources that have an alternative editor, the user can select among

multiple menu items, see Figure 24.

Figure 24 – Opening a resource in an alternative default editor

Furthermore, for simple file resources there is an option to open them in a selected

external application, configured in the Options dialog, see → Download / upload tab.

It can be performed by clicking on the Open resource on client side menu item, see

Figure 25.

Figure 25 – Opening a simple file resource in an external application

10.1.5 Searching for resources

It is possible to search for resources by clicking on the Search for resources… menu

item from the context menu. This menu is accessible only for folders. Then the Search

for resources dialog box appears, see Figure 26.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 227

Figure 26 – Search for resources dialog box

The available search options in the dialog box are as follows:

• Search for

The search filter. Can be applied for the ID, name, description or content of the

resource; these options can be selected by selecting one of the radio buttons in

this dialog box (see below).

• Parent path

The path where the search will take place. It is the selected folder path by default.

• Resource ID

When selected, the search filter will be applied for resource IDs.

• Resource name, description

When selected, the search filter will be applied for resource names and

descriptions.

• Resource content

When selected, the search filter will be applied for resource content. Only XML-

based (scripts, connections, templates) and/or textual files are included in the

search, see the last setting in this list below-

• Search in filesystem(s) as well

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 228

the search will take place in the reachable filesystem as well (see → User rights

and → Administrator user rights). It is switched off by default.

• Only in xml resources in metadata (scripts, connections, templates)

it limits the content search for resources for XML-based resources: scripts,

templates and connections in the embedded database

After clicking the Search button, the result is shown in the table at the bottom of the

dialog box. If there is no result, a There is no result of this search message shown above

the table and the table remains empty.

The result table colums display the following information, see Figure 27.:

• Resource path: the full path of the searched resource

• Resource ID: the ID of the searched resource

• Current: if the resource is a current version

• Resource description: the description of the resource

Figure 27 – The results shown in the table

Info: Double-clicking on the table row of a resource opens the selected

resource in the default editor.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 229

By clicking the Open results in text editor button, the result can be saved in the folder

specified in the Path where to save these files field in the Options dialog (see →

Download / upload tab), using the export-result-<timecode>.txt file name.

10.1.6 Drag-and-drop operations

There are some very useful functions that can be performed by drag-and-drop

operations from the Zagreus browser window into an open script in the Editor area.

Source Target Key Action

all attribute CTRL+SHIFT
the selected id is copied as the

attribute value

script editor area -
z:include action created with

the script id

script editor area CTRL
z:block action created with the

contents of the selected script

connection editor area -
z:include action created with

the connection id

connection editor area CTRL the connection action is inserted

connection
connection-name

attribute
-

the connection action is inserted to
the script as the first action, and
the connection-name attribute is

filled properly

template editor area -
z:include action is created and
the template is displayed on the

palette bottom

template editor area CTRL the template action is inserted

simple file editor area -
A file:read action is created

with the path of the selected file

As it is displayed in the table above, the simple drag-and-drop operation creates a

z:include action when it makes sense in terms of script execution (XML-based

actions: script, connection, template), and for simple files it creates a file:read

action.

The Control key + drag-and-drop operation makes a direct inclusion of the XML-

based content. In case of a script, it is wrapped into a z:block action, because there

can be several siblings of its root level.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 230

10.1.7 Script-specific operations

There are several operations that can make only sense when a script is selected in

the Zagreus browser tree.

10.1.7.1 Running a script

A manual script execution can be initiated by the Run script menu item in the context

menu.

Figure 28 – Running a script manually

For different script execution modes, see → Job properties. This menu item initiates

a script execution on the server side, in an asynchronous way. The script then goes into

the queue that can be monitored in the Active jobs window, see → Active jobs window.

Once the script execution has begun, the currently running script is displayed in the

Active jobs and Execution Engines windows (see → Active jobs window and →

Execution engines window), and the log messages are shown in the Active logs window,

see → Active logs window.

After clicking on this menu item, a Running has started on server message appears

in the status bar.

The following windows shows monitoring information about the running (or

queued) script.

• Active jobs window: (see also → Active jobs window)

Figure 29 – A job appears in the Active jobs window

• Active logs window: (see also → Active logs window)

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 231

Figure 30 – Job-logs are displayed in the Active logs window

• Execution engines window: (see also → Execution engines window)

Figure 31 – A job appears in the Execution engines window

Further details of the finished scripts are available in the Finished jobs window (see

also → Finished jobs window).

10.1.7.2 Running a script in debug mode

In order to run the script in debug mode (see → Debugging in the Zagreus Client),

the user needs to select the Run in debug mode menu item from the context menu in

the Zagreus browser.

Figure 32 – The Run in debug mode menu item

For further information of running the script in debug mode, see → Debugging

concepts and terms

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 232

10.1.7.3 Script subscriptions

Clicking on the Script subscriptions… (see Figure 33.) context menu item opens the

Subscriptions dialog box, see → Subscriptions. Subscriptions for scripts can be created,

modified and deleted here.

Figure 33 – The Script subscriptions… context menu

For understanding how subscriptions work, see → Subscriptions.

10.1.7.4 Setting script variables and options

By clicking on the Set script variables and options… context menu item (see Figure

34.), the Script variables and options dialog box will open (see Figure 35.).

Figure 34 – The Set script variables… context menu

There are two separated tabs in this dialog box. The first one is the Script variables

tab that is showing the script variables currently set for the particular script resource.

For understanding variables and variable scopes, see → Variables.

The table is editable by double-clicking on the proper cells (Name or Value column)

and entering the name or value respectively:

• A new name / value pair can be specified by double clicking on a cell in the first

empty row in the table, entering the text then pressing Enter key.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 233

• An existing name / value pair can be edited by double-clicking on an already filled

cell, modifying the text and pressing the Enter key.

• A row can be deleted by simply deleting its Name entry, pressing Enter key. This

name / value pair will not be saved after clicking the OK button.

Figure 35 – The Script variables tab of the Script variables and options dialog

When there are multiple variables, they can be re-ordered by using the arrows in

the top right corner of the tab. Variable order might be important for human readibility

reasons e.g. adding a new important variable can be in the first place in the list this

way.

After clicking OK, the changes will be saved.

Variables and their values

Up and down arrows for

changing variable orders

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 234

Figure 36 – The Executing and queuing options tab of the Script variables and options dialog

On the Executing and queuing options tab, two sets of predefined options are

available. These options play a role when the script is being executed or queued,

respectively. For a list of execution options, see → List of execution options.

10.1.7.5 Script runtime information

The Script runtime information… context menu item (see Figure 37.) opens the Script

runtime info dialog box (see Figure 38.), which displays details on the finished jobs of

the selected script. This function is similar to the functionality of the Finished jobs

windows, but limited to the selected script.

Predefined lists

Values can be

set here

Info: When the mouse cursor is moved over the options, additional help

information will be shown in the tooltips.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 235

Figure 37 – The Script runtime information… menu item

Figure 38 – The Script runtime info dialog box

It also gives the option to open one of the finished logs in the Finished logs window.

The user needs to double-click one of the jobs to do this.

In order to change the selected columns for the displayed jobs that will be shown in

the dialog box or change the condition filters for the result, the user needs to click on

the Runtime info properties tool (the icon at the top-right corner). It opens another

dialog, the Runtime info properties, see Figure 39.

The script name with

the version number The finished jobs

for the script

Runtime info

properties tool

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 236

Figure 39 – The Runtime info properties dialog box

A Show checkbox located beneath each column header determines which columns

will be shown from the pre-defined list of possible columns:

• Status: the status of the finished job

• User ID: the id of the user who initiated the execution of the script, see → Users

in the Zagreus System

• Begin execution time: the timestamp when the execution of the script was started

• End execution time: the timestamp when the execution of the script ended

• Execution mode: the mode of the script execution.

• Begin queue time: the time when the script was queued

• Number of lines: the number of log lines of the job-log file, see → job-log file

• End queue time: the time when the script was removed from the queue and

handed over for execution

• Result message: the output message of the script after the execution has finished.

For further information, see → result-message of the script

• Job ID: the id of the job, this is always shown

For more details about job-related properties, see → Job properties .

The user has to click on one of the blank fields under the Show checkbox to specify

a condition for a parameter. The Condition parameter window will appear after clicking

on the Add/modify condition option. Based on the column where the user has clicked,

a condition for the particular property can be set, see Figure 40. By clicking one of the

conditions, the condition can be deleted by choosing the Delete condition option.

’Show’ checkboxes

Conditions

Relationship between columns

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 237

Figure 40 – The Condition parameter dialog box for the column 'Status'

The relationship between the condition columns and rows can be set under the

table, see Figure 39.

This feature set is similar to the one that the Finished jobs report parameters

provides, see →.Finished job report parameters dialog.

10.1.8 Connection-specific operations

There are several operations that can make only sense when a connection is

selected in the Zagreus browser tree.

Figure 41 – The context menu of a connection resource

• Test connection

It performs a connection testing on the server side, depending on the specific

connection type, see → Test connection feature.

• Connect

There are several connection types which support custom connection browsing

inside the Zagreus browser window, see also → Opening connections in the

Zagreus browser.

10.1.9 Operations for event-type resources

There are some specific operations for managing the event-type resources.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 238

10.1.9.1 Subscriptions… menu item

As it was mentioned in the → Script subscriptions section, the Subscriptions dialog

box can be opened by selecting the Script subscriptions… menu item for a selected

script. The same dialog is can be opened by the Subscriptions… menu item for trigger-

based resources (time schedule, event schedule, file trigger, mail watcher and

database watcher), but with limited funcionality. The list in the dialog box displays the

subscriptions related to the given trigger-based resource.

Figure 42 – The Subscriptions… menu item for trigger-based resources

10.1.9.2 Evaluate watcher condition… menu item

This menu item appears only for mail watchers and database watchers. They have a

specific condition set up by the user who created them. This condition can be checked

manually by the Evaluate watcher conditions… menu item from the context menu, see

Figure 43. It performs the evaluation of the condition for the selected watcher, and

shows the result in the Evaluation results dialog box, see → Evaluate watcher condition

and → Evaluate watcher condition.

Figure 43 – The Evaluate watcher conditions… menu item for watchers

10.1.10 Showing dependent resources

This menu item lists all the resources that depend on the currently selected

resource, see Figure 44. That is, such XML-based resources will be listed which contain

the id or path of the selected resource in their content. So a resource has a dependent,

if its id or path is present in the content of another XML-based resource.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 239

Figure 44 –The Show dependents dialog box

The Show dependents dialog box shows the following information:

• Resource path: the full path of the resource

• Resource ID: the ID of the resource

• Resource description: the description of the resource

By double-clicking on the resource, it can be opened in the Editor area.

10.1.11 Send context submenu

This context menu item is only accessible when the .sendscripts configuration

file is set for the currently logged-in user, in the root of its home directory. In this

configuration file, scripts can be specified for which certain parameters of a selected

script can be sent for processing, see also → Execution with the .sendscripts file.

10.1.12 Context menu of the server definition node

For performing administrative tasks, the administrator user has several additional

menu items shown in the context menu of the server definition node.

Figure 45 – The server context menu

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 240

• Get licence information…

For checking and managing the licence information installed on the server, see →

Licencing. This menu item is also shown when the server definition node is

disconnected, see → Opening and closing a server definition node.

• Server information

Displays the Server information dialog box, showing information about the server

version and uptime, see → Server information.

Administrator options sub menus:

• Group management…

It opens the Group management for administrators dialog box to manage groups,

see → Group management.

• User management…

It opens the User management for administrators dialog box to manage users,

see → User management.

• Cancel all jobs…

It opens a Cancel jobs dialog box for cancelling jobs by status, see → Cancel all

jobs.

• Stop / start server components

It opens the Server component control dialog for starting and stopping server

components, see → Stop / start server components.

• Monitor watchers, triggers…

It opens the Monitoring watchers and triggers dialog box for monitoring, see →

Monitor watchers, triggers.

• Configuration testing…

It executes the self-testing function on the server side, then opens the Self-test

result dialog to show the results, see → Configuration testing.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 241

10.1.13 Context menu of a user node

For performing user-related administrative tasks, the administrator user has several

additional menu items shown in the context menu of the user home folder, see Figure

46.

Figure 46 – The user context menu

• Modify user…

It opens the User management for administrators dialog box, with the pre-

selected action (Modify existing user…) and user, see → Modify existing user

• Delete user…

It opens the User management for administrators dialog box, with the pre-

selected action (Delete existing user…) and user, see → Delete existing user

• Change password…

It opens the Change password dialog for the selected user, see → Changing

password

• Set user variables and options…

It opens the User variables and options dialog for the selected user. The dialog

works identically as the Script variables and options dialog, see → Setting script

variables and options

There is one more menu item which appears only in the users folder context menu

(it only makes sense on that level): the Create new user… menu item (see Figure 47.).

It opens the User management for administrators dialog box, with the pre-selected

action (Create new user…), see → Create new user.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 242

Figure 47 – The users context menu

10.1.14 Context menu of a group node

For performing group-related administrative tasks, the administrator user has

several additional menu items shown in the context menu of the group home folder,

see Figure 48.

Figure 48 – The group context menu

• Create new group…

It opens the Group management for administrators dialog box, with the pre-

selected action (Create new group…). This option is for creating a sub-group, see

→ Create new group.

• Modify group…

It opens the Group management for administrators dialog box, with the pre-

selected action (Modify existing group…) and group, see → Modify existing group.

• Delete group…

It opens the Group management for administrators dialog box, with the pre-

selected action (Delete existing group…) and group, see → Delete existing group.

• Set group variables and options…

It opens the Group variables and options dialog for the selected group. The dialog

works identically as the Script variables and options dialog, see → Setting script

variables and options.

There is one more menu item which appears also in the groups folder context menu:

the Create new group… menu item (see Figure 49.). This option is for creating a base-

level group. It opens the Group management for administrators dialog box, with the

pre-selected action (Create new group…), see → Create new group.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 243

Figure 49 – The groups context menu

10.1.15 Recycle bin

The recycle bin is for storing the deleted resources temporarily. The resources can

be restored or permanently deleted from the recycle bin.

Figure 50 – A deleted resource in the recycle bin

By right-clicking on the recycle bin, a new menu item appears in the context menu:

Empty recycle bin. By selecting this menu item, all the resources in the recycle bin will

be permanently deleted.

Moreover, by right-clicking on one of the deleted resources in the recycle bin, the

following menu items are available in the context menu:

• Delete permanently: deletes the selected resource(s) permanently

• Recover resource: restores the selected resource(s) to the location where it was

deleted from

To check how to switch on/off the recycle bin, see → Miscellaneous properties.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 244

10.2 Editor area

Various types of editors will open in the Editor area. The editor type corresponds to

the type of the resource that the user wants to edit. The different editor types will be

discussed in details in this chapter . All editors open on a tab in the editor area. Multiple

editors can be open at the same time, they take as many editor tabs right next to each

other as needed.

10.2.1 Script Editor

Zagreus scripts are developed by using the Script Editor. There are two main views

of the Script Editor: the Graph View and the XML View. The contents of these two views

are always synchronized with each other. Switching between the two views can be

done by clicking on the correponding tab at the bottom of the Script Editor, see Figure

51. Whilst there is no functionality that is not covered by the Grapth View of the Script

Editor, it can sometimes be useful to directly edit the XML code on the XML View tab.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 245

10.2.1.1 Graph view

Figure 51 – The Graph View of the Script Editor

The Graph View is the default view when the user opens a script resource type. All

functions of the Script Editor are present in the Graph View.

The functionality of the Script Editor is fully covered in a separate chapter, see →

Script Editor.

10.2.1.2 XML view

The XML View can be selected by clicking on its tab at the bottom of the Script Editor

right next to the Graph View tab. Basic text editing functions can be used like search

(Ctrl+F), copy (Ctrl+C), paste (Ctrl+V), cut (Ctrl+X) and undo (Ctrl+Z).

To see the detailed description of the XML structure of a script, see → XML

representation.

Canvas

Palette

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 246

Figure 52 – The XML View of the Script Editor

10.2.2 Simple text editor

The Simple text editor serves to edit files with textual content. Basic text editing

functions can be used like search (Ctrl+F), copy (Ctrl+C), paste (Ctrl+V), cut (Ctrl+X) and

undo (Ctrl+Z).

Script Editor (XML View)

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 247

Figure 53 – The Simple text editor

10.2.3 Other editors

When the user creates a new resource or opens an existing one, a corresponding

editor type opens in the editor area.

The following editor types are covered in details in other chapters:

• Event schedule editor: see → Event schedule

• Time schedule editor: see → Time schedule

• File trigger editor: see → File trigger

• DB watcher editor: see → Database watcher

• Mail watcher editor: see → Mail watcher

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 248

10.3 Extension windows of the Script Editor

There are a group of windows showing additional details about the script that is

currently open in the Script Editor (and its tab is the currently the selected tab in the

Editor Area if there are more than one script open). These windows are for overviewing

the element structure of the whole script, the attributes, variables, etc. These windows

only have content when any script is opened.

Figure 54 – Extension windows

10.3.1 Outline window

The Outline window makes it easier to view large scripts with deeply nested action

structure. If this window is not shown, it can be opened by clicking on the Outline

window option on the Window main menu bar. In the Outline window, the actions of

the script are listed under each other sorted by the action order number. The actions

listed here are expandable if there is any content of the particular action: text element

or other child actions. So the action hierarchy of the original script is mapped in a tree-

like structure in the Outline window, see Figure 55.

The Outline window is synchronized with the Script Editor: the selection in the

Outline window is corresponding with that of the Script Editor. A context menu appears

by right-clicking on one of the actions. This is the same context menu that is displayed

by right-clicking on the same action in the Script Editor.

Extension windows for the Script Editor

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 249

Figure 55 – The Outline window

10.3.2 Attributes window

The Attributes window displays the attributes of the selected action. If this window

is not shown, it can be opened by clicking on the Attributes window menu item on the

Window main menu bar. The attributes can be edited by double-clicking on the

attribute name. If the currently selected action has no attribute at all or none of the

actions are selected, there will be no attributes shown in the Attributes window.

Figure 56 – The Attribute window

10.3.3 Variables / Functions window

The Variables/Functions window displays the generally usable engine system

variables and functions (see → Function calls), the script starting variables along with

the variables defined in the script. If this window is not shown, it can be opened by

clicking on the Variables window item on the Window main menu bar. The items in this

window are categorized into groups, and all these groups are expandable.

Furthermore, tooltips help to give information about the usage of functions and

variables.

Groups:

• System variables

The user can check the list of the predefined system variables

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 250

• System functions

The list of the predefined engine system functions. If the category toggle button

is set to Categories presentation, the list of the functions are arranged into further

categories (see below).

• Script starting variables

The list of the variables for the script defined in the Script variables and options

dialog box (see also → Setting script variables and options). When a script is

running, other variables are actually reachable for the script, but because this

window belongs to the Script Editor itself (so the script is likely not currently

running), it can only know the closest scope of variables at this point in time,

which is the script scope.

• Script variables

It shows the variables defined in the script (see also → Start-up variables). It

shows these variables according to the current point of selection. So if a variable

is defined later than the actual selection, the variable is not shown in the list. This

list also takes the variable scope (local or global) setting into account. For variable

scopes, see → Variable scopes

Figure 57 – Variables/Functions window, the categories of the engine system functions

It is possible to display the engine functions in categories or in flat (simple list)

presentation. To switch between presentations, the user needs to click on the icon

located in the upper right corner of this window, or select the corresponding tool menu

item right next to the icon.

The categories presentation lists the following categories:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 251

• String functions

• Date functions

• Complex type functions

• Numeric functions

• Data type functions

• System functions

Variables and functions can be added to the textual content of an action in the Script

editor by drag and dropping the particular element onto the text content of that action.

For this, the textual content of the target action should not be empty, see Figure 58.

and Figure 59.

Figure 58 – The date engine system variable is started to drag to the z:log action…

Figure 59 – …and after dropping onto the text element of the z:log action

10.3.4 Breakpoints window

The Breakpoints window is designed for the case when the script is running in debug

mode. This sort of running makes sense only if the script is opened in the Script Editor

(debug mode) as long as the script is being executed. The Breakpoints window is linked

to the debug mode Script Editor. Therefore, the usage of this window is described in

details in the chapter about the debug mode, see → Starting a debug session

10.3.5 Watch window

The Watch window is designed for the case when the script is running in debug

mode. This sort of running makes sense only if the script is opened in the Script Editor

(debug mode) as long as the script is being executed. The Watch window is linked to

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 252

the debug mode Script Editor. Therefore, the usage of this window is described in

details in the chapter about the debug mode, see → Starting a debug session.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 253

10.4 Monitoring

Monitoring is an important part of the workflow in Zagreus. The monitoring options

include the ability to follow script execution, checking the logs of the running script as

well as seeing the actual states of the execution engines and the Worker Controller.

The monitoring windows are located at the bottom of the Zagreus Client in the

default Edit view. The monitoring windows are the following:

• Active jobs

• Active logs

• Execution engines

• Finished jobs

• Finished logs

• Skipped jobs

Figure 60 – The monitoring windows and their tools

10.4.1 Active jobs window

The jobs that are currently queued or running can be found in the Active jobs

window. For the lifecycle of a job, see → Job lifecycle

The header of the Active jobs window has a postfix (the part in […]). It shows the

connected server name when there is an active open server connection (e.g. Zagreus

Demo Server in Figure 61.). If there are multiple open connections, it shows the active

windows for monitoring specific tools for the windows

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 254

one which is selected by clicking on any of the tree sub-nodes of the particular server

in the Zagreus Browser window, see → Zagreus browser window

Figure 61 – The Active jobs window

The columns that are shown in the Active Jobs window are:

• Job ID

The ID of the job

• User ID

The ID of the user who initiated the execution of the script

• Script path

The full path of the script

• Version

The version number of the script, see → Resource ID and version

• Begin exec. time

The begin execution time of the job.

• End exec. time

The end execution time of the job.

• Status

The current status of the job.

• Priority

The priority number of the job. The smaller the number, the higher the priority

is. The default priority number is 10, if is not set otherwise in the priority

execution option, see → List of execution options

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 255

• Exec. mode

The execution mode of the job.

• Script name (not shown by default)

The name of the script.

• Begin queue time (not shown by default)

The begin queue time of the job.

• Number of lines (not shown by default)

The full number of log lines.

For the list of job properties, see → Job properties

Specific tools for the Active jobs window:

• Refresh View

The Active jobs window updates its content every 5 seconds by default. It can be

refreshed manually with this tool.

• Active jobs window preferences

It opens the Active jobs window preferences dialog box, see below.

10.4.1.1 Active jobs window preferences dialog

This dialog allows the user to select the property columns which will appear in the

Active jobs window, see Figure 62.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 256

Figure 62 – The Active jobs windows preferences dialog box

The sections of the dialog are the following:

• Selected columns

The list of the column names displayed in the Active jobs window. The order of

the columns can be modified by selecting a column name and using one of the

arrows to the right of the list box (up and down arrows).

Removing a column is also possible by selecting a column name and using the left

arrow icon, located to the left of the list box.

• Further possible columns

The list of the column names which are not in the Selected columns list box, but

possibly selectable.

To select a possible column, select a column name and click on the right arrow

icon, located to the right of the list box.

• Use sorting

When this option is checked, the listed job results can be sorted by the specified

column names. To specify such a sorting column, the user needs to select the

column name from the dropdown box which appears by clicking on the first

empty cell of the first column (Sort result by). The direction of the selected column

(ascending or descending) can be set in the same manner in the second column

(Direction), see Figure 63.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 257

Figure 63 – Defining a sorting column name in the Active jobs window preferences dialog box

• From server

If there are multiple open server connections, the target server can be selected

from this dropdown list. After changing the server, by clicking on the OK button,

the header of the Active jobs window changes correspondingly.

• Refresh table by seconds

This is the polling rate that is used to retrieve data periodically from the target

server. Default is 5 seconds.

The changes are applied after clicking on the OK button. In order to reset all the

settings, the user has to click on the Reset to defaults button.

10.4.2 Active logs window

The Active logs window displays the actual real-time logging output during the

execution of scripts, see Figure 64. If more than one script is running, multiple job-log

outputs are displayed simultaneously in this window in different tabs.

Figure 64 – The Active logs window

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 258

The log tabs are automatically opened when the first log message arrives from a job

and stay open for ten more seconds after the last message.

The columns that are shown in the Active logs window:

• Time

The timestamp of the log message in a <dd.MM.yyyy, HH:mm:ss> format.

• Script path

The full path and version number of the script.

• Message

The job-log message, see logging → job-log file

• Job ID

The ID of the job.

• User name (not shown by default)

The user ID who initiated the script execution

• Job status (not shown by default)

The status of the job.

Specific tools for the Active logs window:

• Close all log tabs

Immediately closes all log tabs.

• Scroll lock

It stops the automatic scrolling down.

• Show log result in text editor

The content of the log tab will be opened in a Simple text editor. Only the selected

tab content will be displayed and it will not be refreshed.

• Active logs window preferences

It opens the Active logs window preferences dialog box, see below.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 259

10.4.2.1 Active logs window preferences dialog

This dialog allows the user to select the property columns which will appear in the

Active logs window, see Figure 65.

Figure 65 – The Active logs window preferences dialog

The sections of the dialog are the following:

• Selected columns

The list of the column names displayed in the Active logs window. The order of

the columns can be modified by selecting a column name and using one of the

arrows to the right of the list box (up and down arrows).

Removing a column is also possible by selecting a column name and using the left

arrow icon, located to the left of the list box.

• Further possible columns

The list of the column names which are not in the Selected columns list box, but

possibly selectable.

To select a possible column, select a column name and click on the right arrow

icon, located to the right of the list box.

The changes are applied after clicking on the OK button. In order to reset all the

settings, the user has to click on the Reset to defaults button.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 260

10.4.3 Execution engines window

The Execution engines window displays the current status of all the Zagreus Workers

(see → Zagreus Worker).

There are two tabs in this window: the Worker information tab and the Worker-

controller logs tab. In the first one, worker controllers and workers are displayed while

in the second one, the logs are shown from the Zagreus Worker Controller, see →

Zagreus Worker-Controller.

10.4.3.1 Worker information tab

The Worker information tab is selected by default in the window. This tab offers a

real-time monitoring about execution processes. The Zagreus Workers are shown in a

table widget that has collapsable nodes (Zagreus Worker Controllers) apart from the

usual table rows (Zagreus Workers). So the Zagreus Workers are batched together

under a Worker Controller, see Figure 66. The number of workers is determined by the

number of execution engines included in the license (see → Licencing).

Zagreus provides the usage of multiple Worker Controllers, though in most of the

cases only one Worker Controller is configured in the Zagreus System.

Figure 66 – The Execution engines window

The columns for the Worker information tab of the Execution engines window are:

• Worker Controller

The Worker Controller instance with its ID, see → Zagreus Worker-Controller

• Worker id

The id of the worker, see → ID of the Zagreus Worker

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 261

• Status

The status of the Worker Controller or Worker (depending on the row). The status

can be Idle, Busy, Starting and Shutting down in the case of Workers, and Running,

Starting, Suspended and Shutting down in the case of the Worker Controller.

• Enabled

Shows whether the Zagreus Worker is enabled or disabled

• Started

Showing the timestamp when the Zagreus Worker has started.

• CPU cores

The number of CPU cores of the host the Zagreus Worker JVM runs on.

• Job id

The ID of the job that is currently executed on the given Zagreus Worker

• Script

The name and version number of the script associated with the job that is

currently executed on the given Zagreus Worker

• Job status

The status of the job.

• Free mem.

The currently free memory that the Zagreus Worker JVM can use. However, it

does not mean this is the maximum available memory because the JVM allocates

memory incrementally. So, if free memory is too small, JVM will allocate more

memory until it reaches the maximum memory.

• Total mem.

The actual memory that the Zagreus Worker JVM is using. It can be higher than

expected even when the JVM is in idle status. JVM-s are using their own garbage

collector mechanism to free up memory when it is needed. The total memory for

a worker can be specified with the -Xms setting in the Zagreus Worker

configuration (see also → Worker startup properties).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 262

• Max mem.

This is the maximum memory that the Zagreus Worker JVM can use. The total

memory for a worker can be specified with the -Xmx setting in the Zagreus

Worker configuration (see also → Worker startup properties).

• Last updated

The timestamp when all information was last updated.

Right-clicking on one of the Worker Controllers will open a context menu, see Figure

67.

Figure 67 – The context menu of the Worker Controller node

Here, the user can perform one of the following operations:

• Cancel all jobs…

It opens the Cancel jobs dialog box. This is the same dialog box that the

Administrator options / Cancel all jobs… menu item opens by the server definition

node context menu in the Zagreus browser window, see → Cancel all jobs.

• Start new worker…

It opens the Start new worker dialog box, see Figure 68. A new worker can be

started with the specified worker id. The worker id must be a unique number

which is not among the currently running workers, see → ID of the Zagreus

Worker.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 263

Figure 68 – The Start new worker dialog box

Right-clicking on one of the Workers opens another context menu, see Figure 69.

Figure 69 – The context menu of a Worker node

Here, the user can perform one of the following operations:

• Enable worker

It enables the selected worker

• Disable worker

It disables the selected worker

• Stop worker

It stops the selected worker. After stopping, the selected worker is removed from

the worker list. If there was a running job, this operation cancels the job first.

• Restart worker

It restarts the selected worker. First, the selected worker is removed from the

worker list, but shortly it appears again.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 264

• Cancel job

It cancels the currently executed job on the worker, see → Cancellation.

• Cancel all jobs…

It opens the Cancel jobs dialog box. This is the same dialog box that the

Administrator options / Cancel all jobs… menu item opens by the server definition

node context menu in the Zagreus browser window, see → Cancel all jobs.

• Open script in debug editor…

This menu item is only enabled when the status of the currently executed job is

Debugging. It opens the currently executed job in a Script Editor (debug mode),

see → Debug Editor.

For further information about Zagreus Worker management, see → Managing

Zagreus Workers

There is one tool available for the Execution engines window: the Engine status

windows properties icon. This opens the Engine status window preferences dialog,

see Figure 70.

Figure 70 – The Engine status window preferences dialog

Here, the user can adjust the following parameters:

• From server

If there are multiple open server connections, the target server can be selected

from this dropdown list. After changing the server, by clicking on the OK button,

the header of the Execution engines window changes correspondingly

• Warning time

When the content of the Worker information tab is not updated within a time

threshold (e.g. the connection is lost, the Last updated column is not changing

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 265

any more), the affected rows become red. This threshold can be set here,

specified in seconds.

10.4.3.2 Worker-controller logs tab

This tab displays direct log messages from the Worker Controller, see Figure 71.

Figure 71 – The Worker-controller logs tab of the Execution engines window

The columns of this table are the following:

• Time: the timestamp of the log message.

• Worker Controller: the ID of the Worker Controller.

• Message: the message from the Worker Controller.

10.4.4 Finished jobs window

The Finished jobs window displays report-like information about completed jobs,

see Figure 72. This window is not opened by default, it can be opened either by clicking

on the Open new Finished jobs window tool in the main toolbar (see also → Open a

new Finished jobs window), or pressing the Alt+J key combination, or accessed by

selecting the Finished jobs window option from the Windows main menu bar.

Figure 72 – The Finished jobs window

The columns that are shown in the Finished jobs window are:

• Job ID

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 266

The ID of the job

• Status

The status of the job

• User ID (not shown by default)

The ID of the user who initiated the execution of the script

• Script path

The full path of the script

• Script name (not shown by default)

The name of the script

• Version

The version number of the script, see → Resource versioning

• Begin exec. time

The begin execution time of the job

• End exec. time

The end execution time of the job

• Exec. mode (not shown by default)

The execution mode of the job

• Begin queue time

The begin queue time of the job

• End queue time (not shown by default)

The end queue time of the job

• Result message (not shown by default)

The result message of the job, see → result-message of the script

• Caller (not shown by default)

The caller of the job

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 267

• Caller type (not shown by default)

The caller type of the job

• Number of lines

The full number of log lines of the job-log file, see → job-log file

• Worker id

The ID of the Zagreus Worker where the job was executed on (see also → ID of

the Zagreus Worker)

• Worker controller id

The ID of the Zagreus Worker Controller which control the Zagreus Worker where

the job was executed on (see also → Zagreus Worker-Controller)

• Priority (not shown by default)

The priority number of the job. The smaller the number, the higher the priority

is. The default priority number is 10, if is not set differently in the priority

execution option, see → List of execution options

Specific tools for the Finished jobs window:

• Refresh View

Clicking on this icon tool refreshes the content of the Finished jobs window

according to its report parameters. The content of the window can also be

refreshed by clicking on the window header if the Auto refresh window by clicking

on its header setting is checked in the Options dialog box, see → Options dialog

• Setting report parameters…

It opens the Finished job report parameters dialog box, see → Finished job report

parameters dialog . This tool is also accessible from the tool menu opened by

clicking the down-arrow icon right to the icon of this tool.

• Setting log columns… (accessible from the tool menu opened by clicking the

down-arrow icon right to the Setting report parameters… icon)

This menu item opens the same Finished log report parameters dialog that the

Setting log columns... tool opens in the Finished logs window, See → Finished logs

window

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 268

A context menu appears when the user is right-clicking on a job in the result list, see

Figure 73.

Figure 73 – The context menu of a job in the Finished job window

The following menu items are accessible:

• Open script

It opens the actual script content from the local database that is associated with

the job in the Script Editor.

• Open executed script version

It opens the script content that was actually executed by the associated job (so it

is a cached script version for the job) in the Script Editor.

• Get logs of this job

Opens a new Finished logs window with the log messages of the selected job.

10.4.4.1 Finished job report parameters dialog

This dialog allows the user to set the job report parameters for the Finished jobs

window, see Figure 74.

Info: It is also possible to open the associated log messages for a job by

double-clicking on a selected row. It either opens the Finished logs window,

or opens a Simple text editor with the log messages. The behaviour of this

can be controlled with the appropriate setting in the Options dialog.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 269

Figure 74 – The Finished job report parameters dialog box

In the table located in the upper-half of the dialog, the user can select the columns

which will be displayed in the Finished jobs window. This can be done by checking the

corresponding checkboxes (with the label Show) under the column names.

In this table the user can also specify conditions on the selected columns. The user

has to click on one of the blank fields under the Show checkbox to specify a condition

for a parameter. The Condition parameter window will appear after clicking on the

Add/modify condition option. Based on the column where the user has clicked, a

condition for the particular property can be set; for an example, see Figure 75. By

clicking one of the conditions, the condition can be deleted by choosing the Delete

condition option.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 270

Figure 75 – The Condition parameter dialog box for the Status column

Based on the column type, the following operators are available:

• For numeric types (columns User ID, Number of lines, Priority):
=, <, >, <=, >=, <>, In, Between

• For date types (columns Begin exec. time, End exec. time, Begin queue time, End

queue time):
=, <, >, <=, >=, <>, Between

• For string types (columns Job ID, Script path, Script name, Version, Result

message):
=, <>, In, Between, Contains

• For pre-defined sets (columns Status, Caller type, Exec. mode):
=, <>, In

When the chosen operator requires two operands (like the Between operator), the

dialog box changes its layout correspondingly.

Multiple conditions can be specified even for the same column. In this case the

conditions have to be defined in separate rows under each other in the table.

Figure 76 – Multiple conditions specified for Begin queue time

Under the table, the logical relationship between columns and rows can be

specified, see Figure 77. The selectable values are AND and OR. These settings are

evaluated in the following way: first the conditions of each separate row are grouped

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 271

(according to the columns setting), then the different such row-level conditions are

grouped (according to the rows setting).

Figure 77 – The Relationship between columns and rows setting

The user can also set the maximum number of listed jobs by using the Limit rows

setting, see Figure 78.

Figure 78 – The Limit rows setting

By checking the Show hidden jobs checkbox, the user can include the hidden jobs in

the result list, see --> .

When the Use sorting option is checked, the listed finished job results can be sorted

by the specified column names. To specify such a sorting column, the user needs to

select the column name from the dropdown box which appears by clicking on the first

empty cell of the first column (Sort result by). The direction of the selected column

(ascending or descending) can be set in the same manner in the second column

(Direction), see Figure 79.

Figure 79 – Defining a sorting column name in the Finished job report parameters dialog box

If there are multiple open server connections, the target server can be selected from

the From server dropdown list, see Figure 80. After changing the server, by clicking on

the OK button, the header of the Finished jobs window changes correspondingly.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 272

Figure 80 – The From server dropdown list

The changes are applied after clicking on the OK button. In order to reset all the

settings, the user has to click on the Reset to defaults button.

10.4.5 Finished logs window

The Finished logs window displays the logging output for a certain completed job.

This output can be accessed by using the Get logs of this job menu item in the Finished

jobs window, see Figure 81. Also, it can be done by double-clicking on the selected job

in the Finished jobs window, if the appropriate setting in the Options dialog allows this

behaviour, see also → General behaviour tab.

Figure 81 – Opening the log of a finished job in the Finished jobs window

Figure 82 – A Finished logs window

The columns that appear in the Finished logs window:

• Time

The timestamp of the log message.

• Action

The fully qualified action name which created the log message, see → Action

groups and action name

• Action number (not shown by default)

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 273

The action ordering number which created the log message, see → Ordering

numbers

• Thread id (not shown by default)

The ID of the thread in which the log message was created, see → Parallel threads

in the z:foreach action

• Message

The log message.

• Level

The logging level of the message, see → Logging levels and loglevel

Specific tools for the Finished logs window:

• Show log result in text editor

Displays the logging results in a Simple text editor in the Editor area.

• Finished log report parameters

Opens the Finished log report parameters dialog, see Figure 83. The user can

select the visible columns with the checkboxes in the dialog.

Figure 83 – The Finished logs report parameters dialog

10.4.6 Skipped jobs window

The Skipped jobs window displays all scripts with skipped execution in a specific time

period. For more information about skipped jobs, see → Skipped jobs.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 274

Figure 84 – The Skipped jobs window

This window is not open by default, it can be opened either by clicking on the

Open/close Skipped jobs window tool in the main toolbar (see also → Open/close the

Skipped jobs window), or accessed by selecting the Skipped jobs window option from

the Windows main menu bar.

The results of the skipped job report appears as grouped elements by a certain

criterion, see → Skipped jobs in the Zagreus Client. The parent nodes are expandable

to see the individual skipped jobs.

The columns that are shown in the Skipped jobs window are:

• Script path

The full path of the script associated with the skipped job

• Subscription id

The id of the subscription associated with the skipped job, see → Subscriptions

• Schedule path

The full path of the time schedule associated with the subscription above

• Skipped scheduled time

The timestamp when the script should have been executed.

Specific tools for the Skipped jobs window:

• Refresh view

It refreshes the content of the window according to the Skipped jobs window

preferences dialog settings.

• Skipped jobs window preferences tool

It opens the Skipped jobs window preferences dialog, see → Skipped jobs window

preferences dialog

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 275

10.4.6.1 Skipped jobs window preferences dialog

This dialog allows the user to set the job report parameters for the Skipped jobs

window, see Figure 85.

Figure 85 – The Skipped jobs window preferences dialog

The sections of the dialog are the following:

• From server

If there are multiple open server connections, the target server can be selected

from this dropdown list. After changing the server, by clicking on the OK button,

the header of the Skipped jobs window changes correspondingly

• Range from

It contains two widgets: a calendar for the date and a widget for the time setting.

Both settings together specify the starting time for the skipped job report.

• Range to

It contains two widgets: a calendar for the date and a widget for the time setting.

Both settings together specify the end time for the skipped job report.

Also, there is a checkbox Use always current time as ‘to’. It automatically sets the

current time as the end time for the skipped job report.

• Group result

The skipped jobs can be grouped by different columns: script, subscription and

schedule. For an example, see Figure 86.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 276

Figure 86 – The Skipped jobs window grouped by script path

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 277

10.5 Main menu bar

The main menu bar can be found at the top left corner of the Zagreus Client.

Figure 87 – The Main menu bar

The menu bar contains several menus with logically grouped menu items. Some of

them can be accessed in another way as well but a few of them can only be accessed

from the menu bar.

10.5.1 File menu

• New resource

It creates a new resource. It is only active if there is an open Zagreus Server

connection.

• Exit

Terminates the Zagreus Client application. When there are open resources in the

Editor Area, first, the Zagreus Client offers saving them before closing the main

window.

10.5.2 Edit menu

• Undo

Performs an undo operation for the script being edited in the currently opened

Script Editor, see → Script Editor.

• Redo

Performs a redo operation for the script being edited in the currently opened

Script Editor, see → Script Editor.

• Delete

This operation depends on the active selection in the main application window.

It deletes the selected resource(s) if the Zagreus browser window is active, or the

selected action(s) in the Script Editor if the focus is on the editor.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 278

More than one resource can be selected by holding down the Ctrl or Shift buttons

while selecting resources in the Zagreus browser window (see → Zagreus browser

window) or actions in the Script Editor (see → Selecting multiple actions).

• Rename resource

Performs the same operation as the Rename resource... menu item in the Zagreus

Browser window, see → Renaming resources.

10.5.3 Window menu

• Zagreus browser

To open or close the Zagreus Browser window (see → Zagreus browser window),

the user needs to use this menu item or use the Ctrl+Alt+Z key combination. This

option is also accessible by selecting the Zagreus browser icon tool from the main

toolbar.

• Active jobs window

To open or close the Active jobs window (see → Active jobs window), the user

needs to use this menu item or the Ctrl+Alt+J key combination. This option is also

accessible by selecting the Active jobs window icon tool from the main toolbar.

• Active logs window

To open or close the Active logs window (see → Active logs window), the user

needs to use this menu item or the Ctrl+Alt+L key combination. This option is also

by selecting the Active logs window icon tool from the main toolbar.

• Engine status window

To open or close the Execution engines window (see → Execution engines

window), the user needs to use this menu item tool or the Ctrl+Alt+E key

combination. This option is also accessible by selecting the Execution engines

window icon tool from the main toolbar.

• Finished jobs window

To open a new instance of the Finished jobs window (see → Finished jobs

window), the user needs to use this menu item or the Ctrl+J key combination.

Multiple Finished jobs windows can be opened simultaneously. This option is also

accessible by selecting the Finished jobs window icon tool from the main toolbar.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 279

• Finished logs window

To open a new instance of the Finished logs window (see → Finished logs

window), the user needs to use this menu item or the Ctrl+L key combination.

Multiple Finished logs windows can be opened simultaneously. This option is also

accessible by selecting the Finished logs window icon tool from the main toolbar.

• Skipped jobs window

To open or close the Skipped jobs window (see → Skipped jobs window), the user

needs to use this menu item. This option is also accessible by selecting the

Skipped jobs window icon tool from the main toolbar.

• Outline window

To open or close the Outline window (see → Outline window), the user needs to

use this menu item or the Ctrl+Alt+O key combination.

• Attributes window

To open or close the Attributes window (see → Attributes window), the user

needs to use this menu item or the Ctrl+Alt+A key combination.

• Variables window

To open or close the Variables window (see → Variables / Functions window), the

user needs to use this menu item or the Ctrl+Alt+V key combination.

• Breakpoints window

To open or close the Breakpoints window (see → Breakpoints window), the user

needs to use this menu item or the Ctrl+Alt+B key combination.

• Watch variables window

To open or close the Watch variables window (see → Watch window), the user

needs to use this menu item or the Ctrl+Alt+W key combination.

10.5.4 Tools menu

• Password converter

The user can convert passwords from plain text to a Zagreus-specific encrypted

format. Encrypted passwords can be inserted in the cpassword attribute in

several actions (see → username, password and cpassword attributes), mostly in

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 280

connection actions. In the Script Editor, the value of the password attribute can

also be encrypted into a cpassword attribute by the Encrypt password menu item

in the attribute context menu, see → Encrypt password.

 Figure 88 – The Password encryption dialog box

• Options…

It opens the Options dialog box. There are a lot of settings for the Zagreus Client

which are described in a separated chapter, see → Options dialog.

10.5.5 Help menu

• About

It opens the About Zagreus Client dialog box. The version number can be seen at

the upper part of the dialog.

Note: the Installation Details button opens another Zagreus Client Installation

Details dialog which shows information on the Eclipse RCP (Rich Client Platform)

application level. This is the underlying window manager framework for the Zagreus

Client application, the details here are very technical and not directly related to the

Zagreus System installation structure.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 281

10.6 Main toolbar

The main toolbar provides quick access to tools and dialogs for some of the most

common tasks in the Zagreus Client. It is located directly under the main menu bar, see

Figure 89.

Figure 89 – The main toolbar

10.6.1 Views

Views are specific layouts for particular tasks. A view defines a structure of graphical

placeholders for windows, areas, groups of other elements. A view can be treated as a

comfortable arrangement of the different parts in the Zagreus Client.

10.6.1.1 Edit view

The default view in the Zagreus Client is the Edit view, which contains the following

windows and areas:

Default:

• Zagreus Browser window, see → Zagreus browser window

• Editor area, see → Editor area

• Active jobs window, see → Active jobs window

• Active logs window, see → Active logs window

• Execution engines window, see → Execution engines window

• Outline window, see → Outline window

• Attributes window, see → Attributes window

• Variables window, see → Variables / Functions window

• Breakpoints window, see → Breakpoints window

• Watch window, see → Watch window

Optional:

• Finished jobs window(s), see → Finished jobs window

• Finished logs window(s), see → Finished logs window

• Skipped jobs window, see → Skipped jobs window

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 282

These are all the possibly displayable window types and the main editor area. This

view is intented to use for the common browsing and editing operations.

The remaining space is used for the editors. The user can switch between the views

by selecting the proper menu item from the main Window menu, or by clicking on the

proper toggle-button on the main toolbar.

Figure 90 – The Edit View button in the toolbar

Figure 91 – The Edit View in the Zagreus Client

10.6.1.2 Report view

The Report view is a more comfortable arrangement of windows for monitoring job

execution. The editor area is not present in this view, leaving more room for all the

other windows.

The Report view in the Zagreus Client contains the following windows and areas:

Default:

• Zagreus Browser window, see → Zagreus browser window

• Active jobs window, see → Active jobs window

• Active logs window, see → Active logs window

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 283

• Skipped jobs window, see → Skipped jobs window

• Execution engines window, see → Execution engines window

Optional:

• Finished jobs window(s), see → Finished jobs window

• Finished logs window(s), see → Finished logs window

The view can be switched by clicking on the proper toggle-button on the main

toolbar, or selecting the proper menu item from the Window main menu.

Figure 92 – The Report View button in the toolbar

Figure 93 – The Report view in the Zagreus Client

10.6.2 Open/close the Zagreus browser window

To open or close the Zagreus Browser window (see → Zagreus browser window), the

user needs to use this toggle button or the Ctrl+Alt+Z key combination. This option is

also accessible by selecting the Zagreus browser menu item from the Window main

menu.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 284

Figure 94 – The Open/close Zagreus browser window icon tool

10.6.3 Open/close the Active jobs window

To open or close the Active jobs window (see → Active jobs window), the user needs

to use this toggle button or the Ctrl+Alt+J key combination. This option is also

accessible by selecting the Active jobs window menu item from the Window main

menu.

Figure 95 – The Open/close Active jobs window icon tool

10.6.4 Open/close the Active logs window

To open or close the Active logs window (see → Active logs window), the user needs

to use this toggle button or the Ctrl+Alt+L key combination. This option is also by

selecting the Active logs window menu item accessible from the Window main menu.

Figure 96 – The Open/close Active logs window icon tool

10.6.5 Open/close the Engine status window

To open or close the Engine status window (see → Execution engines window), the

user needs to use this toggle button tool or the Ctrl+Alt+E key combination. This option

is also accessible by selecting the Engine status window menu item from the Window

main menu.

Figure 97 – The Open/close Engine status window icon tool

10.6.6 Open a new Finished jobs window

To open a new instance of the Finished jobs window (see → Finished jobs window),

the user needs to use this tool or the Ctrl+J key combination. Multiple Finished jobs

windows can be opened simultaneously. This option is also accessible by selecting the

Finished jobs window menu item from the Window main menu.

Figure 98 – The Finished jobs window icon tool

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 285

10.6.7 Open a new Finished logs window

To open a new instance of the Finished logs window (see → Finished logs window),

the user needs to use this tool or the Ctrl+L key combination. Multiple Finished logs

windows can be opened simultaneously. This option is also accessible by selecting the

Finished logs window menu item from the Window main menu.

Figure 99 – The Finished logs window icon tool

10.6.8 Open/close the Skipped jobs window

To open or close the Skipped jobs window (see → Skipped jobs window), the user

needs to use this toggle button. This option is also accessible by selecting the Skipped

jobs window menu item from the Window main menu.

Figure 100 – The Open/close Skipped jobs window icon tool

10.6.9 Save resource to the server

When the developing of the resource is finished the resource can be saved by

clicking on the Save resource button or by pressing the Ctrl+S hotkey.

Figure 101 – The Save resource onto the server icon tool

If the resource has not been saved yet, Zagreus will offer to save the resource by

displaying the Save resource as dialog box (see below); otherwise, the resource will be

overwritten without any warning.

10.6.10 Save as… resource to the server

This tool allows the user to perform one of the following operations:

• Save the resource for the first time if it is not saved yet.

• Save a copy of the currently edited resource to a different location / with different

name.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 286

Figure 102 – The Save as… resource icon tool

The tool is also accessible by pressing the Ctrl+Alt+S hotkey.

The tool opens the Save resource as dialog box, allowing the user to specify the

location and name of the resource.

Figure 103 – The Save resource as dialog box

Information related to the location is also shown in the dialog box, see Figure 103.:

• Server: the currently selected server (if there are multiple connected servers, the

user can select a different server by going upward to the server level in the dialog

and choose another one)

• List of resources: contains all of the resources in the selected folder

• Selected folder: the path of the currently selected folder

The selected folder is set in the dialog box depending on various conditions:

• If the resource is not saved yet, and there is a folder or resource selected in the

Zagreus browser window (in the embedded database, not in the server

filesystem), then the folder itself or the parent folder of the selected resource is

set by default.

• If the resource is not saved yet, and there is no selection in the Zagreus browser

window (or a filesystem resource is selected), then the server root node is

selected by default in the dialog box.

Up one level and Create new

folder buttons

List of resources

Current folder

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 287

• If the resource is already saved, the original parent folder is selected here.

The user can use the Up one level button to navigate upwards in the folder structure,

and the Create new folder button to create a new folder, see Figure 103.

The user has to specify the resource name in the File name field and then click on

the OK button to save it.

10.6.11 Save a new version of the resource

The user can create a new version of the currently opened resource by using this

tool or pressing the Ctrl+Shift+V key combination. Saving a new version creates a

copy of the original resource with the same id but with a different version number, see

→ Resource versioning. The tool opens the Set resource version dialog box to set the

parameters of this operation, see Figure 104.

Figure 104 – The Set resource version dialog box

• Set resource version

The user needs to enter the new version number for the resource. The text box

is filled with the version of the edited resource, this must be changed in order to

save a new one.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 288

• Current version

The newly created resource will be set as the current version. For more

information about current version, see → Current version.

Setting the current version can also be done by selecting the Set to current version

option from the context menu in the Zagreus browser window. The user has to

right-click on one of the versions grouped under a resource version parent node.

• Description

Allows the user to specify a description for the newly created resource version. A

resource description can also be specified by right-clicking on a resource, and

select the Show resource information menu item from the context menu in the

Zagreus browser window. Then, in the Resource info dialog box, the description

can be added or changed.

• Saved versions

The list of the available versions of the resource

It is recommended to use the version format specified → Version format. After

saving the new resource, the new version is listed In the Zagreus browser, see Figure

105.

Figure 105 – Versions of a script

10.6.12 Save and run resource

It runs the resource after saving. The Save resource as dialog box will appear when

the resource that is newly created has not been saved yet. After it has been saved,

Zagreus initiates the execution of the resource, see → Initiating script execution.

Figure 106 – The Save and run resource icon tool

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 289

10.6.13 Run script

It runs the script that is currently opened and active in the Editor Area. If the script

has not been saved yet, Zagreus will show a warning message that the script must be

saved before running it.

Figure 107 – The Run script icon tool

10.6.14 Resume

This icon tool is only enabled for the debug mode of the Script Editor, see → Starting

a debug session.

Figure 108 – The Resume icon tool

10.6.15 Step to the next action

This icon tool is only enabled for the debug mode of the Script Editor, see → Starting

a debug session.

Figure 109 – The Step to the next action icon tool

10.6.16 Stop debugging

This icon tool is only enabled for the debug mode of the Script Editor, see → Starting

a debug session.

Figure 110 – The Stop debugging icon tool

10.6.17 Create new resource

It creates a new resource. By clicking on this icon (see Figure 111.), the dialog box

Creating new resource appears, see Figure 112. The resource name can be set (the

default is Untitled) and the resource type must be selected. After clicking on the OK

button, the proper editor based on the resource type will appear in the Editor Area.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 290

Figure 111 – The Create new resource… icon tool

Figure 112 – The Creating new resource dialog box

The following resource types are listed:

• Script (Graph Editor)

Creates a script resource that opens in a Script Editor, see also → Script Editor.

• Script (XML Editor)

Creates a script resource that opens in an XML Editor, see also → Opening

resources.

• Template

Creates a template resource that opens in a Script Editor, see also → Script Editor.

• Connection

Creates a connection resource that opens in a Script Editor, see also → Script

Editor.

• Event schedule

Creates an event schedule resource that opens in an Event editor, see also →

Event schedule.

• Time schedule

Creates a time schedule resource that opens in a Cron Time editor, see also →

Time schedule.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 291

• File trigger

Creates a file trigger resource that opens in a File trigger editor, see also → File

trigger.

• DB watcher

Creates a database watcher resource that opens in a Database watcher editor,

see also → Database watcher.

• Mail watcher

Creates a mail watcher resource that opens in a Mail watcher editor, see also →

Mail watcher.

• Simple text file

Creates a simple text resource that opens in a Simple text editor, see → Simple

text editor.

The created resource is stored only in the memory until it is saved properly to a

Zagreus Server.

10.6.18 Zoom display

Zooming in and out of the Script Editor area is possible by selecting a percentage

value from a predefined list or by typing in a unique value.

Figure 113 – The Zooming predefined list

The default setting is 100%. To select from one of the predefined sizes, the user

needs to use the down arrow next to the number which is currently set. Apart from the

pre-defined values, the option Page, Width and Height are also available in the list.

• Page: It resizes the content to fit the currently visible Script Editor area.

• Width: It resizes the content to fit the currently visible Script Editor area based on

the width of the canvas.

• Height: It resizes the content to fit the currently visible Script Editor area based

on the height of the canvas.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 292

An accurate size can also be set manually by clicking on the displayed number and

overwriting it.

10.6.19 Zoom in and Zoom out

These tools allow resizing the Script Editor area. The zoom steps come from the

predefined list available in the zoom display. A more accurate size can be specified in

the Zoom display tool, see above.

Figure 114 – The Zoom in and Zoom out icon tools

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 293

10.7 Options dialog

The Options dialog box can be opened by the Options... menu item from the Tools

menu in the main menu bar. It provides a lot of settings that are grouped in different

tabs. The settings are saved by clicking the Ok button at the bottom of the dialog and

they are persisted after the Zagreus Client is closed and reopened.

10.7.1 Graph Editor tab

• Element mode after double-clicking on an iconized state

This option sets the default element view mode after double-clicking on the

iconized mode in the Script Editor, see → Iconized view mode.

Figure 115 – The Element mode after double-clicking... setting

o Default mode

This sets the view mode when the attributes are not displayed for the action

in the Script Editor. This is the default setting. This option can also be

accessed in the Script Editor by right-clicking on one of the actions and

selecting the Default menu item.

Figure 116 – Example for the default view mode of an action

o Only filled mode

This sets the view mode when only the attributes with filled values are

displayed for the action in the Script Editor. This option can also be accessed

in the Script Editor by right-clicking on one of the actions and selecting the

Only filled menu item.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 294

Figure 117 – Example for the only filled view mode of an action

o Full mode

This sets the view mode when all the attributes are displayed for the action

in the Script Editor. This option can also be accessed in the Script Editor by

right-clicking on one of the actions and selecting the Full menu item..

Figure 118 – Example for the full view mode of an action

• Icons

The user can select if the new icons, old icons or a combination of the two should

be used in the palette in the Script Editor. The old icons were designed for each

individual actions, the new ones for only each action groups.

Figure 119 – The Icons settings

o Old icons

The legacy icons will be shown in the palette

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 295

Figure 120 – Old icons in the palette

o New icons

The new icons will be shown in the palette, one different icon for each

action groups.

Figure 121 – New icons in the palette

o Mixed

The new icons except for z and zs action groups will be displayed in the

palette in the Script Editor

• Siblings

The user can select the behavior of sibling arrows in case of reordering the

affected actions.

o Keep sibling arrows after reordering actions

If the sibling link arrows are displayed among several sibling actions (see →

Showing sibling links), reordering the actions (see → Changing the order of

execution) can keep the arrows displayed or make them disappear

according to this setting.

• Resizing

The user can select the behavior of the automatic parent action resizing.

o Auto-resize the parents (if needed) when a new element inserted

when an element is inserted to the content of an action, the size of the

parent action is adjusted accordingly when this option is set.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 296

Figure 122 – Auto-resize the parent when a new child action is inserted

o Auto-resize the parents (if needed) when a child element moved inside

when the position of a child element is changed inside the content of the

parent action, the size of the parent action is adjusted accordingly if this

option is set.

Figure 123 – Auto-resize the parent when a new child action is moved inside the content of the parent action

o Prevent resizing parent smaller when its content would be covered

if this is set, the parent action cannot be resized to the point where any of

its child actions are hidden or partially coverd

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 297

Figure 124 – When this option is not set, the parent can be resized smaller than its content

• Transparency

The transparency of the elements that overlap can be specified here in

percentages.

o When the value is set to 100, there is no transparency, see Figure 125.

Figure 125 – No transparency for overlapping actions

o When the value is set to 50, there is 50% transparency, see Figure 126.

Figure 126 – 50% transparency for overlapping actions

• Minimum sizes

Minimum height of the non-iconized element content area (resizing is not

allowed for a smaller height value).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 298

o When the value is set from 100 to 40, see Figure 127.

Figure 127 – The minimum height is changed from 100 to 40

• Scroll

Reveals non-visible actions when clicked on its name in the Outline window

Figure 128 – Revealing a covered action when clicked on its name in the Outline window

10.7.2 Download / upload tab

• Opening downloaded resources on client side

When a program path is set for a specific extension of a simple file, the

downloaded resource will be opened after downloading, see → Uploading and

downloading resources.

o Program path for opening .pdf files

The path to the program for opening .pdf extension files can be specified

here.

o Program path for opening .xml files

The path to the program for opening .xml extension files can be specified

here.

o Program path for opening .xsl files

The path to the program for opening .xsl extension files can be specified

here.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 299

o Program path for opening .xls, .xlsx files

The path to the program for opening .xls and .xlsx extension files can

be specified here.

o Program path for opening .txt files

The path to the program for opening .txt extension files can be specified

here.

o Path where to save these files

The temporary saving folder for the Zagreus Client. The files are

downloaded here in two cases:

A. When the user clicks on the Open resource on client side menu item in

the context menu in the Zagreus browser window (see → Opening

resources). The file is first downloaded in the temporary saving folder,

then opened by the external editor set in the previous settings.

B. When the user clicks on the Open results in text editor button in the

Search for resources dialog box, see → Searching for resources. The

opened search result file is saved to this temporary saving folder.

• Uploading:

o Consider file extensions for uploading resources

Zagreus will save the uploaded resources as follows in its database if this

setting is checked:

A. A file with the .scr extension is being saved as a script resource after

uploading.

B. A file with the .tmp extension is being saved as a template resource

after uploading.

C. A file with the .con extension is being saved as a connection resource

after uploading.

D. Other files that have no extension listed above will be saved as simple

text files.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 300

10.7.3 Copy tab

• Overwriting

The overwrite type for the copy operation can be set here.

o Automatically (overwrite with source)

The resource with the same name in the target folder will be overwritten

with the copying resource. Zagreus will overwrite the target resource

without warning.

o Use Copy of … prefix and numbering

If a resource with the same name already exists in the target folder, the

copying resource will be prefixed with Copy of. If it is copied more than

once, an ordering number will appear in addition to the prefix.

o Skipping (leave the target resource)

A resource with the same name is left unchanged in the target folder.

• Versions

The version copy options can be set here.

o Copy only the current version

When a resource has multiple versions, only the current version is copied.

o Copy all versions together

All versions are copied together no matter which one was selected first.

• To another server

o Use the same id, name and version

this setting is for updating or merging different systems in different servers.

Overwriting is done automatically, and all versions are copied together (the

overwrite and version settings are ignored in this case). When it is checked

the following options are available:

A. Preserve current target version

If the resource with the same id already exists in the target site, it will

not be overwritten by the resource on the source side.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 301

B. Preserve current source version

If the resource with the same id already exists in the target site, it will

be overwritten by the resource on the source side.

10.7.4 General behaviour tab

• Finished jobs window

These settings are related to the Finished job window (see also → Finished jobs

window):

o Auto refresh window by clicking on its header

By checking this setting, the finished jobs will be refreshed in the Finished

jobs window by clicking on its header; otherwise, the 'Refresh view' tool

should be used for refreshing the content of the window.

o Double-click on job opens logs for jobs in text editor without log view window

This setting controls the behavior of the opened job-logs for a finished job.

When the option is checked, the logs are opened in a simple text file in the

Editor area (see → Simple text editor), otherwise they will be opened in a

Finished logs window (see → Finished logs window).

o Automatic scroll-down to the end of the finished logs when opened by

double-clicking (see above)

This setting also controls the behaviour of the opened job-logs for a finished

job. If the job-log file is configured to be opened in a simple text file in the

Editor area (see setting Double-click on job opens logs for jobs in text editor

without log view window above) and this setting is also checked, the job-log

will automatically scroll to the end of the job-log when opening.

• Scaling

If there is font scaling in the operating system, this setting can help to properly

set the dialog sizes accordingly to the OS scale setting.

10.7.5 Palette tab

• Action groups visibility

Action groups that will be visible on the Palette in the Script Editor can be selected

from this list. Scripts must be reopened for the changes to take effect.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 302

Figure 129 – The Action groups visibility list on the Palette tab

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 303

10.8 Keybindings

By pressing the Ctrl+Shift+L key combination, the keybindings preferences page can

be accessed, see Figure 130.

Figure 130 – The keybindings preferences page

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 304

11. Zagreus Monitor

The Zagreus Monitor is a standalone client application for monitoring script
execution including finished and active jobs as well as scheduled estimations. The
Zagreus Monitor can be started from the Zagreus root folder by the
$ZAGREUS_HOME/startmonitor.bat file.

Like the Zagreus Client, see→ Zagreus Client, the Zagreus Monitor user interface is
also split into sections as shown in Figure 1.

Figure 2 – Zagreus Monitor and its main sections

The sections are the following:

1) Zagreus Server Connections

The area for administrating connections to one or more Zagreus servers, see →

Zagreus Server.

2) Timeline window

Graphical representation of scripts and their executed jobs, see → Queuing and

jobs.

3) Filter area

It contains various filters for the jobs shown in the timeline window.

1

2

3

4

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 305

4) Execution Engine window

It shows the Worker Controller and its workers of the active server connection.

This window is almost identical to the Execution Engines window in the Zagreus

Client (see → Execution engines window).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 306

11.1 Main menu bar

The main menu bar can be found at the top left corner of the Zagreus Monitor. The

following menu items are available:

• File / Exit

This menu item exits from the Zagreus Monitor application

• Tools / Options

This menu item displays the Options… dialog with the server polling parameters

(see Figure 2.).

Figure 2 – Options dialog box

o Refreshing rate in sec

It sets the rate at which the jobs and scripts in the Timeline window are

refreshed (specified in seconds).

o Past hours shown at startup

The number of hours prior to the startup time that are shown in the Timeline

window. The setting takes effect after restarting the Zagreus Monitor.

o Future hours shown at startup

The future hours after the startup time that are shown in the Timeline

window. The setting takes effect after restarting the Zagreus Monitor.

o Auto shift table

It shifts the Timeline window based on the current time in each hour.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 307

• Help / About

This menu item shows the Zagreus Monitor version and logo.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 308

11.2 Sections of the Zagreus Monitor

Next, the aforementioned sections of the Zagreus Monitor application are described

in details.

11.2.1 Zagreus Server Connections

The connections to the Zagreus servers can be specified here. Multiple Zagreus

Server connections can be defined and opened at the same time. When a connection

is established, all jobs and their associated scripts are displayed in the Timeline

window. A host and port combination is allowed only once in the list of servers.

The three icons on the toolbar allow to manage server connections:

Figure 3 – The toolbar of the Zagreus Server Connections section

• Add Server Connections

By clicking on this icon, the Add Server Connection dialog box will be shown, see

Figure 4.

Warning: Only users with administrator rights can use the Zagreus Monitor

application. The non-admin users get a Permission denied error message

when trying to connect.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 309

Figure 4 – The Add Server Connection dialog box

The following connection parameters must be specified:

o Name: the (human-readable) name of the remote connection

o Host: the hostname or IP address of the server

o Port: the port of the server

o Secure: if the connection uses a secure protocol (i.e. SSL)

o User Name: the user name

o Password: the user's password

• Modify Server Connection

By clicking on this icon, the Modify Server Connection dialog box will be shown,

see Figure 5.

Figure 5 – The Modify Server Connection dialog box

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 310

• Delete Server Connection

It removes a server connection.

11.2.2 Timeline area

The Timeline area allows jobs and their associated scripts to be monitored. Each

active server connection has its own separated Timeline area identified by the

connection name and the server host:port in the corresponding tab header. Figure 6.

shows one active server connection.

Figure 6 – The Timeline area

11.2.2.1 Left side of the area

The left side of the Timeline area shows the list of the monitored scripts, see Figure

7.

Figure 7 – List of scripts

In this area, the following columns are displayed:

• Script Name

The name of the script. Unchecking the checkbox before the script name removes

the script from the list temporarily. It can be useful for specific monitoring

purposes, e.g. too many scripts are shown in the list. For listing all the scripts

again, the user needs to click on the Show all tool button, see → Additional

options.

• Version

The version of the script.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 311

• Subscription id

The subscription ID of the currently running or lastly executed job of the script (if

any).

• Last Status

For an actively running job, it is the current status (e.g. running, debugging,

suspended); otherwise it is the status of the last job of the script (e.g. finished,

error, cancelled).

• Last Begin Execution Time

The last begin execution time of the script.

By double clicking on any of the lines in this list, the Job properties dialog box for the

currently running or last executed job appears, see → Job properties dialog.

11.2.2.2 Right side of the area

The right side of the Timeline area shows an actual graphical representation of a

timeline for the jobs that have been executed, are running or can be expected to be

executed in the future (i.e. scheduled). The different lines correspond to the particular

scripts listed in the left side of the Timeline area. Jobs are represented as rectangles

over time: the width of the rectangle indicates the duration of execution. If the jobs

are executed in a very short period of time or the timeline is zoomed out, the

representation of the particular job can be seen as a simple vertical line.

When the time range does not fit to the currently displayed timeline, a horizontal

scroll bar appears at the bottom of this window. See → Time Range filter.

Furthermore, to see the details of a job, clicking one of them opens the Job

properties dialog box, see → Job properties dialog.

Figure 8 – Timeline for each script

Different colors represent the current status of the particular job:

• green: finished

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 312

• gray: cancelled

• red: error

• light blue: running

• brown: starting

• purple: debugging

• blue: queuetimeout

Zagreus Monitor also shows estimations in two further cases:

• Scheduled scripts:

These are scripts that are subscribed to a time schedule, see → Subscriptions. If

there are expected time events in the displayed time frame, they are shown as

orange triangles in the Timeline, see Figure 9.

• Skipped jobs:

A job is considered a skipped job if it had been scheduled but was not queued

due to server shutdown or error, see → Skipped jobs. As Figure 10. shows, they

are represented by red triangles.

Figure 9 – Scheduled jobs

Figure 10 – Skipped jobs

Double-clicking on these virtual jobs also shows the Job properties dialog box with

the corresponding information of the scheduled or skipped job.

11.2.2.3 Job properties dialog

This is the main dialog of the Zagreus Monitor application, showing lots of

information of a selected job. The header of this dialog box displays the job id.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 313

Figure 11 – The Info tab of the Job properties dialog box

There are three tabs on the pane of the Job properties dialog box: Info, Starting

variables and Monitoring variables. The Info tab displays the general properties of the

selected job:

• Script Name: the name of the script

• Script Id: the fully qualified id of the script (see → Resource ID and version)

• Script Path: the full path of the script

• Script Version: the version number of the script

• Job Id: the job id

• Status: the status of the job, using the same color codes as the Timeline window

• Worker Id: the id of the worker that executed the job

• Execution Mode: the execution mode of the job

• Begin Queue Time: the begin queue time of the job

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 314

• End Queue Time: the end queue time of the job

• Begin Execution Time: the begin execution time of the job

• End Execution Time: the end execution time of the job

• Result Message: the result message of the job, see → result-message of the script

• Caller Type: the caller type of the execution

• Caller: the additional caller information of the execution

• Parent Job Id: the parent job id, if the script execution was initiated by another

script (i.e. by the zs:runscript action)

For detailed descriptions about job properties, see → Job properties

The following properties are shown if the script execution was initiated by an event-

type resource:

• Schedule path: the full path of the corresponding trigger

• Schedule id: the id and version of the corresponding trigger

• Subscription id: the id and version of the corresponding trigger

The bottom of the Info tab offers several buttons for the following functionalities:

• Cancel job

Cancels the currently running job. Only available if the job status one of the

following: running, debugging, suspended, starting. See also → Cancellation

• Show parent job

This button switches the Job properties dialog to the parent job. Only available if

the script execution was initiated by another script (i.e. by the zs:runscript

action)

• Get log

This button displays the log messages of the currently selected job in a new dialog

Finished Log (see Figure 12.).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 315

Figure 12 – Log messages of the selected job

• Close

Closes the Job properties dialog

The Starting variables tab displays the starting variables of the selected job, see

Figure 13. The Advanced mode checkbox shows the same list with the fully-qualified

variable names according to their scopes, see also → Prefixes.

Figure 13 – Starting variables tab

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 316

The Monitoring variables tab displays special monitoring variables (see →

Monitoring variables) of the selected job, see Figure 14.

Figure 14 - See the changes in the value of the sum_var variable in the Zagreus Monitor

These are script variables with the attribute monitor=true, see Figure 15. Also, there

is a built-in specific variable currentActionNumber, which is monitoring the ordinal

number of the currently executed action, see also → Ordering numbers.

Aside from the name and value of the monitoring variables, the third column

Declared in action shows the action ordinal number of variable declaration.

Figure 15 - Set monitor attribute to true for the sum_var variable in the Zagreus Client

11.2.2.4 Additional options

In this part of the area, additional options are available for managing server

components, changing timeline view and sorting scripts.

Figure 16 - The additional options of the Timeline window

Info: The content of the Job properties dialog box can be switched to

another job either by clicking on the corresponding job in the right side

of the Timeline window or double clicking on one of the listed scripts.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 317

The name of the connection, the hostname, the port and the server version are

displayed in the header of the Timeline window.

Figure 17 – The header of the Timeline window

On the toolbar of the tab, the following options are available:

• Show All button

displays all scripts and their jobs that are executed within the time range

specified. After removing some scripts from the list with the checkbox before the

script name, it is the way to list them all again.

• Control Components button

the Server control dialog box for the selected Zagreus server will appear,

displaying the components:

o Scheduler

It starts / stops the Quartz scheduler of the Zagreus System, see → Quartz

scheduler.

o Queue

It starts / stops the Zagreus job queue, see → Queue.

o Direct running

It starts / stops the possibility of manual job execution, see → Manual script

execution.

o Filetriggers running

It starts / stops the file trigger functionality of the Zagreus server, see → File

trigger.

o Watchers running

It starts / stops the mail watcher and database watcher functionality of the

Zagreus server, see → Mail watcher and → Database watcher

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 318

o Priority algorithm

It starts / stops the priority management of the Zagreus job queue, see →

Priority and priority algorithm

All components can be enabled or disabled by right-clicking on the proper

component, see Figure 18.

Figure 18 – The Server control dialog box

• Show users button

The Logged in users dialog box will appear, displaying a list of currently logged-in

users, see Figure 19.

Figure 19 – The Logged in users dialog box

• Show Engines checkbox

This checkbox displays the Execution Engines window, see → Execution Engines

window

• Show hidden jobs checkbox

Displays all hidden jobs as well, see → Hidden jobs

• Merge lines by script name checkbox

When a script is executed both manually and by a triggered subscription, Zagreus

Monitor displays them in separate lines in the script list of the Timeline window.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 319

Furthermore, when the same script is executed by multiple subscriptions, they

are also shown in separate lines. Using this checkbox, these lines are merged into

a single line in the timeline.

• Group manual and subscribed runs checkbox

It categorizes jobs based on whether they were executed manually or by a

subscription. If set, the manually executed jobs are at the upper part of the script

list.

• Highlight Cells checkbox

If this checkbox is set, the hourly regions of scripts which have any job (including

skipped and scheduled jobs) in the given region will be highlighted.

• Date and Time display

It shows the date and time of the displayed starting position of the timeline.

• Show Current Date button

It jumps to the current date and time on the timeline. This button is only available

if the current date and time are within the range specified in the Time Range

filter, see → Time Range filter.

• Zoom In and Zoom Out buttons

These buttons allow the user to zoom in and out on the timeline.

11.2.3 Filter area

This area contains various filters for fine-tuning the displayed content of the

Timeline window. It has four main parts. This is useful when the number of the

executed scripts is relatively large, making the list of scripts hard to handle.

11.2.3.1 Search Jobs filter

By this filter the user can filter for script name or for a specific event-type resource

associated with the scripts, see Figure 20.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 320

 Figure 20 - Filtering by script name or schedules

• on Server dropdown

The Zagreus Server for which the filter will be applied can be selected here (in

case when multiple server connections are open).

• by Script Name textbox

By selecting this option with the radio button to the right to the textbox, and by

specifying the script name filter, only the scripts that contain the specified string

will be shown in the script list of the Timeline window. Substrings can also be

used, e.g. a value ”script” will result in showing the scripts sample_script and

example_script, but hiding the script sample_request.

• by Schedule dropdown menu

By selecting this option with the radio button to the right to the dropdown menu,

and by choosing the full path of the event-type resource from the dropdown, the

content of the Timeline window will be limited to the scripts that are subscribed

to this event-type resource and were executed by those subscriptions.

The options above take effect after clicking on the Go! button.

11.2.3.2 Time Range filter

The user can use the Time Range filter to set the time range of the timeline displayed

in the Timeline window, see Figure 21.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 321

Figure 21 – The Time Range filter

• Unit

the unit that the time range uses can be specified here. The available values are

as follows: 1 hour and 1 day.

• From

the starting date and time can be specified here. A calendar with the current date

appears after clicking the Select button. Only hourly precision can be used here

since the Timeline window units are hourly-based.

Figure 22 - Calendar for the starting date

• To

The ending date and time can be specified here. A calendar with the current date

appears after clicking the Select button. Only hourly precision can be used here

since the Timeline window units are hourly-based.

Figure 23 - Calendar for the ending date

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 322

Clicking the Refresh! button applies the changes on the Timeline.

11.2.3.3 Status filter

This filter selects the status of the jobs that will be displayed in the Timeline window.

See → Job lifecycle

Figure 24 – The Status filter

Aside from the selectable statuses, the select all checkbox behaves as a toggle

button, the user can select or deselect all statuses at once.

The timeline is updated right after any of the checkboxes has changed.

11.2.3.4 Execution mode filter

This filter selects the execution mode of the jobs that will be displayed in the

Timeline window, see → Job properties.

Figure 25 - Execution mode filter

Aside from the selectable execution modes, the select all checkbox behaves as a

toggle button, the user can select or deselect all execution modes at once.

The timeline is updated right after any of the checkboxes has changed.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 323

11.2.4 Execution Engines window

It displays the current status of all Execution Engines (i.e. Zagreus Workers) shown

in a tree-table. The Zagreus Workers are located under the Worker Controller they

belong to. The Worker Controller tree node is expandable and collapsable either by

clicking on the arrow right next to the Worker Controller name or by double-clicking

on the Worker Controller name. When a script is being processed, its job will be

displayed under the Job id column next to the worker who is executing it. Furthermore,

the job status will be displayed in the Job status column, allowing the current status of

the job to be tracked. See the details of the columns below.

• Worker Controller (expandable node)

Shows all Worker Controllers.

• Worker id

The ID of the particular Zagreus Worker.

• Status

The status of the Worker Controller / Zagreus Workers.

• Enabled

Shows if the Zagreus Worker is enabled or disabled.

• Started

Shows the date when the Zagreus Worker was started.

• Available processors

The number of CPU cores in the Zagreus Server, reported by the JVM.

• Job id

The identifier of the actual job (if there is a running job).

• Job status

The current status of the job (if there is a running job).

• Free memory

The currently free memory that the JVM can use, reported by the JVM, see →

Memory handling

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 324

• Total memory

The actual memory that the JVM is using, reported by the JVM, see → Memory

handling

• Max memory

This is the maximum memory that the JVM can use, reported by the JVM, see →

Memory handling.

• Last updated

The most recent time all information was updated.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 325

12. Other Zagreus clients

Besides the Zagreus Client, there are further custom clients provided with Zagreus,

which offer much more limited functionalities, but which are light-weight and simple

to use. Both the Zagreus Command-line tools and the Zagreus HTML application are

shipped with the Zagreus installation and work out-of-the-box. Additionally,

command-line tools can be installed as a standalone package on other machines as

well. In contrast, the Zagreus html application requires to be hosted on a Zagreus

server. Both clients allow the user to initiate script execution and to fire event

schedules. These clients improve the accessibility of the Zagreus infrastructure because

the Zagreus server can be accessed from:

• a machine without a graphical user interface,

• a machine that does not have an installed Zagreus Client,

• or even from mobile devices (smartphones, iPads, etc.).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 326

12.1 Command-line tools

The Zagreus command-line tools, shipped along with Zagreus installations as a

standalone package, consist of a collection of simple executable files. To support both

Windows and Unix platforms, there is a .bat and an .sh script file available for every

functionality supported. There are batch files and shell scripts for administrative tasks

as well as for running scripts and firing events.

The command-line package for the Windows environment consists of the following

files: backupdatabase.bat, configtester.bat, connectedusers.bat,

fireevent.bat, restoredatabase.bat, runscript.bat. Of course, the same

files are provided with .sh extension, adapted for Unix environment.

The main purpose of the command-line package is to allow the user to initiate script

execution, but it can also be used for administrative purposes. It can be useful when it

is not possible to install a Zagreus Client application on the client machine, or when the

particular administrative task has to be performed from another application.

12.1.1 Executable files

There are six executable files with the extension of .bat or .sh (Windows and Unix

environments, respectively). Since they are batch files / shell scripts, they can be

copied and edited according to the actual use case.

12.1.1.1 backupdatabase script

This command-line tool creates a backup file of the database instance of the Zagreus

Server. By default, the output of the backup process will be saved in the backup folder

within the Zagreus Server home folder (e.g. c:\Programme\zagreus\server\ or

/home/zagreus/server/). The output file will be assigned the name backup-

<yyyy-MM-dd_hhmmss>.sql, where <yyyy-MM-DD_hhmmss> stands for the

current timestamp (for example, backup-2023-07-01_121314.sql).

12.1.1.2 configtester script

This command-line tool checks the content of the configuration files of the Zagreus

Server, Zagreus Worker and Zagreus Workercontroller components. It sends feedback

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 327

about property keys without value definition, and marks property keys which are

deprecated.

12.1.1.3 connectedusers script

This command-line tool returns information about the users who are currently

connected to the Zagreus Server. This data is displayed in a table format, for example:

User Connection type Last login Last activity Login address

admin GUI 2023-06-07

13:02:23

2023-06-07

13:22:41

127.0.0.1

12.1.1.4 fireevent script

This command-line tool triggers the given event schedule, specified by its resource

ID or by its resource path. The result can be checked in the Zagreus Client or in the

Zagreus Monitor applications.

12.1.1.5 restoredatabase script

This command-line tool restores the Zagreus Server meta database from a backup

file (created by e.g. the backupdatabase command-line tool).

12.1.1.6 runscript script

This command-line tool initiates the execution of the given script, specified by its

resource ID or by its resource path. The result can be checked in the Zagreus Client or

in the Zagreus Monitor applications.

Note: In a Windows environment, the command line window closes automatically

after the end of the process.

12.1.2 Examples for Windows

Next we present some use-case examples for executing command line files and

configuring their input parameters in a Windows environment. In these examples, the

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 328

folder path of the command line tools is c:\Programme\zagreus\command-line\

(i.e. the home folder of the Zagreus Server is c:\Programme\zagreus).

12.1.2.1 Initiating script execution

Initiating script execution without parameters:

C:\Users\DemoUser> cd C:\Programme\zagreus\command-line

C:\Programme\zagreus\command-line> runscript.bat h=my.zagreus.server

-p=7323 -u=admin -pass=******** d0a26bbd10194bf69460f770b3d8d9ff

Initiating script execution with the parameter secure, passing script variables and

using encrypted password (i.e. cpassword):

C:\Users\DemoUser>cd C:\Programme\zagreus\command-line

C:\Programme\zagreus\command-line>runscript.bat -h= my.zagreus.server

-secure -p=7443 -u=admin -cpass=#-3#67#-49#-********

-param=x:my-input-param -param=y:123 e275a121e9304a3290c00bfc6afcc756

General pattern for initiating script execution:

runscript.bat -h=host -p=port -u=user [-pass=password or -cpass=cpassword]

[-secure] [-param=name:value [-param=name:value ...]] <script_id>

12.1.2.2 Triggering an event schedule resource

Triggering an event schedule resource with the parameter secure, and using

encrypted password (i.e. cpassword):

C:\Users\DemoUser>cd C:\Programme\zagreus\command-line

C:\Programme\zagreus\command-line>fireevent.bat -h= my.zagreus.server -

p=7443 -u=admin -cpass=#-3#67#-49#-********* -secure

7529d6d7efeb4160ab0d8cc5084b6d7f

General pattern for triggering an event schedule resource:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 329

-h=host -p=port -u=user [-pass=password or -cpass=cpassword] [-secure]

12.1.3 Examples for Linux

Next we present some use-case examples for executing command line files and

configuring their input parameters in a Linux environment. In these examples, the

folder path of the command line tools is /home/zagreus/command-line (i.e. the

home folder of the Zagreus Server is /home/zagreus).

12.1.3.1 Initiating script execution

Initiating script execution on localhost without parameters:

/home/zagreus/command-line/runscript.sh -h=localhost -p=7323 -u=admin -

pass=******* e275a121e9304a3290c00bfc6afcc756

Initiating script execution on localhost with the parameter secure, passing script

variables and using encrypted password (i.e. cpassword):

/home/zagreus/command-line/runscript.sh -h=127.0.0.1 -secure -p=7443

-u=admin -cpass=#-3#67#-49#-*********** -param=x:my-param

-param=y:456 e275a121e9304a3290c00bfc6afcc756

General pattern for initiating script execution:

/home/zagreus/command-line/runscript.sh -h=host -p=port -u=user

[-pass=password or -cpass=cpassword] [-secure] [-param=name:value

[-param=name:value ...]] <script_id>

12.1.3.2 Triggering an event schedule resource

Triggering an event schedule resource with the parameter secure, and using

encrypted password (i.e. cpassword):

Info: When using the -secure command-line parameter, the port must

be changed to the Zagreus SSL port.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 330

/home/zagreus/command-line/fireevent.sh -h= my.zagreus.server -secure

-p=7443 -u=admin

-cpass=#-3#67#-49#*********** 7529d6d7efeb4160ab0d8cc5084b6d7f

General pattern for triggering an event schedule resource:

/home/zagreus/command-line/fireevent.sh -h=host -p=port -u=user

[-pass=password or -cpass=cpassword] [-secure]

Info: When using the -secure command-line parameter, the port must

be changed to the Zagreus SSL port.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 331

12.2 Zagreus HTML application

The Zagreus HTML Application is a user interface for initiating script execution,

triggering event schedules and get information about jobs. It is shipped with each

Zagreus installation and hosted by the Zagreus Server.

This client can be accessed directly via a web browser. When defining the URL in the

browser, it is necessary to define the port where the Zagreus Server publishes the

HTML application. It is possible to reach Zagreus server on the standard or on the SSL

port, see → General properties and → SSL properties.

Sample URL for reaching Zagreus HTML client with HTTPS protocol:

https://my-zagreus-server:7443/zagreus/html/zagreus.html

The Zagreus Server uses a self-signed certificate, therefore the Zagreus HTML

application site has to be added to the security exceptions in the web browser used

(see Figure 1.).

Figure 1 – The Zagreus Server certificate in a Chrome browser

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 332

After adding the Zagreus HTML application site as a security exception, it can be

reached from the web browser.

For the structure of the Zagreus HTML application, see Figure 2. and Figure 3.

Figure 2 – The Opening screen of the Zagreus HTML application

Figure 3 – The Zagreus HTML application opened in the browser of a smartphone.

Menu item for initiating script execution,

view log and get job information.

Menu item for getting job information
in a larger logging console.

Menu item for triggering event
schedules and view event log.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 333

12.2.1 Run script and get info tab

In this page the user can directly initiate script execution, define parameters for

scripts, check logs, and get job information. There are three mandatory input fields:

• username

• password

• script ID / script path

Adding script parameters is possible by opening the Add parameters section. The

result of the job is displayed in the Logging console. In the Job info logging console

frame, the job-log can be viewed in the following way: copy the job ID from the Logging

console to the job ID input field in the Job info logging console frame.

Scripts can be executed either in synchronous or in asynchronous mode, the default

mode being asynchronous. By using the Async checkbox, the execution mode can be

changed. Scripts can be executed by clicking the Run button. Consoles can be cleared

with the Clear / Clear console button.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 334

Figure 4 - Main controller items of the Run script and get info screen

12.2.2 Job info tab

This menu item is used for viewing the job-log entries. The number of displayed lines

is configurable. In this page, there are three mandatory input fields:

• username

• password

• job ID

Open/close the Add parameters window

The job ID is copied
automatically. To display the

job-log, click the Get info
button

Set execution mode sync. /

async., and run script

Authentication data and script ID

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 335

Figure 5 - Job info screen with job-log entries

12.2.3 Fire event tab

The user can trigger event schedules and check event logs on this screen. There are

three mandatory input fields:

• username

• password

• event ID / event path

Authentication data and job ID input fields

The Get info and Clear
consoles buttons

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 336

Figure 6 - Triggering an event schedule and viewing the result

Triggering event
schedule

Authentication data and event ID

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 337

12.3 Troubleshooting

When the execution of a script is initiated from command line, the result can be

checked in the Zagreus Client, Finished jobs window, see → Finished jobs window. If

the Finished jobs window does not contain the result, then the script was not executed.

In such cases, it is recommended to inspect the following items:

• server definition in the command

• port definition in the command

• port definition in the Zagreus Server configuration, see → General properties and

→ SSL properties

• user authentication data

• server machine firewall settings

• server machine and router port forwarding settings

If one of the pages in the Zagreus HTML application does not load, it is

recommended to inspect the following items:

• is the Zagreus Server running?

• port value in the URL

• port value in the Zagreus Server configuration, see → General properties and →

SSL properties

Feedback message about script execution initiation is displayed immediately in the

Logging console section, see → Run script and get info tab.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 338

13. Script Editor

The Zagreus Script Editor is the tool for implementing the core of IT processes -

creating Zagreus scripts. Scripts are composed from actions, see → Actions. Actions are

able to exchange information with one another and also to embed other actions as

sub-elements. The fundamental step in writing Zagreus scripts is making these links

between actions. Additionally, Zagreus scripts can communicate with one another to

build larger processes.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 339

13.1 Layout

The Script Editor can be opened either by creating a new script resource (see →

Scripts) or by double-clicking on an already existing script resource in the Zagreus

Browser window.

The Script Editor consists of three main regions:

• Canvas

• Palette

• View selector

Figure 1 – The layout of the Script Editor

The canvas is the area for creating the content of Zagreus scripts. The palette is the

container element of the available action groups and actions, see → Action groups and

action name. Actions can be drag-and-dropped from the palette to the canvas. The

user can choose between the Graph View and the XML View of the script via the View

selector.

view selector palette

canvas

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 340

13.1.1 Canvas

The canvas represents the z:root parent action of the Zagreus script. In case of a

new script the canvas is empty. Actions can be drag-and-dropped from the palette onto

the canvas, they will become the direct children of the root element → XML

representation. The canvas area is theoretically infinite; scrollbars appear when there

is any content in the non-visible region. The content of the canvas can be zoomed in or

out with the Zoom display and Zoom In / Out tools in the main toolbar, see → Zoom in

and Zoom out.

Aside from the actions, the canvas can display specific relations between actions,

like the links from siblings (see → Showing sibling links) and child-content arrows (see

→ Outside displaying option for a child action).

13.1.2 Palette

The palette is a container element of the available action groups and actions. The

list of available action groups is controlled by the installed Zagreus licence (see →

Licencing). An action group is a container element of particular actions with the same

namespace, see → Action groups and action name. For example in Figure 2., the action

group db contains database related actions.

Figure 2 – The db action group on the palette

To open or close an action group in the palette, the user needs to click on its name.

The action items can be scrolled with the scroll wheel of the mouse. Up and down keys

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 341

also can be used for navigation, while the left cursor key closes and the right cursor key

opens an action group.

It is configurable which items are displayed on the palette, see also → Palette tab.

13.1.3 View selector tabs

It is possible to switch between XML View and Graph view by using the View selector

tabs. The Graph View (see Figure 3.) contains the canvas and the palette, and the XML

View (see Figure 4.) shows the XML representation of the Zagreus script, see → XML

representation.

Figure 3 – A script in Graph View

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 342

Figure 4 – The same script in XML View

Any changes are made on the XML View is applied on Graph View and vice versa.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 343

13.2 Actions

Actions are the building blocks of Zagreus scripts. Actions are divided into logical

groups – called action groups, e.g. file, mail or db. In full view mode, actions

display their attributes and child content. Actions can be created, repositioned,

deleted, copied etc. on the Graph View tab via specific user operations.

13.2.1 View modes

A view mode is the way of displaying an action. The view mode determines only the

graphical representation of the action on the canvas, it does not affect either any

operation performed on the action (e.g. copy, move, delete, comment) or the

execution process of the script.

There are two types of view modes: ’closed’ and ’open’ ones. In a closed view mode

(the iconized view mode), the sub-elements of the particular action such as child

actions or text are hidden. In contrast, in an open view mode (all the other view modes)

the sub-elements are fully visible.

13.2.1.1 Iconized view mode

The iconized view mode is a closed view mode and it has the smallest size among all

the view modes. When an action is in iconized view mode, it hides all the sub-tree of

the underlying script structure, so it can be regarded as a collapsed tree-node in a tree-

like structure (like the script XML itself). It is a very useful way of hiding sub-elements

of an action to provide a much cleaner overview for large scripts.

In the iconized view mode, only the following information are shown (see Figure 5.):

• the ordering number of the action (see → Ordering numbers)

• the icon of the action group

• the fully qualified name of the action (see → Action groups and action name)

Figure 5 – The iconized view mode

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 344

13.2.1.2 Default view mode

The default view mode is one of the ‘open’ view. This means that the contents of

the action (such as child actions or text elements) are fully visible. Just because the

particular action is in an open view mode, any of its children still can be iconized. In

contrast with other open view modes, in the default view mode the attributes of the

action are not visible.

In the default view mode, the following information are shown (see Figure 6.):

• the icon of the action group (or of the particular action, see → Action groups and

action name)

• the ordering number of the action (see → Ordering numbers)

• the fully qualified name of the action (see → Action groups and action name)

• the toolbar of the action, containing specific tools for editing the properties of

the action

• the content area, which shows the sub-elements of the action (see → Action

content)

Figure 6 – The default view mode

13.2.1.3 Only filled view mode

The only filled view mode is another ‘open’ view mode. This means that the contents

of the action (such as child actions or text elements) are fully visible. Just because the

particular action is in an open view mode, any of its children still can be iconized. In

this view mode the already filled attributes of the action are visible (the attributes with

non-empty values).

Info: When a label is set for an action, the label is displayed instead of

the action name.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 345

In the only filled view mode, the following information are shown (see Figure 7.):

• the icon of the action group (or of the particular action, see → Action groups and

action name)

• the ordering number of the action (see → Ordering numbers)

• the fully qualified name of the action (see → Action groups and action name)

• the toolbar of the action, containing specific tools for editing the properties of

the action

• the list of the attributes of the action which have non-empty value (see → Action

attributes)

• the content area, which shows the sub-elements of the action (see → Action

content)

Figure 7 – The only filled view mode

13.2.1.4 The full view mode

The full view mode is the last ‘open’ view mode. This means that the contents of the

action (such as child actions or text elements) are fully visible. Just because the

particular action is in an open view mode, any of its children still can be iconized. In

this view mode all the attributes of the action are visible.

In the full view mode, the following information are shown (see Figure 8.):

• the icon of the action group (or of the particular action, see → Action groups and

action name)

• the ordering number of the action (see → Ordering numbers)

• the fully qualified name of the action (see → Action groups and action name)

• the toolbar of the action, containing specific tools for editing the properties of

the action

• the list of all the attributes of the action (see → Action attributes)

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 346

• the content area, which shows the sub-elements of the action (see → Action

content)

Figure 8 – The full view mode

This view mode provides the most information about an action.

13.2.1.5 Switching between view modes

Switching between the view modes are possible in the following ways:

• by selecting the target view mode in the action context menu (see Figure 9.)

• by double-clicking on the action header (in open view modes) or on the action

icon (in iconized mode). This operation switches from any open view modes to

the iconized view, while from the iconized view mode it switches to the open

mode configured in the Zagreus Client options, see → Graph Editor tab.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 347

Figure 9 – Switching between view modes

13.2.2 Basic operations

Users can perform several operations in order to create and maintain Zagreus

scripts. In this section, the operations related to the script structure are discussed.

13.2.2.1 Create

Drag-and-dropping an action from the palette is the simplest way to add one to a

script, see Figure 10. When an action is created on the canvas, it is displayed in the

iconized view, see also → Iconized view mode.

Figure 10 – Drag-and-dropping an action from the palette

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 348

13.2.2.2 Copy

Several ways are available for copying actions. When the user presses the hotkey

Ctrl+C, and then the Ctrl+V combination, a new copy of the action is created in the top

left corner of the canvas.

The second alternative for copying actions is the Ctrl + drag method: while holding

down the Ctrl key, the user has to drag an action to another position on the canvas.

The third approach is right-clicking on the action and choosing the Copy item from

the context menu (see Figure 11.). Then, by choosing the Paste element menu item

from the context menu of the canvas (clicking on an empty area on the canvas, see

Figure 12.), the copy of the action is created at the mouse position.

Figure 11 – Step 1: selecting the Copy element menu item from the action context menu

Figure 12 – Step 2: right-clicking on an empty space and selecting the Paste element menu item from the context menu

Altough It is possible to copy actions in the XML View from one script to another,

but it is not recommended. Any kind of introduced syntax or semantic error prevents

the user from switching back to the Graph View or saving the document.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 349

13.2.2.3 Move

Users can move actions by simply dragging them on the canvas. The simplest moving

operation is when the action remains on the same level in the XML hierarcy, thus its

action ordering number does not change.

There are two other cases of moving actions: embedding and detaching.

Embedding an action to a new parent: the user is dragging an action and dropping

it inside the area of another action, see Figure 13. In this case the moved action

becames the last child action of the other action. The action ordering number changes

accordingly.

Figure 13 – Embeding Action 2 into Action 1. The ordering number becomes 1.1

Detaching a child action from its parent: the user is dragging the child action out of

the area of its parent, see Figure 14. In this case the moved action becames the last

child action of its new parent action. The action ordering number changes accordingly.

Info: The first and the third method can also be used between different

scripts opened in the Editor Area.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 350

Figure 14 – Detaching Action 1.1 from its parent. The ordering number becomes 2.

13.2.2.4 Delete

There are several ways to delete actions in the Script Editor. When any actions are

selected, pressing the Delete key deletes the selected actions from the script. Another

way is to use the Delete menu item from the action context menu. Alternatively, the

menu item Delete is accessible from the main menu bar, see → Edit menu.

13.2.2.5 Changing the order of execution

The action ordering number indicates the order of execution of the script, see →

Order of execution, result flow. The graphical arrangement of the actions does not

affect the order of execution, but it is highly recommended to arrange the actions in a

way that represents the actual processing order.

The ordering number of an action can freely be changed among its siblings (i.e. only

among actions with the same parent action), which operation does not change the

position of the actions on the canvas. When an ordering number is increased or

decreased, the ordering number of the adjacent action changes accordingly. This

operation practically exchanges the ordering number of two adjacent actions.

There are several ways to perform this operation:

• by pressing the PageUp and PageDown keys

• by the Move up / Move down menu items in the action context menu

In Figure 15., the actions are organized well visibly, but their ordering numbers are

messed up, so script execution would result in error, e.g. the action ordering number

of the db:jdbc-connection action should precede all other db-related actions.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 351

Figure 15 – Ordering numbers are messed up on the execution level

In Figure 16., the same actions are ordered properly for exection.

Figure 16 – Ordering numbers are set correctly

13.2.2.6 Comment / uncomment

The user can comment any action in order to omit it from the execution. (It is similar

to temporarily commenting code lines in programming languages.) When an action is

commented, its ordering number remains unchanged, but it is skipped from the

execution flow. Commented status is indicated by grey color. The hotkey for

commenting / uncommenting an action is Ctrl+Shift+C. The same operation can

be accessible from the context menu of the action by selecting the Comment /

Uncomment menu item.

Figure 17 – Action 2 and Action 4 are commented, so only Action 1 and Action 3 will be executed

13.2.2.7 Selecting multiple actions

It is possible to select and manipulate multiple actions at the same time.

Figure 18 – Action 1 and Action 3 are selected

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 352

There are several ways to select multiple actions:

• Using the Rectangle selection tool

Clicking on the canvas with the left mouse button, and by dragging the mouse

pointer, a selection rectangle will be drawn. All actions inside the rectangle will

be selected.

• Using the Ctrl+left mouse click combination

Actions can be added / removed from the existing selection.

• Using the Shift+left mouse click combination

Actions can be added to the existing selection.

• Using the Shift + arrows key combination

Left clicking on the first action to be selected, then holding the Shift key and

pressing an arrow key of the desired direction at the same time.

The following operations can be performed for multiple selected actions:

• Copy

• Move

• Delete

• Comment / uncomment

13.2.3 Editing

In this section, operations related to various action properties are discussed. The

properties of an action are described in details in → Action attributes and → Action

content.

13.2.3.1 Attributes

Action attributes can be edited in two different ways:

• by using inline attribute editing

• by opening the Attributes dialog

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 353

Inline editing can be performed by double clicking on the name of the attribute of

the action, see Figure 19. In this case, an input text field appears. After typing the

attribute value, it can be saved by pressing the Enter key, or cancelled by pressing the

Esc key (in this case, the original value will be restored).

Inline editing is only available when the action is either in the full or in the only filled

view modes, see → The full view mode and → Only filled view mode.

Figure 19 – Inline editing of an attribute value

The Attributes dialog provides a more convenient way to manage and edit

attributes. It can be opened in the following ways:

• by selecting the Edit attributes... menu item from the action context menu

• by pressing Ctrl + A

• by clicking on the ‘a’ toolbar icon on the action toolbar

The Attributes dialog lists all the attributes of the action. Here, the user can create

new attributes, edit the values of existing ones, or delete attribute name-value pairs.

• For creating a new attribute, the user needs to click on the subsequent empty

table line and enter the attribute name-value pair in the corresponding columns.

• For editing an existing attribute, The user needs to click on the given attribute

value and enter the new value, see Figure 20.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 354

Figure 20 – Editing the value of an existing attribute

• For deleting an attribute, the user needs to click on the given attribute name and

erase the it.

The changes take place after pressing the OK button.

Some attributes values can be selected from a pre-defined list, see → Predefined

and common attributes. In those cases, the value can be chosen from the pre-defined

values via a dropdown list, see Figure 21.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 355

Figure 21 – Selecting the attribute value from a dropdown list

13.2.3.2 Text content

This property sets the textual content of an action, see → Textual content. The

textual content can be edited in two different ways:

• by inline text editing

• by opening the Set text dialog

Inline editing can be performed by double clicking on the textual value of the action,

see Figure 22. In this case, an input text field appears. After typing the new value, it

can be saved by the Ctrl+Enter key combination or by clicking outside of the textbox,

or cancelled by pressing the Esc key (in this case, the original value will be restored).

Inline editing is only available when the action is in an open view mode, see → View

modes.

Figure 22 – Inline editing of the text content

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 356

The Set text dialog provides a more convenient way to edit the text content. It can

be opened in the following ways:

• by selecting the Add/change text in dialog… menu item from the action context

menu

• by pressing Ctrl + T

• by clicking on the ‘t’ toolbar icon on the action toolbar

The Set text dialog shows the textual content of the action in a multi-line text editor,

see Figure 23.

Figure 23 – Editing the text content in the Set text dialog

13.2.3.3 Label

An action can be labeled in order to provide short useful information about its

behaviour. This is recommended for parent actions that bunch child actions that are

doing a particular functionality in the script (e.g. connecting to a database and

processing some results might be labeled as ‘db query’). A parent action can be a

z:block action for this goal. Action labels are shown in the place and instead of the

action name.

Action labels can be edited in the following ways:

• by selecting the Add/change label… menu item from the action context menu

• by clicking on the ‘l’ toolbar icon on the action toolbar

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 357

After the Set label dialog box appears, the user can specify the label, see Figure 24.

The maximum length of the label is 256 characters, and line breaks cannot be used.

Figure 24 – Setting an action label via the Set label dialog box

After pressing the Ok button, the action label will be shown at the place of the

original action name, see Figure 25.

Figure 25 – The action label is displayed instead of the action name after a label has been added

A label can be updated in the same ways as creating one. Deleting an action label is

possible by setting an empty action label.

13.2.3.4 Comment

An action comment can be specified in order to provide short, useful information

about its behaviour. Unlike the action label, the action comment appears as a tooltip

when the mouse cursor hovers over the action.

Action comments can be edited in the following ways:

• by selecting the Add/change comment… menu item from the action context

menu

• by clicking on the ‘c’ toolbar icon on the action toolbar

After the Set comment dialog box appears, the user can specify the comment, see

Figure 26. The maximum length of the comment is 256 characters.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 358

Figure 26 – The Set comment dialog box

After pressing the Ok button, the action comment will be shown as a tooltip when

the mouse pointer is hovering over the action, see Figure 27.

Figure 27 – The new comment appears as a tooltip

An action comment can be updated in the same ways as creating one. Deleting an

action comment is possible by setting an empty comment.

Warning: The comment action property can be confused with the

commenting / uncommenting action operation. They are not the same!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 359

13.3 Action help

Each action has its own help page, where all action details are described and

examples are listed. It is accessible from the palette (see → Palette) by right-clicking

on the action name and clicking on the help menu item, see Figure 28.

Figure 28 – Accessing connection help from the palette

An alternative is to right-click on an already existing action action in the Script Editor,

and selecting the Show help... option in the context menu, see Figure 29.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 360

Figure 29 – Accessing connection help from the Script Editor

Either way, the Documentation window will be shown, see Figure 30.

Figure 30 – The Documentation window of the confluence:connection action with sample configurations

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 361

13.4 Formatting

There are several operations related to the formatting of the actions. Some of them

affect actions on the same level (actions with the same parent), while some of them

change the size of the parent action according to its children positions.

13.4.1 Alignment operations

Multiple actions can be aligned both horizontally and vertically. Align options can be

found in the context menu of multiple action selection (after selecting multiple actions,

the user needs to right click on one of them).

13.4.1.1 Align selected elements horizontally

By choosing the Align selected elements horizontally menu item from the context

menu, the selected actions will be aligned horizontally. For example, the actions shown

in Figure 31. will be aligned as shown in Figure 32.

Figure 31 – Selecting multiple actions on the same level

Figure 32 – Actions aligned horizontally

Note that the order of selecting multiple actions determines the alignment result.

The action selected first will be the first action in the result, the subsequently selected

action will be the second one, and the others respectively.

13.4.1.2 Align selected elements vertically

By choosing the Align selected elements vertically menu item from the context

menu, the selected actions will be aligned vertically. For example, the actions shown

in Figure 31. will be aligned as shown in Figure 33.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 362

Figure 33 – Actions aligned vertically

Note that the order of selecting multiple actions determines the alignment result.

The action selected first will be the top-most action in the result, the subsequently

selected action will be the second one, and the others respectively.

13.4.2 Size operations

Action size operations affect the size of the particular action related to its content.

13.4.2.1 Fit to content

The Fit to content operation changes the action size up to the minimum size that the

child actions take up. It makes sense only in open view modes, see → View modes.

The Fit to content operation can be performed in the following ways:

• by selecting the Fit to content menu item from the action context menu

• by pressing Ctrl + Shift + F

For example, the size of Action 1 shown in Figure 34. will be changed as shown in

Figure 35.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 363

Figure 34 – Before performing a Fit to content operation on Action 1

Figure 35 – After performing a Fit to content operation on Action 1

13.4.2.2 Fit to content (all parents)

This operation performs the same as the Fit to content operation (see above). The

only difference is that it recursively resizes all the parents of the original parent action

in the same manner, so the fitting the content is propagated up to the z:root action

(the canvas level).

The Fit to content (all parents) operation can be performed in the following ways:

• by selecting the Fit to content (all parents) menu item from the action context

menu

• by pressing Alt + Shift + F

Info: When an action view mode is changed from a closed to an open

view mode, the Fit to content operation is automatically performed.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 364

For example, performing this operation on Action 1.4 in Figure 36. will result in

an arrangement shown in Figure 37.

Figure 36 – Before performing a Fit to content (all parents) operation on Action 1.4

Figure 37 – After performing a Fit to content (all parents) operation on Action 1.4

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 365

13.5 Additional displaying options

There are special cases when action opacity or the relations of actions are displayed

in a different way than usual. In this section, these displaying options are discussed in

details.

13.5.1 Outside displaying option for a child action

By default, the parent-child action relationship is displayed as the child action being

embedded into the content of the parent action. In some cases, switching between an

open and a closed view mode (see → View modes) of a large child action inside the

content area of the parent action is not convenient, see Figure 38. In this case, the

alternative display mode of embedment can be useful, see Figure 39.

The child action is displayed outside of the parent action, while a small connector

node indicates its original place in the content area of the parent action. These two are

connected by a black arrow pointing from the child action to the connector node.

Figure 38 – A parent action having a large child action

Figure 39 – Action 1.1 is now displayed outside of Action 1

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 366

To achieve this alternative displaying option, the user needs to do the following

steps:

1) select an action

2) right-click on the embedment handle at the top-right corner of the main selection

frame (see Figure 40.)

3) drag the handle with the mouse pointer to an empty area of the canvas

Figure 40 – The embedment handle of the selected action

13.5.2 Showing sibling links

There is an option to display execution order between two sibling actions for visually

emphasizing the execution flow, see → Order of execution, result flow. If the user

select the Show link from sibling menu item from the action context menu, a red arrow

is shown from the previous sibling action to the selected action, see Figure 41.

Figure 41 – Sibling link is shown between two subsequent actions

To hide a siblink link arrow, the user has to select the Hide link from sibling menu

item from the action (the one where the arrow is pointing to) context menu.

There is an option for the behaviour of the arrows in case of reordering affected

actions, see → Changing the order of execution.

13.5.3 Opacity

There is an option to set the opacity of overlapping actions. The opacity value can

be set from 0 to 100, 0 meaning full transparency and 100 meaning full opacity. By

default, the opacity value is set to 70.

embedment handle

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 367

Figure 42 – Opacity value is set to 50 (semi-transparent)

13.5.4 Displaying goto expressions

By using goto expressions, the user can change the order of execution (see → Order

of execution, result flow). Goto expressions can be displayed in the Script Editor.

Next, adding goto expressions will be demonstrated through an example. The

starting state of the sample script is shown in Figure 43.

Figure 43 – The script before adding goto expressions

One important condition to create a goto expression is having a label attribute at

the target action. In Figure 43., Action 5 and Action 6 will be used as target actions,

therefore they have their label attributes set already.

By right-clicking on Action 2 and selecting the Manage goto expressions… menu

item from the action context menu, the Manage goto expressions dialog box appears.

Clicking on the Add… button opens a new input dialog box (Goto parameters), see

Figure 44. In this dialog box, the user has to specify the goto condition and select the

target label of the goto expression to be created. Notice that only labels belonging to

the same sibling level as the selected action are listed!

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 368

Figure 44 – Specifying a goto expression

Multiple goto expressions can be added for the same action, see Figure 45.

Figure 45 – Specifying the second goto expression

All the current goto expressions are displayed in the Current goto expressions table,

see Figure 46. Already specified goto expressions can be edited or deleted by using the

Edit… and Delete buttons, respectively, while they can be reordered by using the up

and down arrows.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 369

Figure 46 – Showing the list of goto expressions

After pressing the Save button, magenta colored arrows will be shown and indicate

the direction of the newly created goto expressions, see Figure 47.

Figure 47 – The script after adding the goto expressions

For displaying the most comprehensive visual aid for the execution order of actions,

sibling links (see → Showing sibling links) might be switched on for specific actions, see

Figure 48.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 370

Figure 48 – The script showing the sibling links as well

13.5.5 Attribute as child element

There might be cases when a value of an attribute is too complex for a simple textual

attribute value. There is an option for loading an attribute value as a child element of

the parent action. Figure 49. shows a z:foreach action with an in attribute filled with

a list of values.

Figure 49 – An example for a z:foreach action with in attribute

If the user wants to use a lot of items in the list, reading them dynamically (e.g. from

a file) could be a good solution. However, because of the fact that an attribute value

can only be specified as a simple text value, it is not possible. One solution would be to

use a file:read action with an alias attribute, and refer to the alias in the in attribute

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 371

of the z:foreach action. A more convenient way to do the same is to use the View

attribute as child element menu item from the attribute context menu, see Figure 50.

Figure 50 – The View attribute as child element menu item for the in attribute

This operation converts the in attribute into a z:in child action. As seen in Figure

51., the original attribute value became the textual content of the child action.

Figure 51 – The resulting z:in child action

The user now needs to simply delete the textual content and replace it with an

action with a more complex output, e.g. a file:read and a z:parse action, see

Figure 52.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 372

Figure 52 – An example for a more complex z:foreach action with z:in child element

The z:foreach action now iterates over the lines of the content of the

/admin/simple_list file.

Note that the child actions generated this way can be converted back into attributes

by selecting the View element as attribute menu item from the action context menu.

However, using this is not recommended if the child action contains anything else than

textual content, as only textual content can be copied back into the attribute value.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 373

13.6 Special operations

13.6.1 Find in script

The user can search in the content of the script by selecting the Find in script… menu

item from the action context menu. It opens the Search in script content dialog box,

see Figure 53. The search will be applied for the selected action and all of its child

actions recursively; the header of the dialog box also indicates the scope of the search.

If the user wants to search in the whole script, right-clicking on the canvas and

selecting the same menu item from the context menu should be performed.

Figure 53 – The Search in script content dialog

The user needs to specify the search string in the Search for textbox.

In the Search in area, the scope of the search can be specified. The following

checkboxes specify the parts of the script in which the search string should be looked

after:

• text content: in the text content of the action, see → Textual content

• attribute name: in the name of the attributes, see → Action attributes

• attribute value: in the value of the attributes, see → Action attributes

• action name: in the fully-qualified name of the actions, see → Action groups and

action name

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 374

• label: in the label of the actions, see → Label

• comment: in the comment of the actions, see → Comment

In the Options area, two search options can be specified:

• Case sensitive: when checked, a case sensitive search will be performed.

• Ignore commented actions: when checked, the commented actions (see →

Comment / uncomment) are excluded from the search.

By pressing the Search button, the search results are shown in the table in the lower

half of the dialog box. The table shows the following columns:

• Ordering: the ordering number of the action in which the search string was found,

see → Ordering numbers

• Name: the fully-qualified name of the action in which the search string was found,

see → Action groups and action name

• Action name: it indicates whether the search string was found in the action name

• Text content: it indicates whether the search string was found in the text content

• Attr. name: it indicates whether the search string was found in the attribute name

• Attr. value: it indicates whether the search string was found in the attribute value

• Label: it indicates whether the search string was found in the label

• Comment: it indicates whether the search string was found in the comment

13.6.2 Set breakpoint

Setting breakpoints for debugging can be useful before starting a debug session (see

→ Starting a debug session) in the Script Editor. This operation can be accessed by

selecting the Set breakpoint… menu item from the action context menu, which opens

the Set breakpoint dialog, see → Breakpoints window.

This way, the user does not need to set the breakpoints after each debug session

start, but the breakpoints are already defined and saved into the Zagreus script.

The created breakpoints are displayed in the Breakpoints extension window, see →

Breakpoints window. Just like during a debug session, the user can edit and delete the

defined breakpoints in this window.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 375

13.6.3 Encrypt password

The user can directly encrypt the value of a password attribute. This encryption is

the same as achievable in the Password encryption dialog box, see → Tools menu. The

Encrypt password menu item is accessible in the attribute context menu only for the

password attribute, see Figure 54., for all other attributes it is greyed out.

Figure 54 – The Encrypt password menu item in the attribute context menu

After the operation is performed, the encrypted password will appear in the value

of the cpassword attribute, see Figure 55. The original password attribute will be

empty.

Figure 55 – The cpassword attribute holds the encrypted password value

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 376

13.6.4 Paste path

Once the user selected the Copy path operation in the Zagreus Browser window (see

→ Copying the resource path), the path copied to the clipboard can be pasted to an

attribute value. For this, the user has to select the Paste path menu item in the

attribute context menu, see Figure 56.

Figure 56 – The Paste path menu item in the attribute context menu

13.6.5 Show path in status line

There is a special feature for the attributes filename and id. When they contain the

ID of a resource, the Show path in status line menu item is accessible in the attribute

context menu, see Figure 57. Using this feature will show the full path of the resource

in the status line of the Zagreus Client, see → Zagreus Client.

Figure 57 – The Show path in status line menu item in the attribute context menu

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 377

13.7 Configuration options

Various settings for the Script Editor can be changed in the Options dialog box (see

→ Options dialog), which can be opened by selecting the Options… menu item in the

Tools menu in the main toolbar. Two tabs on the dialog contain settings related to the

Script Editor: the Script Editor and the Palette tabs.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 378

14. Debugging in the Zagreus Client

Just like any fully-featured programming language framework, Zagreus offers

debugging functionality for script execution. For using this functionality, the user needs

to start the script in debug mode, and open it in the Debug Editor in the Zagreus Client.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 379

14.1 Features

The Debug Editor of the Zagreus Client provides various features for the user:

• Controlling script execution

Controlling basic script execution by the Resume, Step and Stop tools

• Monitoring actual state of script execution

Monitoring the actual point where the execution is suspended

• Handling breakpoints

Specifying breakpoints for each action and fine-tune them. Managing the

breakpoints is possible in the Breakpoints window

• Watching script variables

Monitoring the actual value of script variables in the Watch window

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 380

14.2 Debugging concepts and terms

Debugging is the process in which the user can identify and fix problems for a script.

During a debugging session, the execution of the script is often paused or suspended

at so-called breakpoints in order to check variable values and the actual execution flow

of the script in real-time.

Some basic concepts of debugging in the Zagreus System are:

• Debug session

A debug session is a special type of script execution, in which the user can control

the execution process and closely inspect the actual state of the job. In almost all

cases the debug session is suspended at a breakpoint (see below). When the

debug session is over, the status of the script is the same as if it was executed in

a normal way.

When a debug session is started, it immediately suspended before the first action

– this is the only way the user can open it after initiating an execution in debug

mode.

• Running in debug mode

In Zagreus, all scripts can be started in the so-called debug mode. This execution

type is very similar to the normal script execution (see → Initiating script

execution), but the execution of the started job is suspended at the very

beginning of the script. This allows the user to open the script in the Debug Editor,

which provides controls over the debug session of the started script.

Running in debug mode puts the job into the queue (see → Queue) just like during

a normal initiation of execution, and then when a Zagreus Worker starts

processing it, a debug session is automaticcally opened for the job.

• Breakpoints

Breakpoints are specific points in the script where script execution is paused. A

breakpoint is linked to a specific action. A breakpoint can be fine-tuned by setting

its position in action. Its possible values are: Before action processing, After

attributes processing, After children actions processing and After action

processing.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 381

• Execution controlling action: Resume

From a suspended state of the debug session, the user can continue the execution

of the script with the Resume tool. The job execution will suspend again at the

next breakpoint (or the script will be executed till its end, if there is no any).

• Execution controlling action: Stop

The user can immediately stop the debug session with the Stop tool. The status

of the job will be Cancelled in this case.

• Execution controlling action: Step to next

The Step to next tool is a special controlling tool, by which the user continues job

execution, and suspends again at the next sibling action.

• Inspecting or watching variable values

By using the Watch window, the user can real-time monitor the actual values of

the specified watching variables. Checking these values is the main purpose of

the debugging session itself, and it offers a truly useful possibility for identifying

the problems of the particular script.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 382

14.3 Starting a debug session

As it was mentioned earlier, the script should be executed in debug mode in order

to start a debug session. The debug session can be considered as an additional layer

over the normal script execution, the suspended-type execution and the real-time

monitoring of the execution flow and the watching variables being the only differences.

After the end of the debug session, the job will be found among finished jobs just as if

it had been executed in the normal way.

In order to execute a script in debug mode, the user needs to right-click on the script

in the Zagreus Browser and select the Run in debug mode menu item from the context

menu, see Figure 1.

Figure 1 – The Run in debug mode menu item in the Zagreus Browser

Once the execution of the newly-created job was started, it is displayed in the Active

Jobs window with the job status Debugging, see Figure 2.

Figure 2 – The job of sample_script is in Debugging status in the Active jobs window

The job is also shown in the the Execution Engines window with the same job status,

see Figure 3.

Figure 3 – The job of sample_script is in Debugging status in the Worker information window

The debug session has an implicit breakpoint before the first action, to allow the

user to open it in the Debug Editor and to control the execution process of the job from

the beginning. The job status Debugging is a suspended state: the processsing of the

job is paused before the execution of the first action, and at all breakpoints in the

further execution flow.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 383

At this point, the user can open the job (the debug session) in the Debug Editor by

right-clicking on the job in the Active jobs window or in the Execution Engines window,

and then selecting the Open script in debug editor… menu item from the context menu,

see Figure 4. and Figure 5.

Figure 4 – The Open script in debug editor… menu item in the Active jobs window

Figure 5 – The Open script in debug editor… menu item in the Worker information window

The script – the debug session associated with the job – is opened in the Debug

Editor, see Figure 6. The functionality of this editor is discussed in details in the next

chapter.

Figure 6 – The script / job opened in the Debug Editor

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 384

14.4 Debug Editor

The Debug Editor is basically a Script Editor with some further functionality to allow

script debugging. This mode does not contain the palette, because the script should

not be modified while it is under execution. On the other hand, it provides several

additional tools and functions compared to the Script Editor.

One should not forget about the conceptual difference between the two editors:

the Script Editor is designed strictly for editing scripts, while the Debug Editor is only

for handling a debug session: the Debug Editor is showing the currently running

(debugging) job for the particular script. The reason why the Debug Editor looks very

similar to the Script Editor is that it is very convenient for the user to see the same

format of the script for following the execution flow, monitoring the watch variables

and setting the breakpoints.

The Debug Editor is not an ’editor’ in the conventional way. It is an interface for a

currently running debug session.

14.4.1 Main toolbar

The main toolbar of the Debug Editor is the same as of the Script Editor, but the

usual tools (Save, Save as…, Save new version, etc.) are inactive. The following

additional tools are, however, available in the main toolbar:

Figure 7 – The tools for the Debug Editor in the main toolbar

• The Resume tool:

By using the Resume tool, the job execution can continue from a suspended state

until the next breakpoint or the end of the script.

• The Step to next sibling tool:

By using the Step to next sibling tool, the job execution continues from the

currently suspended state to the next sibling and there it is paused again.

Resume tool Step next sibling

tool

Stop tool Status monitoring

tool

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 385

• The Stop tool:

The Stop tool immediately stops the debug sesssion. The job will be canceled and

no other tool can be used from this point onward.

• The debugger status monitoring tool:

This is an active textbox tool, which monitors the actual execution state of the

debug session. Its possible values are: starting, finished, and the current action

number where the execution process is suspended.

14.4.2 Debug Editor and the execution workflow

The execution is paused most of the times during the debug session. When the

session is suspended at a breakpoint, the action for which the particular breakpoint

was set is marked by a red header, see Figure 8.

Figure 8 – The current action where the processing is suspended at is marked by a red header

Also, the action ordering number of this action is shown in the status monitoring

tool on the main toolbar.

Figure 9 – The status monitoring tool is displaying the action ordering number

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 386

14.4.3 Action context menu

In the Debug Editor, only the Set breakpoint.. menu item is displayed in the action

context menu (which opens by right-clicking on an action).

Figure 10 – The Set breakpoint… menu item in the action context menu

This menu item opens the Set breakpoint dialog box, see Figure 11.

Figure 11 – The Set breakpoint dialog box

Here, the user can specify a breakpoint for the debug session. The following fields

are available on the dialog:

• Action number

The action ordering number for the breakpoint. It is non-editable.

• Position in action

According to the process how an action is executed (see → Execution of an

action), the breakpoint position can be fine-tuned here, see → Debugging

concepts and terms. Possible values are: Before action processing, After

attributes processing, After children actions processing and After action

processing

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 387

• Suspend

By default, job execution is paused at every breakpoint, and for these cases the

Suspend checbox should be checked. However, if the breakpoint is in a loop, and

after the first check it is not needed anymore (or not needed for a certain

execution flow branch), it can be unchecked, so the breakpoint will not suspend

the execution process.

After pressing the OK button, a new breakpoint is added to the action. Existing

breakpoints can be viewed and deleted only in the Breakpoints window, see below.

14.4.4 Breakpoints window

The Breakpoints window is an extension window for the currently active Debug

Editor (and the currently monitored debug session). It maintains a list of breakpoints

specified for the current session, see Figure 12.

The following columns are defined for the table displaying the breakpoints:

• Ordering

The action ordering number where the breakpoint was added to, see → Ordering

numbers.

• Action

The fully qualified name of the action, see → Action groups and action name.

• Position

The breakpoint position within the action, see → Debugging concepts and terms.

• Suspend

Whether the breakpoint pauses the execution of the job.

Figure 12 – The Breakpoints window

A context menu can be opened by right-clicking on a selected breakpoint, see Figure

13.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 388

Figure 13 – The context menu of the items in the Breakpoints window

Two menu items are available in the context menu. If the user selects the Edit

breakpoint menu item, the same Set breakpoint dialog box appears as by selecting the

Set breakpoint menu item from the action context menu, see Figure 11. The Delete

breakpoint menu item deletes the selected breakpoint.

14.4.5 Watch window

The Watch window is another extension window for the currently opened Debug

Editor and the attached debug session, see Figure 14.

Figure 14 – The Watch window

The watch window is empty by default. The user needs to specify a variable or an

engine expression in the Variable column by simply clicking on the first empty line in

that column and type the expression or variable in the text field. After pressing Enter,

the specified input is evaluated, and its result (if any) is displayed in the Value column.

Any kind of valid engine expression can be typed in, not just simple variable names.

If the specified expression cannot be evaluated yet, the result remains empty until it

can have a value. The $ and the ${} formats should not be used here, the processing

engine expects the input format without these qualifiers.

For example, in Figure 15., variable x is evaluated successfully at the current point

in execution, but variable y does not have a value yet, so its value is empty. The

expressions 2+2 and date can be properly evaluated at any point in the script, so the

values are filled immediately after the user typed them in.

Figure 15 – Various engine expressions and variables can be specified in the Watch window

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 389

There are several use cases for monitoring the watch variables in a debug session:

• Checking the value of the result of an action

When there is a result of an action which is used in the further execution process

as a variable (e.g. created and named by an alias attribute), the user can type in

the variable name after the action has been executed at a suspended breakpoint.

It is an easy way to check a sub-result in the execution logic.

• Checking a particular variable and the changes of its value during execution:

If there is a variable (in most of the cases defined by a z:variable action) that

the script is using from the beginning till the end, or in a loop, the changes of the

value of this variable can be monitored througout the whole execution. The user

types the variable name right after the debug session is opened in the Debug

Editor, and checks its changes when stepping the debugger from breakpoint to

breakpoint (or from action to the next sibling).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 390

14.5 Best practices

• Using a reference to result attributes

It is possible to watch the result attributes of an action in the format of

namespace + _ + action name (e.g. file_dir). The user can use this reference

in the Watch window after an action has been executed, and it is valid until it is

overwritten by another action of the same fully qualified name (e.g. another

file_dir action).

Example:

Figure 16 – The result attributes of the last executed file:dir action are shown in the Watch window

• Setting the maximum running timeout

Because the debug session is a special case of normal script execution, the same

timeout values are applied to the job of the debug session as if it was executed in

a standard way. Hence it is recommended to set the maximum running timeout

large enough, see → List of execution options.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 391

15. Initiating script execution

Any Zagreus script can easily be executed from the Zagreus Client (see → Zagreus

Client). In addition to this, Zagreus also has powerful automated processes and script

executing features. Making sure that the IT operations are started at the proper time

or are activated by the required event is crucial for the automation of such activities.

Zagreus Subscriptions allow processes to be scheduled, started at a given time, or

triggered by another task, depending on the requirements.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 392

15.1 Overview

Besides manual execution, script executions can be triggered by specific events as

well, such as specific time instances (e.g. every Monday at 10:00 AM), fire events or

OS-based events such as the deletion of a file from a specific folder. To handle such

events for script execution, event-type resources have to be created. Examples for

event-based resources are time schedules (defining a set of time instances when script

execution should be triggered), database watchers (monitoring database tables for

satisfying specified conditions, such as the number of rows returned by a specific SQL

query), or file triggers (triggered by certain file manipulations in a specified OS folder).

Choosing the right event-based resource for an actual use case is a key step in

automating processes.

Next, if the condition defined in the event-type resource (if any) is satisfied, it

triggers the associated script or scripts. For this, in Zagreus the so-called subscriptions

are used, which link the event-type resource with a script. Whenever the event-type

resource is actived, the subscriptions linked to it will be active as well active, and the

execution of the corresponding scripts will be triggered. The subscriptions are stored

in the local database. In general, any subscription defines the link between a script and

an event-type resource, allowing to realize a many-to-many relation between them: an

event-type resource can start multiple scripts and a script can belong to multiple event-

type resources as well.

There are also cases where automated script execution happens without a

subscription. For example, script execution can be initiated by another script using the

zs:runscript action, or special events such as ‘server autorun’. See also → Special

eventsSpecial .

15.1.1 Manual execution

Zagreus offers several methods for manual script execution. Using the Zagreus Client

is the most common way to execute scripts (see → Manual script execution). There are

also command-line executables in Windows and Linux environments for firing events,

running scripts, and other administrative tasks (see → Execution from the command-

line client). Another convenient interface for running scripts is the Zargeus HTML

application (see → Execution from the Zagreus HTML Application).

In addition to these, execution of Zagreus scripts is also possible by using web service

calls from other platforms – such as Oracle, MSSQL database environments or the

Niota application. (For web service calls, see → Execution from external systems).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 393

15.1.2 Execution by event-type resources

The other type of script execution happens via using event-type resources. The types

of event-type resources are as listed below:

• event schedule

When an event schedule is activated, it simply triggers the execution of the

subscribed scripts without evaluating any conditions. Triggering the event

schedule can be done by using the action zs:fireevent, using the Zagreus

command-line client (see → fireevent script), using the Zagreus HTML Application

(see → Fire event tab) or manually in the Browser window of the Zagreus Client

(see → Operations for event-type resources). Event schedules can be created and

edited in the Zagreus event schedule editor of the Zagreus Client application, see

→ Event schedule

• time schedule

A time schedule represents a set of time points at which the schedule is activated.

Time schedules cannot be fired manually. Time schedules can be created and

edited in the Zagreus time schedule editor of the Zagreus Client application, see

→ Time schedule.

• mail watcher

A mail watcher regularly polls a target e-mail server to check the content of an

inbox. It is triggered when the specified condition (usually the existence of a

specified email) is evaluated as true. Mail watchers can be configured and edited

in the Zagreus mail watcher editor of the Zagreus Client application, see → Mail

watcher

• database watcher

A database watcher regularly polls a target database server. It is triggered when

a specified condition (typically referring the result of an SQL query) is evaluated

as true. Database watchers can be configured and edited in the Zagreus database

watcher editor of the Zagreus Client application, see → Database watcher

• file trigger

A file trigger is continuously monitoring some part (e.g. a folder) of the Zagreus

file system. It will be triggered when a specific file event (such as file creation,

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 394

modification or deletion) occurs. File triggers can be configured and edited in the

Zagreus file trigger editor of the Zagreus Client application, see → File trigger

In addition, there are special triggers that are mostly used for error handling and

administrative tasks.

The execute_script_on_error and execute_script_on_cancel are script execution

options (see → List of execution options). If the particular script ends with error or

cancelled status (see → Job lifecycle), the script specified by these options is executed.

Furthermore, scripts can be automatically executed when a particular user logs in

with the Zagreus Client application, or when the server starts up. To configure these,

the scripts for automatic execution have to be listed in the files .autorun and

.serverautorun, respectively, see → Script execution by autorun configuration files.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 395

15.2 Execution options

Script execution can be fine-tuned by so-called execution options, which are specific

settings that control how execution should be performed, or specifying details for

other execution features. Execution options are applied only for a specific job, not the

script itself.

15.2.1 Declaration levels

In Zagreus, execution options can be declared on several different logical levels.

These logical levels are:

• server

This level defines the most general scope of option declarations. The user needs

to set the server level options in the configuration of the Zagreus Server, see →

Server-level execution options.

• worker

This level is only for the execution option log_level (for compatibility reasons only,

because of the former engine.loglevel setting).

The user needs to set this worker level option in the configuration of the Zagreus

Worker, see → Worker-level execution options.

• owner

This level serves for option declarations specific to the user or group which owns

the actual script whose execution is initiated. The user needs to set the owner

level options by using the Set user variables and options… or Set group variables

and options… menu items in the Zagreus browser window in the Zagreus Client,

see → Context menu of a user node and → Context menu of a group node.

• script

This level serves for option declarations of the actual script whose execution was

initiated. Options on this level can be set as script options (see → Setting script

variables and options). However, the options set for subscriptions (see →

Creating a new subscription) override the options set for the script. The same

option overriding also happens in case of any webservice calls (such as calls from

the Zagreus HTML Application or from the Zagreus command line) or when the

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 396

user set execution options by zs:option child elements in a zs:runscript

call.

15.2.2 Precedence order for resolution

The different levels that Zagreus options can be declared on have a specific

precedence. The same option set on different declaration levels eventually will be

evaluated, using a specific order of precedence. Then the evaluated value of the option

will be used for the proper queuing mechanism for the job.

The order of resolution is the following (from the lowest to the highest priority):

• default (implicit level)

• server

• worker

• owner

• script

The first logical level (default level) is an implicit level meaning that all options have

a default value.

An example for option resolution, when the priority execution option is defined on

the following levels:

• on the server level priority is set to 50

• on the owner level for the user test, priority is set to 30

• on the owner level for the group public, priority is set to 70

• on the script level for the script sample_script, priority is set to 10

The value of the execution option priority is resolved as:

• priority=10

for the script sample_script

• priority=30

if user test is the owner of the script and it is not the script sample_script

• priority=70

if group public is the owner of the script and it is not sample_script

mailto:admin@host.com
mailto:admin@host.com
mailto:admin@host.com

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 397

• priority=50

for all the scripts whose owners are different than user test and group public and

the script is not sample_script

15.2.3 List of execution options

The Zagreus System defines quite a few execution options. The listed options were

introduced from Zagreus version 1.5.6.1, but some of the options has already existed

as script options, or properties in the Zagreus Server or Zagreus Worker configuration

under different names, they are listed in the compatibility field. Zagreus 1.5.6.1

maintains backward compatibility with these old options and properties, but if an

option is specified with the regularized new name, the latter takes precedence.

• running_timeout

The maximum duration which the job is allowed to be executed. If the execution

time exceeds the value of this option (specified in milliseconds), the job will be

finished with running timeout status, see → Job lifecycle. The value -1 means

unlimited, i.e. there is no running timeout for the job.

Default value: 3600000 (i.e. 1 hour)

Minimum value: -1

Compatibility: engine.maxrunning on script level, queue.runningtimeout on

server level

• queuing_timeout

The maximum duration which the job is allowed to be queued. If the queuing time

exceeds the value of this option (specified in milliseconds), the job will be

removed from the queue with the queue timeout status, see → Job lifecycle. The

value -1 means unlimited, i.e. there is no queuing timeout for the job.

Default value: 60000 (i.e. 1 minute)

Minimum value: -1

Compatibility: job.max_queuing_time on script level, queue. queuingtimeout on

server level

• maximum_parallel_execution

Limits the number of times the given script can be executed at the same time.

The value -1 means unlimited.

Default value: -1

mailto:admin@host.com

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 398

Minimum value: -1

Compatibility: engine.maxparallelexecution on script level,

queue.maximum.parallel.execution on server level

• maximum_parallel_queuing

Limits the number of times the given script can be queued at the same time. The

value -1 means unlimited.

Default value: -1

Minimum value: -1

Compatibility: engine.maxparallelqueuing on script level,

queue.maximum.parallel.queuing on server level

• log_level

The applied loglevel (see → Logging levels and loglevel) during execution.

Available values are: ’user’, ’info’, ’warning’, ’error’ and ’debug’.

Default value: info

Compatibility: engine.loglevel on script level, engine.loglevel on worker level

• executing_user_name

If filled, the script will be executed on the behalf of the user with the specified

username. This option will only be applied if the user who originally initiated the

script execution is an administrator.

Compatibility: executing.username on script level

• executing_user_id

If filled, the script will be executed on the behalf of the user with the specified ID.

This option will only be applied if the user who originally initiated the script

execution is an administrator.

• priority

The priority of the job.

Default value: 10

Minimum value: 0

Maximum value: 10000

Compatibility: script.priority on script level, queue.script.priority on server level

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 399

• queue_group_id

When it is set, only Zagreus Workers that are associated to the specified queue

group ID are allowed to execute the script, see also → Queue groups. The value

can be a single number or a comma separated list of numbers.

Minimum value: 1

Maximum value: 99

Compatibility: script.queueId on script level, queue.default.queueid on server

level, queue.default.<username>.queueId also on server level (now the same

setting is queue_group_id option on owner level)

• job_monitoring

If set to false, the job is not shown in the Active Job window and Finished Job

window in the Zagreus Client (see → Finished jobs window) and in the timeline of

the Zagreus Monitor (see → Timeline area).

Default value: true

Compatibility: job.monitoring on script level

• execute_script_on_error

When this option is filled with a script fullpath, and the job execution is finished

with an error status, the execution of the specified script in the path will be

initiated, see → Script execution by script options.

Compatibility: error.runscript on script level

• execute_script_on_cancel

When this option is filled with a script fullpath, and the job execution is finished

with a cancel status, the execution of the specified script in the path will be

initiated, see → Script execution by script options.

Compatibility: cancel.runscript on script level

• execute_script_on_cancel_source

This option serves as an additional filter condition for the

execute_script_on_cancel option, see → Script execution by script options.

Possible values are ’gui’ (referring to the Zagreus Client), ’monitor ’, ’zs ’ and

’server ’. Multiple values can be listed separated by commas, e.g. ‘zs,server’.

When left empty, all cancel types trigger the execution.

Compatibility: cancel.runscript.source on script level

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 400

15.2.4 Prefixes

Although options with the same name declared on different levels override each

other, the original values are stored in the Zagreus System, and can be checked for

debugging purposes. In order to distinguish these option values, Zagreus uses proper

prefixes based on the level of declaration. Thus:

• default. for the default values of options

• server. for server level declarations

• owner. for owner level declarations (i.e. users and groups)

• worker. for worker level declarations

• script. for script level declarations

Option names with the proper prefixes are called fully-qualified option name. For

example, server.priority is referring to the option priority declared on the server level,

even though it was overridden during option resolution (e.g. by the priority option

defined on the script level).

The full list of the execution options with fully-qualified names can be seen in the

Zagreus Monitor application, by checking the Starting options tab (with the Advanced

mode checkbox checked) of the Job properties dialog. Figure 1. shows the tab in normal

and advanced modes.

Figure 1 – The Starting options tab of the Job properties dialog (normal and advanced mode)

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 401

15.3 Start-up variables

Start-up variables are parameters that are (eventually) passed to the script when its

execution is initiated. Variables allow the user to provide input to a script, enabling it

to perform specific actions or calculations based on the given values.

Fundamentally, all the variables declared on all different levels (e.g. server, queue,

user, group, script) eventually are passed to the script being executed. Additionally,

new variables can be created inside the script, e.g. by using the z:variable action,

see → z:variable action. Generally, using variables is a necessity to build up a flexible,

efficient and scalable system.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 402

15.3.1 Declaration levels

In Zagreus start-up variables can be declared on several different logical levels.

These logical levels are:

• server

This level defines the most general scope of variable declarations. When there

are multiple Zagreus Server installations, these variables can be specific to the

actual system, or they can simply represent general constant-like values. The user

needs to set the server level variables in the configuration of the Zagreus Server,

see → Server-level and queue-level variables.

• queue

This level serves for variable declarations specific to the actual queue group. For

more details, see → Server-level and queue-level variables.

• worker

This level serves for variable declarations specific to all (or a particular) worker

which executes the job. For more details, see → Worker-level variables.

• owner

This level serves for variable declarations specific to the user or group which owns

the actual script whose execution is initiated. The user needs to set the owner

level variables by using the Set user variables and options… or Set group variables

and options… menu items in the Zagreus browser window in the Zagreus Client,

see → Context menu of a user node and → Context menu of a group node.

• script

This level serves for variable declarations of the actual script whose execution

was initiated. Variables on this level can be set as script variables (see → Setting

script variables and options). However, the variables set for subscriptions (see →

Creating a new subscription) override the variables set for the script. The same

overriding also happens in case of any webservice calls (such as calls from the

Zagreus HTML Application or from the Zagreus command line) or when the user

set variables by zs:variable child elements in a zs:runscript call.

Declaring Zagreus variables on the proper level is important to build up and maintain

an efficient and well-structured system. For example, in a multi-user system, the same

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 403

variable can hold different values for each different user, e.g.

emailaddress=user@host.com . This variable is recommended to be declared on the

user level. Another example is using a general variable environment=PROD , which

indicates that the current Zagreus installation is in a production environment. This

variable is then recommended to be declared on the server level.

15.3.2 Precedence order for resolution

The different levels that Zagreus variables can be declared on have a specific

precedence. Variables with the same name (declared on different levels) eventually

will be used as one single variable during the execution of the job, so these variables

override each other.

The order of resolution is the following (from the lowest to the highest priority):

• server

• queue

• worker

• group

• user

• script

• job (implicit level)

The last logical level (job level) is an implicit level meaning that the user can not

declare variables on this level. However, many job-related start-up variables are

specified automatically by the execution system, see below the list of them.

An example for variable resolution, when an email variable is defined on the

following levels:

• on the server level with a value server@host.com

• on the owner level for the user test with a value test@host.com

• on the owner level for the group public with a value public@host.com

• on the script level for the script sample_script with a value

sample_script@host.com

The value of email variable is resolved as:

• sample_script@host.com

mailto:sample_script@host.com

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 404

if the script is sample_script

• test@host.com

If the owner of the script is user test and the script is not sample_script

• public@host.com

If the owner of the script is group public and the script is not sample_script

• server@host.com

for all the scripts whose owners are different than user test and group public and

the script is not sample_script

15.3.3 Prefixes

Although variables with the same name declared on different levels override each

other, the original values are stored in the Zagreus System, and can be checked for

debugging purposes. In order to distinguish these variables, Zagreus uses proper

prefixes based on the level of declaration. Thus:

• server. for server level declarations

• queue. for queue level declarations

• worker. for worker level declarations

• owner. for group level declarations

• script. for script level declarations

• job. for job level declarations

Variable names with the proper prefixes are called fully-qualified variable name. For

example, server.email is referring to the variable email declared on the server level,

even though it was overridden during variable resolution (e.g. by the email variable

defined on the script level).

The full list of the start-up variables with fully-qualified names can be seen in the

Zagreus Monitor application, by checking the Starting variables tab (with the Advanced

mode checkbox checked) of the Job properties dialog. Figure 2. shows the tab in normal

and advanced modes.

mailto:test@host.com
mailto:admin@host.com
mailto:server@host.com

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 405

Figure 2 – The Starting variables tab of the Job properties dialog (normal and advanced mode)

15.3.4 Automatically set start-up variables

There are start-up variables that are automatically set when the job execution is

starting. These variables provide information about the execution environment and

how the execution has been initiated.

These variables also have a fully-qualified name with proper prefixes. Referencing

them can be done in the same way as the user declared variables, both the resolved

name and the fully qualified name work, see → Prefixes.

Variables with the prefix job:

• job.jobId

the ID of the job

• job.scriptId

the ID of the executed script

• job.scriptVersion

the version of the executed script

• job.scriptName

the name of the executed script

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 406

• job.scriptPath

the full path of the executed script

• job.scriptDesc

the description of the executed script

• job.scriptParentFolder

the full path of the parent folder of the executed script

• job.queueId

the queue group ID (see → Queue groups) of the job. Empty when there are no

queue groups defined

• job.currentUserId

the ID of the executing user

• job.executingUserName

the name of the executing user

• job.scheduleId

in case when the job execution was initiated by a subscription (see →

Subscriptions), it is the ID of the associated time schedule or event-type resource

• job.scheduleName

in case when the job execution was initiated by a subscription (see →

Subscriptions), it is the name of the associated time schedule or event-type

resource

• job.schedulePath

in case when the job execution was initiated by a subscription (see →

Subscriptions), it is the full path of the associated time schedule or event-type

resource

• job.subscriptionId

in case when the job execution was initiated by a subscription (see →

Subscriptions), it is the ID of the subscription

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 407

• job.home

the full path of the home folder of the scipt owner

• job.callerType

the caller type of the job, see → Caller and caller type

• job.executionMode

the execution mode of the job, see → Job properties

• job.callerName

the caller name of the job, see → Caller and caller type

• job.callerIP

the caller IP of the job, see → Caller and caller type

• job.callerResourceId

the ID of the resource which initiated the execution of the script. When it was

initiated by a subscription, it is the ID of the associated event-type resource (see

→ Execution by event-type resources). When it was a zs:runscript action, the

value of this variable is the ID of the caller script. The ID does not contain the

version, which is set in a variable job.callerResourceVersion

• job.callerResourceVersion

the version of the resource which initiated the execution of the script. When it

was initiated by a subscription, it is the version of the associated event-type

resource (see → Execution by event-type resources). When it was a

zs:runscript action, the value of this variable is the version of the caller script.

• job.callerResourceName

the name of the resource which initiated the execution of the script. When it was

initiated by a subscription, it is the name of the associated event-type resource

(see → Execution by event-type resources). When it was a zs:runscript

action, the value of this variable is the name of the caller script.

• job.callerResourcePath

the full path of the resource which initiated the execution of the script. When it

was initiated by a subscription, it is the full path of the associated event-type

resource (see → Execution by event-type resources). When it was a

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 408

zs:runscript action, the value of this variable is the full path of the caller

script.

• job.serverHost

the host of the Zagreus Server to which the actual worker is connected

• job.serverPort

the port of the Zagreus Server to which the actual worker is connected

• job.workerId

the ID of the worker that is executing the job

• job.workerOS

the operating system of the worker that is executing the job

Variables with the prefix server:

• server.bankholidays

the full path of the optional bank holidays descriptor file, see → Bank holidays

feature.

Variables with the prefix worker:

• worker.parallelLoops:

The number of allowed parallel loops defined in the installed Zagreus Licence, see

→ Licencing.

15.3.5 List of resolved start-up variables

Resolving the start-up variables is done right before the execution of the job. The

list of these variables is logged into the job-log file (see → job-log file), allowing the

user to check the final variable resolution. This may prove to be useful e.g. in the

following cases:

• Checking configuration when variables with the same name were declared on

different levels (e.g. server, owner, script levels).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 409

• Checking values of dynamically set start-up variables. For example, if there is a

job that is started by a zs:runscript action from another script, and the

zs:runscript action specifies some start-up variables dynamically. In this case,

the values of those start-up variables can be checked.

• Checking caller properties for jobs whose execution were initiated automatically

(e.g. by subscriptions or zs:runscript action). The caller properties are passed

as automatically set start-up variables (e.g. callerName, callerIP, subscriptionId).

Figure 3. below shows a beginning of a sample job-log file:

Figure 3 – The list of start-up variables in the job-log file of the finished job in the Zagreus Client

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 410

15.4 Subscriptions

In the Zagreus System, to allow automatic task execution, the scripts (see → Scripts)

specify the tasks to be executed and the event-type resources (see → Execution by

event-type resources) are responsible for the starting of the execution in the

appropriate time or at the occurrence of the appropriate event. The scripts and the

event-type resources have an n:m relation, which means that multiple scripts can be

subscribed to the same event-type resource, and also one script can be subscribed to

multiple event-type resources. The Zagreus System uses the subscriptions to establish

the connection between one script and one event-type resource, helping to establish

this n:m relation.

A subscription has the following properties:

• id: identifier of the subscription resource. It is an automatically assigned unique

integer, and it cannot be changed.

• alias: a human-readable name of the subscription.

• schedule path: the path of the event-type resource, associated with the

subscription

• script id: the id of the script resource which is associated with the subscription

• active: whether the subscription is active (i.e. it executes the subscribed scripts)

or not

• subscription variables: variables (see → Start-up variables) can also be defined on

subscription-level, which are passed to the executed script

• subscription options: options (see → Execution options) can also be defined on

subscription-level, which are used during script execution

15.4.1 Subscriptions from the perspective of scripts

Subscriptions are usually maintained from the perspective of the scripts, however it

is possible to check and remove subscriptions from the perspective of an event-type

resource.

The Subscriptions window can be opened by right clicking on the particular script

and selecting the menu item Script subscriptions... from the context menu (see Figure

23.).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 411

Figure 23 – Opening the Subscriptions window from the context menu of a script

In the Subscriptions window (see Figure 24.) one may check, edit, or remove

subscriptions belonging to the particular script.

Figure 24 – The Subscriptions window

15.4.1.1 Creating a new subscription

A new subscription can be created by clicking on the New button in the Subscriptions

window (see Figure 24.). The opening Create new subscription window has three tabs:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 412

• Subscribe to: allows to set the general properties of the subscription

• Script variables: allows to set the script variables of the subscription

• Executing and queuing options: allows to set the options of the subscription

The main subscription settings can be edited under the Subscribe to tab, see Figure

25. Users can define here the alias of the schedule by entering the value in the Alias

textbox. The active / inactive status can be toggled by the Active checkbox. The watcher

or trigger can be chosen from the list of all watchers and triggers in the given Zagreus

System (for these, the resource path is shown). To make this selection easier, it is also

possible to filter on the type of the watcher or trigger by using the Type drop-down.

The new subscription can be saved with the Create new subscription button, while

the subscription can be discarded by using the Cancel button.

Figure 25 – Settings of the Subscribe to tab of the Create new subscription window

The Script variables tab allows the user to specify and edit the variables which can

be used during script execution (see Figure 26.). Variables defined for the script (listed

in the Script variables and options dialog, see → Setting script variables and options)

are overridden with the variables defined here if they have the same name. By the

Reload from script button, it is possible to delete the currently defined variables and

to load the variable values which are defined in the Set script variables window (e.g.

for further editing).

Active / inactive chekbox

Define subscription name

Filter trigger type

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 413

Figure 26 – The settings of the Script variables tab of the Create new subscription window

The layout and the options present in the Executing and queuing options tab are the

same as in the window Script variables and options (see → Setting script variables and

options). Similarly to the case of the variables, the executing and queuing options

defined here override the settings of the script during execution – of course, only in

the case when the given script is executed by the actual subscription.

When a subscription is created, the button Run now becomes active on the

Subscriptions window (see Figure 24.). By clicking this button, the currently selected

subscription is executed immediately. It might be a useful feature during fine-tuning

and testing a subscription.

15.4.1.2 Editing a subscription

There are two ways to edit an already existing subscription, both accessible from

the Subscriptions window (see Figure 24.). By clicking on the Edit… button, the

currently selected subscription can be edited in the Edit subscription window. The

Delete the variables and load

those defined for the script

Info: The settings of the Script variables and Executing and queuing

options tabs extend or override the settings of the script – but only in the

case when the script is executed by the subscription.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 414

accessible tabs and settings of this window are the same as those of the Create new

subscription window (see above).

The second way of editing a subscription is to use the Edit as new button (see Figure

27.): it creates a copy of the selected subscription in an edit window. After making the

necessary changes, it can be saved as a new subscription object.

Figure 27 – Editing a subscription as a new one

15.4.1.3 Removing a subscription

The selected subscription can be deleted by clicking on the Remove button in the

Subscriptions window (see Figure 24.). Subscriptions are not stored in the recycle bin

(see → Recycle bin), but they are deleted permanently.

Edit the copy of the selected

subscription as a new one

Warning: Unlike all Zagreus resources, subscriptions are deleted

permanently.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 415

15.4.2 Subscriptions from the perspective of event-type

resources

Subscriptions associated with an event-type resource (i.e. event schedule, time

schedule, mail watcher, database watcher and file trigger) can be displayed by right-

clicking on the event-type resource and selecting the menu item Subscriptions... from

the context menu (see Figure 28.).

Figure 28 – Opening the Subscriptions window of a DB watcher.

In the Subscriptions window, the user can view the properties of the associated

subscriptions (see Figure 29.). The only action currently supported by the Zagreus

Client in this window is deleting a subscription, by clicking on the Remove... button.

Figure 29 – The Subscriptions window of a database watcher

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 416

Warning: Unlike all Zagreus resources, subscriptions are deleted

permanently

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 417

15.5 Execution by event-type resources

Executing Zagreus scripts via event-type resources is a key step for automation. First,

the user has to find out which type of event-type resource fits the given task best. It is

also possible to combine such resources: for example, a file watcher executes a script,

and inside this script, an event schedule is fired when a condition is satisfied. Zagreus

provides solutions both for handling various kinds of events and for performing

iterated tasks automatically.

All event-type resources need subscriptions to be assigned to any given script, see

→ Subscriptions.

15.5.1 Event schedule

 Event schedules can be created and edited in the “Zagreus event schedule editor”,

accessible from the menu item File / New Resource… / Event schedule. The only

property that can be set for an event schedule is its description (see Figure 4.).

Figure 4 – Event schedule editor

All scripts subscribed to a specific event schedule will be started when the event

schedule is fired. It can be done in the following ways:

• manually in the Zagreus Client

Info: To use event-type resources, the Scheduler component of the

Zagreus Server must be enabled.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 418

The user needs to right-click on the specific event schedule in the Zagreus

browser window of the Zagreus Client and choose the Fire event menu item from

the context menu (see Figure 5.)

• manually in the Zagreus HTML application

The user needs to manually fire the event in the Fire event tab in the Zagreus

HTML application (see → Fire event tab)

• manually via the Zagreus command line application

The user needs to or use the fireevent command-line tool (see → fireevent script)

• with the zs:fireevent action

Firing an event can be triggered with the zs:fireevent action in a Zagreus

script.

Figure 5 – Firing an event schedule manually in the Zagreus Client

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 419

15.5.2 Time schedule

Time schedules can be created and edited in the “Zagreus time schedule editor”

(menu item Menu / File / New Resource / Time schedule). The properties of firing time

and description can be defined for each time schedule object (see Figure 6.).

Figure 6 – Opening a time schedule editor tab, showing the default settings

The option to enter an exact value (for example, Year=2021) as well as the value

"Every" is available for all fields. Complex patterns (following the Cron format) can be

set for each field by choosing the option "Advanced".

Examples for advanced setting:

• Specifying an interval, e.g. Hour=9-17

• Specifying a list, e.g. Hour=9,10,11,12,13,14,15,16,17

• Specifying a period by using the pattern “<starting time>/<interval>”, e.g.

Minute=5/15 . This time schedule will fire at the minutes 5, 20, 35 and 50 in every

hour.

In Figure 7., time schedule will be triggered on every weekday, between 8:00 and

17:00 at 5, 20, 35, and 50 minutes:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 420

Figure 7 – A time schedule with advanced day, hour, and minute setting

15.5.3 Mail watcher

By using a mail watcher, the user can execute scripts depending on the results of

the fetched messages from an e-mail inbox. Checking the mailbox content occurs

periodically (relying on a time schedule, see → Time schedule), evaluating a specified

logical condition based on the filters of the mail watcher. If this condition is evaluated

as true, the mail watcher will be triggered, executing the subscribed script(s).

Technically, a mail watcher can be considered as an additional filter inserted between

a time schedule and triggering the script execution, where the filter is based on the

content of an e-mail inbox. There is also a built-in counter value for fine-tuning the

behaviour of the watcher.

15.5.3.1 Define filter section

The filter defines the condition which is evaluated for the contents of the specified

e-mail inbox, accessible under the “Define filter” expandable section of the Zagreus

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 421

mail watcher editor. Figure 8. shows a sample filter defined in the Zagreus Client

application, filtering on the subject and of the name of the attachments of the last 20

e-mails.

Figure 8 – Creating a new mail watcher resource

The following options control which e-mails are examined, i.e. they refer to the

number and the status of the examined e-mails:

• Last (x) mails

The latest x e-mails to be filtered. If it is set to 0, all e-mails are being examined.

• Only unread emails

If this setting is checked, only unread e-mails will be examined. If this setting is

unchecked, both read and unread e-mails are examined.

• Mark as read

If this setting is checked, the mail watcher will set the status of unread e-mail

messages to read after examination.

The next group of options define the condition which is evaluated for the e-mails,

each option corresponding to a specific property of the e-mail. The following

properties can be referred to:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 422

• Sender: the sender of the e-mail

• Subject: the subject of the e-mail

• Reply to: the reply-to field of the e-mail

• Body: the body of the e-mail

• Attachment: the name of attached files of the e-mail

For all five properties, the user can choose from two behaviours: “contains” and

“regexp”. “contains” means that the text element defined for the given property is

expected to be a part of the given property of the e-mail, while with the “regexp”

option one can define a regular expression, which is matched for the particular e-mail

property. For example, by setting “Sender” to “contains” and setting the corresponding

value to “sender@test”, the watcher will trigger the associated scripts when the sender

property of an examined e-mail contains the specified value, for example

“testsender@testdomain.com”. In the “regexp” behaviour, regular expressions can be

used with tags like [A-Z, a-z]*. For example, the regular expression “[Ss]ender[0-9].*”

will match for any property values starting with the parts “sender” or “Sender”,

followed by a digit, and ending with any string.

Finally, one might specify the relation between the examined properties. By default,

all fields which were not left empty in the mail watcher have to be satisfied, being

equivalent to an AND relation between them. By setting the “manual” “Evaluation

logic” checkbox, more complex relations can be defined. The condition parts can be

referred to by adding the “$” character; possible values are: $sender, $subject,

$replyto, $body, $attachment. Over these parts, AND, OR and NOT logical

operators can be used to define their relations, e.g. the value “($sender) AND

($subject) AND NOT ($replyto)” means that the conditions defined for the

“Sender” and the “Subject” properties have to be true, while the condition defined for

the “Reply to” property has to be false at the same time for the mail watcher to trigger

the associated scripts.

15.5.3.2 Execution section

On the next expandable section (“Execution”), additional script execution options

can be set, see Figure 9.

mailto:sender@testdomain.com

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 423

Figure 9 – Mail watcher Execution, Connection and Scheduling expandable sections. In this particular example, an IMAP

connection is defined and a time schedule of 15 minutes at each weekday is used for scheduling to check the e-mail inbox.

The following execution options can be changed:

• Execution

If the “Multiple execution” option is set, the mail watcher will be activated

independently for each e-mail for which the filter matches; otherwise, it will be

activeted only once (in the case that the filter matches for at least one e-mail).

• Passed field

This field grants the option that the script(s) which execution will be triggered are

provided information about the corresponding e-mail. For this, the value of the

$watcherResult variable will be set accordingly; the dropdown box shows the

property of the e-mail which will be stored in this variable. Currently only the

option “MsgId” is supported.

• Delimiter

If the “Multiple execution” option was not set, the mail watcher will fire only once,

regardless of the number of the e-mails satisfying the specified filter. In this case,

the value of the $watcherResult variable will contain the corresponding

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 424

information (e.g. sender) for all these e-mails, separated by some delimiter (e.g.

“;”), which delimiter can be set here. It can be at most two characters long.

15.5.3.3 Connection section

The mail connection (i.e. a Zagreus recource with connection type, see also →

Connections), which the mail watcher uses to check the incoming e-mails, can be set

in the “Connection” expandable section. It can either be IMAP or POP3. It can be drag-

and-dropped from the Zagreus browser (see → Drag-and-drop operations), or the

corresponding resource ID or resource path can be copied from e.g. the Resource

information page (see → Resource information).

15.5.3.4 Scheduling section

As we mentioned, the mail watcher can be considered as a further filter between a

time schedule and script execution, as it evaluates its e-mail-based condition when a

given time schedule fires. This time schedule resource (see also → Time schedule) can

be set in the Scheduling expandable section along with further scheduling options.

These further options rely on the concept of the counter. To help fine-tuning the

behaviour of the mail watcher, a maximum value can be defined at which the mail

watcher triggers the subscribed scripts within a given time interval. This is

implemented by assigning a counter value for a mail watcher; this value is decreased

by one each time the mail watcher runs (even if there is no matching e-mail), and if it

falls to zero, the mail watcher becomes inactive. The counter value can be reset by

another time schedule. The -1 value of the counter means that this setting is inactive,

and the mail watcher might trigger the subscribed scripts infinitely.

The following options are available in the Scheduling expandable section of the mail

watcher editor in the Zagreus Client application:

• Time schedule id or path

The mail watcher checks its condition according to the time schedule specified

here. This field is mandatory.

• Reset time schedule id or path

The time schedule which resets the counter value of the mail watcher resource

can be set here.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 425

• Resetting value

The value which is set for the counter value when resetting. It can be a non-

negative integer between 0 and 9999.

• Initial value

The initial value of the counter. Accessible in the Zagreus Mail watcher editor only

when the mail watcher is created; afterwards, the initial value will be replaced by

the actual counter value.

• Actual value

The actual value of the counter. By default, changing this value is inactive in the

Zagreus Mail watcher editor. It can be an integer between 0 and 9999. The value

-1 has a special meaning: in this case, there is no limitation on the number of

triggering the execution of the subscribed scripts.

• Overwrite actual value

To modify the actual value in the Mail watcher editor, this setting must be

checked, otherwise the actual value input field will behave read-only. This is a

safety feature to avoid unintentional changes in the counter value.

• Check even when no script is subscribed

If this setting is checked, the mail watcher will run even if there are no scripts

subscribed to it.

15.5.3.5 Evaluate watcher condition

The user can evaluate the condition of the mail watcher without affecting the actual

counter value. This step can be very useful during the development and set-up period

for the watcher configuration, i.e. the user can check if the mail connection is alive,

and if the condition filter works properly.

The user needs to select the Evaluate watcher condition… menu item from the

context menu in the Zagreus Browser window, see → Operations for event-type

resources. This opens the Evaluation results dialog, which shows the result of condition

evaluation. Figure 10. shows the result of a mail watcher with two messages that

satisfied the filter condition (so the condition was evaluated as TRUE).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 426

Figure 10 – The Evaluation results dialog box for a mail watcher

15.5.3.6 Server-side configuration

Most of the settings of a mail watcher are done on client side, in the Zagreus Client

application. However, a property affecting general watcher behaviour is configured on

the server side, where the way of evaluating the watcher conditions can be set by the

watcher.counter.policy setting, see → Trigger and watcher properties. The possible

values are:

• evaluate: the counter is decreased by 1 each time the condition is evaluated

• condition_true: the counter is decreased by 1 if the condition is evaluated to true.

This is the default value of this setting.

• script_run: the counter is decreased by 1 if the condition is evaluated to true and

any script is executed

15.5.4 Database watcher

The database watcher is technically very similar to the mail watcher. In the case of

a database watcher, the triggering (and therefore the execution of the subscribed

scripts) depends on the result of an SQL query. The query is run against a database

server periodically (relying on a time schedule, see → Time schedule). Technically, a

database watcher can be considered as an additional filter inserted between a time

Warning: watcher.counter.policy is a general setting, which affects the

behaviour of all of the watchers, i.e. both database watchers and mail

watchers.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 427

schedule and triggering the script execution, where the filter is based on the content

of some database table. There is also a built-in counter value for fine-tuning the

behaviour of the watcher.

15.5.4.1 Define filter section

The filter of the database watcher can be set in the Define filter expandable section,

see Figure 11. The SQL query has to be set in the SQL query field, and it is mandatory.

The Condition type radio button is used to set the interpretation of the result of the

SQL query. The two options are:

• Lines

By selecting this option, the database watcher examines the number of lines

returned by the SQL query. If this value is larger than 0, the condition will be

evaluated to true and the database watcher will trigger the execution of the

subscribed scripts.

• Scalar

By selecting this option, the database watcher examines the value of the result

returned by the SQL query. If this value is not 0, the condition will be evaluated

to true and the database watcher will trigger the execution of the subscribed

scripts. A straightforward use case for this option is a ‘SELECT COUNT(*) …’

SQL query.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 428

Figure 11 – Creating new db watcher resource. Define filter and Execution expandable sections

15.5.4.2 Execution section

On the next expandable section (Execution), additional script execution options can

be set. The following execution options can be changed:

• Execution

If the Multiple execution option is set, the database watcher will be activated

independently for each line returned by the SQL query. Each executed script

receives one line of result via the ${watcherResult} variable. If this checkbox

is not checked, the database watcher will trigger script execution only once.

• Passed field

This field grants the option that the script(s) which execution will be triggered are

provided information about the corresponding database content. For this, the

value of the $watcherResult variable will be set to the result value(s) of the

column defined in this “Passed field” textbox.

• Delimiter

If the Multiple execution option was not set, the database watcher will fire only

once, regardless of the number of lines returned by the SQL query. In this case,

the value of the $watcherResult variable will contain the value of the specified

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 429

column for all the returned rows, separated by some delimiter (e.g. “;”), which

delimiter can be set here. It can be at most two characters long.

15.5.4.3 Connection section

The database connection (i.e. a Zagreus recource with connection type, see also →

Connections), which the database watcher uses to check the database content, can be

set in the Connection expandable section (see the upper half of Figure 12.). It can be

drag-and-dropped from the Zagreus browser, or the corresponding resource ID or

resource path can be copied from e.g. the Resource information page (see → Resource

information).

Figure 12 – Creating a new database watcher resource. Connection and Scheduling expandable sections

The other setting in the Connection tab (Keep alive connection in the background

after the first check) refers to a specific connection keep-alive setting. When the

database watcher runs for the first time, the connection used by the watcher is stored

in a connection pool and re-used when necessary. If a connection is used frequently, it

is worth keeping this connection open to save server resources, which behaviour is

enabled by setting this option. If this option is not set, the database connection opens

and closes each time when the database watcher is executed.

Info: The value of only one result column can be passed to the script. This

column must be defined in the Passed column setting.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 430

15.5.4.4 Scheduling section

As we mentioned, the database watcher can be considered as a further filter

between a time schedule and script execution, as it evaluates its database-related

condition when a given time schedule fires. This time schedule resource (see also →

Time schedule) can be set in the Scheduling expandable section (see the lower half of

Figure 12.) along with further scheduling options.

These further options rely on the concept of the counter. To help fine-tuning the

behaviour of the database watcher, a maximum value can be defined at which the

database watcher triggers the subscribed scripts within a given time interval. This is

implemented by assigning a counter value for a database watcher; this value is

decreased by one each time the mail watcher runs (even if there is no matching

database content), and if it falls to zero, the database watcher becomes inactive. The

counter value can be reset by another time schedule. The -1 value of the counter means

that this setting is inactive, and the database watcher might trigger the subscribed

scripts infinitely.

The following options are available in the Scheduling expandable section of the

database watcher editor in the Zagreus Client application:

• Time schedule id or path

The database watcher checks its condition according to the time schedule

specified here. This field is mandatory.

• Reset time schedule id or path

The time schedule which resets the counter value of the database watcher

resource can be set here.

• Resetting value

The value which is set for the counter value when resetting. It can be a non-

negative integer between 0 and 9999.

• Initial value

The initial value of the counter. Accessible in the Zagreus Database watcher editor

only when the database watcher is created; afterwards, the initial value will be

replaced by the actual counter value.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 431

• Actual value

The actual value of the counter. By default, changing this value is inactive in the

Zagreus Database watcher editor. It can be an integer between 0 and 9999. The

value -1 has a special meaning: in this case, there is no limitation on the number

of triggering the execution of the subscribed scripts.

• Overwrite actual value

To modify the actual value in the Database watcher editor, this setting must be

checked, otherwise the actual value input field will behave read-only. This is a

safety feature to avoid unintentional changes in the counter value.

• Check even when no script is subscribed

If this setting is checked, the database watcher will run even if there are no scripts

subscribed to it.

15.5.4.5 Evaluate watcher condition

The user can evaluate the condition of the database watcher without affecting the

actual counter value. This step can be very useful during the development and set-up

period for the watcher configuration, i.e. the user can check if the database connection

is alive, and if the condition works properly.

The user needs to select the Evaluate watcher condition… menu item from the

context menu in the Zagreus Browser window, see → Operations for event-type

resources. This opens the Evaluation results dialog, which shows the result of condition

evaluation. Figure 13. shows the result of a watcher with a lines condition type, listing

all the values which were returned by the SQL query (if any). In this example, the

condition is evaluated as TRUE since the query returned five values.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 432

Figure 13 – The Evaluation results dialog box for lines condition type

Figure 14. shows the result of a watcher with a scalar condition type, showing the

numeric return value of the SQL query (i.e. 30). In this example, the condition is

evaluated as TRUE since the returned value is not zero.

Figure 14 – The Evaluation results dialog box for scalar condition type

15.5.4.6 Server-side configuration

Most of the settings of a mail watcher are done on client side, in the Zagreus Client

application. However, a property affecting general watcher behaviour is configured on

the server side, where the way of evaluating the watcher conditions can be set by the

watcher.counter.policy setting, see → Trigger and watcher properties. The possible

values are:

• evaluate: the counter is decreased by 1 each time the condition is evaluated

• condition_true: the counter is decreased by 1 if the condition is evaluated to true.

This is the default value of this setting.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 433

• script_run: the counter is decreased by 1 if the condition is evaluated to true and

any script is executed

15.5.5 File trigger

File triggers allow the triggering of the execution of subscribed scripts when a

specific file event (e.g. file modification or file deletion) occurs in the Zagreus

filesystem.

The number of file trigger activations is related to the number of files which satisfy

the condition defined in the file trigger. For example, when a particular file trigger

checks the deletion of files in a specific folder, and two files are deleted from the folder,

the subscribed scripts will be executed twice. File triggers can be created and edited in

the Zagreus File trigger editor, accessible via the menu path File / New Resource / File

trigger.

15.5.5.1 Define folder and filename pattern section

The filter of the file trigger can be set in the Define folder and filename pattern

expandable section, see the upper half of Figure 15. The folder which will be watched

can be set in the Watch folder field, and it is mandatory. Its content must be a Zagreus

filesystem folder. The folder can also be drag-and-dropped from the Browser window

of the Zagreus Client application, see → Zagreus Client.

The Filename pattern radio button is used to set the file mask for the file trigger

filter. The two options are:

Warning: watcher.counter.policy is a general setting which affects the

behaviour of all of the watchers, i.e. both database watchers and mail

watchers.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 434

• All files

The file trigger will fire for all the files in the specified watch folder.

• textbox

By selecting this option, a filename filter can be specified in the textbox. In this

filename mask, the wildcard character “*” can be used, for example:

“2021*.xls”.

The checkbox below this option controls whether this filename mask should be

interpreted as a regular expression or as a standard filename. For example, the

regular expression “[A-Z,a-z]+” stands for file names which contain only

uppercase and lowercase letters.

Figure 15 – Creating a new file trigger. This trigger fires on the creation of a file with .pdf extension

15.5.5.2 Define event type section

There are three types of file events which might trigger a script execution:

• Create: file creation

• Modify: file modification

• Delete: file deletion

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 435

These values can be selected in the “Define event type” expandable section (see the

lower half of Figure 15.), it is possible to check only one or multiple events. By setting

the Check files existence when the trigger starts checkbox, the existence of the

specified file(s) will be checked by the file trigger when it starts to run – i.e. when the

Zagreus server starts, or after saving the modified or newly created file trigger

resource. If none of these check boxes is set, the file trigger remains active, but – as no

file event may satisfy the specified condition – the execution of the subscribed scripts

will not be triggered.

15.5.5.3 Server-side configuration

Some behaviour setting of file triggers can be configured on the server side, see →

Trigger and watcher properties. There, the setting filetrigger.double.trigger.limit

controls the handling of a specific OS tendency. There might be unwanted cases that

sometimes two events are created for one file event, while the user understandably

expects only one script execution triggering. For example, modifying a file creates two

events in the Windows OS. To avoid double script execution in such cases, and to filter

these double file events (referring to the same file with a too short time difference

between the two events), we can use this filetrigger.double.trigger.limit setting, which

is used to define the minimal time difference between two events (in milliseconds). For

example, if this setting is set to 250, a second event referring to the same file only after

220 milliseconds after the first one will be ignored; therefore, the file trigger will be

activated by only the first one. However, a setting of 200 milliseconds would result in

double triggering, and therefore double script executions. The default value for this

setting is 500.

15.5.6 Special events

There are also special events in Zagreus which may trigger automatic script

execution. Out of the four special such events, two are script options, while the other

two are special files located in the Zagreus local database.

Info: The events (script creation, modification and deletion) are not

watched by Zagreus, but they are detected by the given operation system

(OS), and forwarded to Zagreus.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 436

15.5.6.1 Script execution by script options

There are two special execution options: execute_script_on_error and

execute_script_on_cancel. If they are set for a given script, they can initiate the

execution of another script. If the execution of the actual script (i.e. which has any of

these options set) ends with error on cancelled status (for job statuses, see → Job

lifecycle), the execution of the script specified in the corresponding option will be

triggered. The value of these options can be either a script ID or path.

Regarding the option execute_script_on_cancel, there is another script option to

fine-tune its behaviour: the source of cancellation can also be specified. This option is

an additional filter condition, and can be set with the option

execute_script_on_cancel_source, with the possible values being gui, monitor, zs and

server. It is also possible to specify multiple values separated by commas. Figure 16.

shows an example setting for these options: in this particular example, if the execution

of the given script (i.e. sample_script) ends with status error, the script error-

handling will be executed. Similarly, if the execution of sample_script ends with

status cancelled, where the source of cancellation was the Zagreus Client or the

Zagreus Monitor application, the execution of the script cancel-handling will be

triggered. However, if the source of cancellation was a zs:cancel action, no script

execution will be triggered, as that would be handled by the zs value of the

execute_script_on_cancel_source option.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 437

Figure 16 – Setting the execute_script_on_error, execute_script_on_cancel and

execute_script_on_cancel_source options

15.5.6.2 Script execution by autorun configuration files

The special file.autorun is a special text file in the home folder of each Zagreus

user. The execution of scripts (specified either by their resource ID or their path) listed

in this file will be triggered right after the given user logs in to the Zagreus Server via

the Zagreus Client application. In this file, one line defines one script to execute.

Administrator users can create another special file named .serverautorun in

their Zagreus home folder. The execution of scripts listed in this file are will be triggered

right after a Zagreus server start-up event. The format of this file is the same as that of

the .autorun file.

15.5.7 Administrative tools for event-type resources

There are useful administrative tools built in the Zagreus Client applications to

monitor and handle the behaviour of event-type. Additionally, there is the Zagreus

Monitor application, also designed to monitor script executions. By these tools the

users can check the status of automating components, monitor which scripts are

started by different types of event-type resources, while administrators can also start

and stop the operation of triggers, watchers and schedulers.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 438

15.5.7.1 Monitoring watchers and triggers window

In the Zagreus Client, in the Monitoring watchers and triggers window, the

administrator users can monitor the behaviour of the watchers and triggers on the

given Zagreus server. This window can be opened by right-clicking on the server

definition node in the Browser window of the Zagreus, then selecting the Administrator

options / Monitor watchers, triggers... options from the context menu (see Figure 17.).

Figure 17 – Opening the Monitor watchers, triggers... window

The opening Monitoring watchers and triggers window consists of three tabs:

Watchers, File Trigger and DB Connection Pool. The mail and database watchers are

listed in the Watchers tab, while file trigger resources can be viewed on the File Trigger

tab.

In the Watchers tab, the user can check the following details of the mail and

database watchers (see Figure 18.):

• Trigger: the path of the watcher

• Type: the type of the watcher (i.e. mail watcher or db watcher)

• Connection: the path of the connection resource which the watcher uses

• Schedule: the path of the time schedule which the watcher uses

• Reset schedule: the path of the time schedule which the watcher uses for

resetting its counter value

• Last evaluation: the date and time when the watcher was last evaluated

• Last execution: the date and time when the watcher last triggered script

execution

• Actual value: the actual value of the counter

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 439

Figure 18 – Monitoring watchers, triggers... window

In the File trigger tab, the following details of the file trigger resources are listed:

• Trigger: the path of the trigger

• Folder path: the path of the folder the file trigger uses in its filter (see → Define

folder and filename pattern section)

• Last triggered: the date and time when the file trigger was last triggered

• Trigger filename: the filename which caused the file trigger to trigger last

• Event type: the type of event which causes the file trigger to trigger last

• Currently active: whether the file trigger is currently active (yes or no)

The DB Connection pool tab lists the database connections which are used by

database watcher resources having the setting Keep alive connections in the

background... checked, i.e. they are open and kept in memory (see → Connection

section). The following details are listed:

• Connection: the path of the connection resource which the watcher uses

• Driver: the name of the SQL driver which is used by this open connection

• Host: the host to which this DB connection is open

• User: the user which is used to log in by this DB connection

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 440

15.5.7.2 Stop / start server components

With this option in the Zagreus Client application, administrator users can turn on

and off the Scheduler module (see → Quartz scheduler), the execution of watchers and

triggers in a Zagreus server. This menu item can be found by right-clicking on the server

connection node in the Zagreus browser window of the Zagreus Client, and selecting

the Administrative options / Stop/start server components option in the context menu

(see Figure 19.).

Figure 19 - Opening the Stop/start server components window

In the Server Component Control dialog, the user can enable or disable the selected

component by right-clicking on it (see Figure 20.).

For further details on different server components, see → Components.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 441

Figure 20 – Enable / disable server components

15.5.7.3 Administrative tools in Zagreus Monitor

The Zagreus Monitor application (see → Zagreus Monitor) is primarily designed to

allow the administrators to monitor the job executions performed on the given Zagreus

Server. It has functionality to filter scripts by different criteria like execution mode,

status, etc. The events are displayed in a timeline, see Figure 21.

Warning: If the scheduler module is disabled, the watchers and file triggers

will not fire either, since they rely on time schedule resources.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 442

Figure 21 – A sample Zagreus Monitor window, showing jobs regardless of execution type

If the user restrains the execution modes to keep only the scheduled and triggered

items, scripts with automated execution can be monitored, see Figure 22.

Figure 22 – A sample Zagreus Monitor window, showing only scheduled and triggered scipt executions

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 443

15.6 Manual script execution

Besides automated script execution, Zagreus also provides multiple ways of

executing scripts manually. It is possible to initiate script execution from the Zagreus

Client, from another script (by the zs:runscript action), while remote users can

also initiate script execution by using Zagreus command line tools or the Zagreus HTML

application. Furthermore, scripts can be executed from external systems – such as

database environments – with SOAP requests.

15.6.1 Execution in the Zagreus Client

To manually execute a script in the Zagreus Client, right-click on the script in the

Browser window of the Zagreus Client, and choose the Run script menu item from the

context menu (see Figure 30.). By selecting multiple scripts, all of them can be executed

at the same time by selecting the Run script item from the context menu after right-

clicking on the selection.

Figure 30 – Executing a script from the context menu in the Browser window of the Zagreus Client

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 444

When a script is opened for editing in the Zagreus Client, there are two icons in the

top icon bar which serve to initiate script execution manually: Save and run resource

and Run script (see Figure 31.). Scripts have to be saved before execution; clearly, the

Save and run resource icon first saves the active script, and executes it afterwards.

Figure 31 – Initiating the execution of a script which is opened for editing

15.6.2 Execution with the .sendscripts file

By using a special file called .sendscripts, the user can use a special type of

manual script execution initiation. This file has to be placed in the Zagreus home folder

of the user (see Figure 32.), and its content applies for the given user.

Figure 32 – The location of the .sendscripts file in the home folder of the admin user

Save and run resource

Run script

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 445

In the .sendscripts file the user can list Zagreus scripts that can be executed

from the Zagreus Client in a special way:

1) The user needs to select a resource that will be an input of the script that will be

executed.

2) When the user right-clicks on the selected resource, a new context menu item

Send will be shown, with the listed scripts from the .sendscripts file shown in

a sub menu, see Figure 33.

3) By clicking on one of the possible script aliases, the given script will be executed

and the properties of the originally selected resource will be passed as start-up

script variables, see below.

Figure 33 – .sendscripts example: using a MYSQL connection as an input parameter for a migration script

15.6.2.1 Format of the .sendscripts file

Each line of the file defines one case, containing the ID or the path of the script to

be executed. A human-readable description can optionally be written to the same line,

separated by a semicolon, which will be shown in the Zagreus Client in the Send context

menu. Without adding description to an entry, the name of the script will be shown.

Empty lines and lines starting with the character # will be considered as remarks and

will be ignored.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 446

The keyword import can be used to include the contents of another file. The format

of imported files must match the same rules as the original .sendscript file.

A sample .sendscripts file can be the following:

here is the import

import /groups/common_group/shared_sendscript_definitions

here come the new definitions

bd92555df4614090bfe1e31a45fe8f79; Migrate to PROD

/admin/scripts/migrate-qual; Migrate to QUAL

15.6.2.2 Passed start-up variables

If the user clicks on a custom menu item from the submenu, the execution of the

given script (i.e. which was defined in the corresponding line of the .sendscripts

file) will be initiated. For the execution, the following resource properties will be set as

input parameters as script start-up variables:

• $inputResourceId: the id and version of the resource (concatenated)

• $inputResourceName: the name of the resource

• $inputResourcePath: the Zagreus path of the resource

15.6.3 Execution from the command-line client

The user can run a Zagreus script from via the command-line client, the process is

described here in details, see → runscript script.

15.6.4 Execution from the Zagreus HTML Application

The user can run a Zagreus script from via the Zagreus HTML Application, the process

is described here in details, see → Zagreus HTML application.

Info: Changes will be applied immediately after saving the

.sendscripts file – there is no need to restart the Zagreus Client or

to disconnect from the Zagreus server.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 447

15.6.5 Execution from external systems

Zagreus scripts can be executed by using SOAP requests from those platforms which

supports this method. For example, in an Oracle database environment a SOAP call can

be defined as a stored procedure, while in MSSQL Server a standalone binary has to be

implemented and the .dll file must be imported into the database.

15.6.5.1 General SOAP format without script parameters

The SOAP request pattern for initiating script execution without any parameters:

(the parts where the actual parameters have to be substituted are marked in orange)

<?xml version="1.0" encoding="UTF-8"?><S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns2:user

xmlns:ns2="http://ws.server.zagreus.etixpert.com/">MY_USERNAME</ns2:user>

 <ns2:password

xmlns:ns2="http://ws.server.zagreus.etixpert.com/">MY_BASE64_ENCODED_PASSWO

RD</ns2:password>

 </S:Header>

 <S:Body>

 <ns2:executeExt

xmlns:ns2="http://ws.server.zagreus.etixpert.com/">

 <arg0>MY_SCRIPT_ID</arg0>

 <arg1/>

 <arg2/>

 <arg3>3</arg3>

 <arg4>html</arg4>

 <arg5>false</arg5>

 </ns2:executeExt>

 </S:Body>

</S:Envelope>

15.6.5.2 General SOAP format with script parameters

The SOAP request pattern for initiating script execution with parameters: (the parts

where the actual parameters have to be substituted are marked in orange)

<?xml version="1.0" encoding="UTF-8"?><S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns2:user

xmlns:ns2="http://ws.server.zagreus.etixpert.com/">MY_USERNAME</ns2:user>

 <ns2:password

xmlns:ns2="http://ws.server.zagreus.etixpert.com/">MY_BASE64_ENCODED_PASSWO

RD</ns2:password>

 </S:Header>

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 448

 <S:Body>

 <ns2:executeExt

xmlns:ns2="http://ws.server.zagreus.etixpert.com/">

 <arg0>MY_SCRPT_ID</arg0>

 <arg1>VARIABLE_NAME_1</arg1>

 <arg1>VARIABLE_VALUE_1</arg1>

 <arg1>VARIABLE_NAME_2</arg1>

 <arg1>VARIABLE_VALUE_2</arg1>

 ...

 <arg1>VARIABLE_NAME_n</arg1>

 <arg1>VARIABLE_VALUE_n</arg1>

 <arg2/>

 <arg3>3</arg3>

 <arg4>html</arg4>

 <arg5>false</arg5>

 </ns2:executeExt>

 </S:Body>

</S:Envelope>

15.6.5.3 Execution from Oracle

A sample Oracle stored procedure for initiating script execution with encrypted

password:
create or replace PROCEDURE "ZAGREUS_SAMPLE_CPWD" (p_server IN varchar2,

p_username IN varchar2, p_password IN varchar2, p_scriptid IN varchar2) AS

 http_req UTL_HTTP.req;

 http_resp UTL_HTTP.resp;

 request_env varchar2(32767);

 response_env varchar2(32767);

BEGIN

 dbms_output.put_line('procedure started');

 request_env := '<?xml version="1.0" encoding="UTF-8"?>

 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns2:user

xmlns:ns2="http://ws.server.zagreus.etixpert.com/">'||p_username||'</ns2:us

er>

 <ns2:password

xmlns:ns2="http://ws.server.zagreus.etixpert.com/">'||utl_raw.cast_to_varch

Info: When passing multiple input parameters for script execution, the

variable names and variable values have to be put inside

<arg1>...</arg1> tags; for example:
<ar g1>VARI ABLE_NAME_1</ ar g1>

<ar g1>VARI ABLE_VALUE_1</ ar g1>

<ar g1>VARI ABLE_NAME_2</ ar g1>

<ar g1>VARI ABLE_VALUE_2</ ar g1>

. . .

<ar g1>VARI ABLE_NAME_n</ ar g1>

<ar g1>VARI ABLE_VALUE_n</ ar g1>

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 449

ar2(utl_encode.base64_encode(utl_raw.cast_to_raw(p_password)))||'</ns2:pass

word>

 </S:Header>

 <S:Body>

 <ns2:executeExt xmlns:ns2="http://ws.server.zagreus.etixpert.com/">

 <arg0>'|| p_scriptid ||'</arg0>

 ';

 request_env := request_env ||'<arg2></arg2>';

 request_env := request_env ||'<arg3>3</arg3>

 <arg4>html</arg4>

 </ns2:executeExt>

 </S:Body>

 </S:Envelope>

 ';

 http_req :=

utl_http.begin_request('http://'||p_server||'/zagreus/services/ws/zagreuswe

bbaseservice', 'POST', utl_http.HTTP_VERSION_1_1);

 utl_http.set_header(http_req, 'Content-Type', 'text/plain; charset=utf-

8');

 utl_http.set_header(http_req, 'Content-Length', length(request_env));

 utl_http.write_text(http_req, request_env);

 dbms_output.put_line('Request sent');

 http_resp := utl_http.get_response(http_req);

 utl_http.read_text(http_resp, response_env);

 utl_http.end_response(http_resp);

END ZAGREUS_SAMPLE_CPWD;

Execute the stored procedure with the following command:

call ZAGREUS_SAMPLE_CPWD('my.zagreus.server:7323', 'admin', '**********',

'0d020d9ceebb486998e56b1c24273253');

Note: encoding the password is done inside the stored procedure. As the input

parameter for the stored procedure, the plain text password is required.

15.6.5.4 Execution from C#

To initiate script execution through the Zagreus web service from a C# code, at least

the following includes must be used:

using System.Text;

using System.Threading.Tasks;

using System.Net.Http;

using System.Xml.Linq;

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 450

15.6.5.5 Execution from PHP

To initiate script execution through the Zagreus web service from a php code, the

soap extension must be enabled in the php configuration file and class

SoapClient must be used. The SOAP call can be performed by calling the method

__doRequest of an instance of SoapClient.

A sample function for a Zagreus call from php:

public function doZagreusRequest($XMLStr) {

 $endpoint =

“http://localhost:7323/zagreus/services/ws/zagreuswebbaseservice”;

$wsdlLocation = “http://localhost:7323/zagreus/zagreuswebbaseservice.wsdl”;

$client = new SoapClient($wsdlLocation, array('encoding'=>'UTF-8',

'soap_version' => SOAP_1_2, 'trace' => 1, 'exceptions' =>1));

 $ret = $client->__doRequest($XMLStr, $endpoint, '', SOAP_1_2);

 return $ret;

 }

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 451

15.7 Execution from a Zagreus script

Initiating the execution of a Zagreus script from another running script (i.e. job) can

be done by using the zs:runscript action. For the newly created job, the value of

the parent job id, caller, caller type and execution mode attributes take the

corresponding values. Of course, the script whose execution was initiated, might also

contain a zs:runscript action, allowing the user to define execution chains.

Besides zs:runscript, there are further actions in the ZS action group which

might initiate or affect script execution. The more important ones are the following:

• z:fire-event, zs:fireevent: fires an event schedule

• zs:cancel: cancels a running job

• zs:wait: waits for a running job to finish

• zs:createevent: creates an event schedule

• zs:createschedule: creates a time schedule

• zs:createresource: allows creating resources, including events and time

schedules

• zs:subscribe, zs:unsubscribe: manages subscriptions

Of course, several further actions might initiate script execution in a more indirect

manner; for example, the execution of a file:copy, zs:copy or zs:delete action

might lead to the activation of a file trigger, a mail:send action might activate a mail

watcher, while the user might use the zs:setvariable action to set the value of the

execute_script_on_cancel option.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 452

15.8 Summary

As described in this section, Zagreus provides a powerful infrastructure for

automating IT and business processes. This flexibility extends to initiating Zagreus

script execution as well, as the user can choose from a wide range of tools. Time

schedules can be used for periodic maintenance of repetitive operations, while event

schedules, file triggers, database watchers and mail watchers makes Zagreus able to

respond to a variety of actions and events. These options offer Zagreus users a wide

range of solutions to find the best setting for their particular automation problems.

A Zagreus installation contains three clients. The Zagreus Client is the most powerful

application to connect to a Zagreus server, create resources, run scripts, fire triggers

and check execution result (see also → Zagreus Client). With the Zagreus HTML

application, a user might initiate script execution, fire events and check logs in a web

browser of a PC, laptop, tablet, or a smart phone (see also → Zagreus HTML

application). The Zagreus Console applications might also be used for initiating script

execution and fire event schedules, however they also allow the user to perform some

delegated administrative tasks (see also → Command-line tools). Using the

zs:runscript and several further ZS actions, script execution can be initiated and

affected on the local or even on remote Zagreus Servers, allowing building a powerful,

automated system.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 453

15.9 Best practices

Finally, we give some tips on configuring the script execution in the Zagreus System.

There are practices for choosing the appropriate schedule, watcher and trigger type,

also when it is worthwhile to invest time in creating an automated workflow rather

than manually initiating script execution. There are also some hints to tune watchers,

triggers, and check execution result.

15.9.1 Choosing the appropriate event-type resource

The main question is “Does script execution depend from an event?”. As a rule of

thumb, if a script should be executed If the answer likes the followings, then a mail

watcher, a database watcher or a file trigger should be used: If a script should be

executed if

• A report or a file is received: mail watcher (→ Mail watcher), file trigger (→ File

trigger).

• Data is received from another department: database watcher (→ Database

watcher), file trigger (→ File trigger).

• An update or a report about the status of a task or process is received: mail

watcher (→ Mail watcher), database watcher (→ Database watcher).

• Data migration is performed: database watcher (→ Database watcher), file

trigger (→ File trigger).

• Files are uploaded to some (other) server: file trigger (→ File trigger), event

schedule (→ Event schedule).

• The execution of a job is finished: event schedule (→ Event schedule).

• The execution of a job ends in error: special events (e.g. execute_script_on_error)

(→ Script execution by script options).

• The user logs into Zagreus: special events (→ Script execution by autorun

configuration files).

For time-scheduled tasks, the main question is “When should...?”. Answers for these

kind of tasks are usually similar to the following:

• Before holidays.

• At the end of each weekday / weekend.

• At 8:00 am each weekday.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 454

• At a special day in every year (i.e. anniversaries).

• Every 15 minutes (e.g. synchronize a folder).

15.9.2 Monitoring watchers and triggers

There are two ways for monitoring watchers and triggers: one is the Monitor

watchers and triggers window in the Zagreus Client (see → Monitor watchers, triggers).

This window is used only for monitoring the operation of watchers, triggers and the

database connections kept open for the database watchers.

The other way of monitoring watchers and triggers is the Zagreus Monitor

application. The job status and further corresponding data are displayed in a timeline

view (see → Timeline area), while it is possible to filter on execution modes (triggered,

scheduled, etc., see → Execution mode filter) as well as for job status (finished, error,

running, etc., see → Status filter).

15.9.3 Quarterly settings for a time schedule

The following example (see Figure 34.) shows a setting for every quarter of a year.

Instead of at the end of a quarter, the time schedule fires in the very first second of the

next quarter to avoid the problem of months with 28, 30 and 31 days.

Figure 34 – Time schedule which fires at the end of each quarter

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 455

15.9.4 Using special subscription features

During the editing of subscriptions, the Run now button is useful for checking if the

value of variables and options are set correctly. It triggers the execution of the

subscribed script immediately. The settings can be checked in the job-log file, see

Figure 35.

Figure 35 – Checking subscription variables in the job-log file after clicking the Run now button

The feature of the Edit as new... button is useful when the subscription variables

and options are the same in multiple cases. If the user wants to subscribe the particular

script to a new event-type resource with the same settings (or even with just smaller

changes), this is an effective solution.

It is also recommended to think about when to delete and when to only deactivate

a subscription. Since the subscriptions are deleted permanently, and therefore they

cannot be recovered from the recycle bin, in most of the cases setting the Active

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 456

property of the corresponding subscription to false (i.e. deactivating it) could be a

better solution.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 457

15.10 Troubleshooting

15.10.1 Practices for event-type resources

In the followings some general practices and some specific cases will be described

for the event-type resources, i.e. for time schedules, mail watchers and database

watchers.

15.10.1.1 General practices

Make sure that the Watchers module of the Zagreus Server is running (see → Stop

/ start server components).

Since mail watchers and database watchers rely on a time schedule, it is also worth

to see if the Scheduler module of the Zagreus Server is running as well (see → Quartz

scheduler).

Instead of subscribing a heavy-weight, long-running script which operates on

production resources, it is worth to experiment with a simple Zagreus script first, e.g.

one with a simple z:log action.

15.10.1.2 Subscriptions

It is worth checking the subscription settings (see also → Editing a subscription).

Variables and options set in the subscription override the existing script settings. The

following steps should be performed to verify basic subscription settings:

• Check if the required subscription exists

• Check if the required subscription is active

• Check the variables and options of the subscription

• Use the Run now button to check the result of script execution triggered by

subscription. In the job-log file, the actual values of the script starting variables

can also be verified, see → Editing a subscription

15.10.1.3 Database watchers and mail watchers

Database watchers and mail watchers both rely on connection resources. It is

recommended to test the database, POP3 or IMAP connection which is used in the

watcher definition, see → Test connection feature.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 458

Use the context menu item Evaluate watcher condition... to test the syntax and

behavior of the filter condition, see → Evaluate watcher condition and → Evaluate

watcher condition.

15.10.2 Command-line tools

When a script execution is initiated from the command line, the result can be

verified in the Finished jobs window of the Zagreus Client (see also → Finished jobs

window). If the result cannot be found in the Finished jobs window, then the initiation

of the script execution has failed. In such a case, the following details are

recommended to be checked:

• server definition in the command

• sort definition in the command

• port definition in the Zagreus Server configuration (see → General properties)

• user authentication data

• server machine firewall settings

• server machine and router port forwarding settings

About the command-line tools in details, see → Command-line tools.

15.10.3 The HTML application

In the case of Zagreus HTML application, if the appropriate HTML page does not

load, the following items should be checked:

• Is the Zagreus Server running?

• Is the port definition in the URL correct?

• Is the port definition in the Zagreus Server configuration correct? (See → General

properties)

Feedback messages about script execution are displayed in section Logging console,

see → Run script and get info tab.

About the Zagreus HTML application in details, see → Zagreus HTML application.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 459

16. Special features

There are some special features in Zagreus that are complex enough to be discussed

in separate chapters. Next, these features are described in details.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 460

16.1 Standalone Worker

Since Zagreus version 1.5.6.0, the Zagreus Worker module can be started as a

standalone Java application (‘Standalone Worker’). This allows the user to execute a

script without the whole Zagreus System running. The script still can use a large portion

of the Execution Engine functionality, but in the abscence of all other modules to which

the Zagreus Worker is usually connected, some limitations are present.

Unlike the Zagreus Worker, which is a part of the whole Zagreus System, the

Standalone Worker does not run continuously. It must be started by the user via

command line with a specified script to be executed. When the script execution is

finished, the Standalone Worker stops running.

16.1.1 How to use

The following list is the recommended way for the user to efficiently use the

Standalone Worker module:

• The user first should develop the script to be executed in a standard Zagreus

environment, being aware of the limitations of the Standalone Worker.

• The script then should be copied to the worker filesystem. It can be done, for

example, by using a file:read action and the worker-output attribute.

• Since job execution cannot be monitored in the usual ways (e.g. Zagreus Client,

job-log etc.), the script should be designed in a way that its output can be read

from created files in the worker filesystem or in the Standalone Worker job-log

files, see → Local filesystem in the Zagreus Worker.

• The user now can start the Standalone Worker with the provided command line

script zagreus_home/worker-controller/worker/standalone_worker.bat

(or standalone_worker.sh on Linux systems), using the path of the script and

the optional script start-up variables as command line parameters. E.g.:

standalone_worker.bat folder/script.xml x=1;y=2

where the path of the script to be executed is relative to the worker filesystem

root, see → Local filesystem in the Zagreus Worker, and the optional second

command line parameter is of the format key1=value1;key2=value2 …

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 461

• After the execution of the script has been finished (which is clearly visible in the

command line window), the generated log files can be accessed in the specified

log folder, see below. The default value is zagreus_home/worker-

controller/worker/joblog .

• Any other files that were generated by the script execution can manually be

inspected in the worker filesystem folder.

16.1.2 Configuration

Just like the Zagreus Worker, the Standalone Worker module is using the

worker.properties configuration file, see → Zagreus Worker configuration. The

following path properties are particularly important for the Standalone Worker

module:

• worker.filesystem.path

Defines the OS worker filesystem root folder, relative to the Worker module root

directory.

Default value: /filesystem

• worker.standalone.joblog.path

Defines the job output log folder, relative to the Worker module root directory.

Default value: /joblog

It is very important to set the correct -Dworking.folder and -Djava.folder

parameter values inside the provided starting script.

In some cases, the user might need to manually edit the value of the Java classpath

parameter (i.e. cp) in the starting script, e.g. when a new MicroStrategy library version

is installed in the /lib folder of the Worker module, see → Worker startup properties.

16.1.3 Licencing

Because of the fact that the Standalone Worker module runs without a Zagreus

Server connection, it has no access to the licence key which is installed on the server.

Therefore it needs the licence key in its own folder structure. The user needs to put

the licence key file into the /conf folder relative to the Worker module root under the

name key.txt

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 462

16.1.4 Limitations

Because of the fact that the Zagreus Server is not accessible, the user needs to be

aware that only resources stored only on the worker side are available. The following

limitations should be considered when using the Zagreus Worker in standalone mode:

• The action group file cannot be used in the script. A substitute for using the

file actions is the wfile action group.

• The output common attribute cannot be used. The user can use the worker-

output common attribute instead, see → worker-output attribute.

• The z:include action does not work. The content of the included resource (in

most cases a connection definition) must be directly copied into the executed

script instead.

• The running of the Standalone Worker cannot be monitored from the customary

Zagreus clients, e.g. Zagreus Client, Zagreus Monitor.

16.1.5 Notes

Here is a non-comprehensive list of actions and common attributes which should be

avoided during the development of a script intended to be executed with a Standalone

Worker:

• file action group

• zs action group

• z:include action

• z:logfile action

• output common attribute (use the common attribute worker-output instead)

• ftp:lcd, ftp:mget, ftp:mput actions

• filename attribute of excel:read action (use wfile:read child action instead)

• template attribute of excel:workbook action

• pdf:to-image, pdf:extract-images actions

• attachments-target-path attribute of the msft:get-mail action

• xsl attribute of the xslt:transform action (use xsl-value attribute instead)

• filename attribute of the zip:read and zip:dir actions (use wfile:read

child action instead)

• wildcard attribute of the zip:file action

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 463

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 464

16.2 External script execution

One of the recent special features in Zagreus is the ability to integrate methods for

external script execution. ’Scripts’ in this context are not the Zagreus script resources

but scripts from external programming languages and frameworks, like Python, R,

Powershell, etc.

All this functionality is organized around the dedicated z:execute Zagreus action.

In the following, the configuration and the usage of the external script execution is

described in details.

16.2.1 How it works

External script execution works in the following way:

4) A Zagreus script is initiating an external script execution by the z:execute

action inside the Zagreus script.

5) The z:execute action specifies an external script and its framework type (like

python, R, Powershell, etc.) to be executed. This external script is stored in the

local database or in the server filesystem as a simple file resource. An extension

like .py, .R, .ps1 is recommended to use.

6) When the Zagreus execution engine is processing the z:execute action, the

following steps are taken:

a) The external script is copied to a pre-defined temporary folder in the worker

filesystem with a specified / generated name, see → Configuration

b) A command line is constructed by using the executor binary, the copied

temporary file name path and the parameters. The exact way of this

construction is depending on the tempfilename and the params attributes,

see → tempfilename attribute and → params attribute.

c) The Zagreus Worker JVM starts a new external process to execute the

constructed command line.

d) Depending on the async=false/true attribute of the z:execute action, the

Zagreus script processing waits for the end of the external process

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 465

(synchronous execution) or release it (asynchronous execution), see →

Synchronous and asynchronous execution.

7) The Zagreus script continues to process its other actions and eventually ends.

8) The result of the externally executed script can be accessed in different ways,

depending on the async attribute.

16.2.2 Configuration

Each script execution framework type has to be configured in the Zagreus Worker

Configuration, see → Zagreus Worker configuration. First, a user-defined type label has

to be chosen for the actual execution framework, e.g. ‘python’ for python executables.

(In the following we will refer to this as ’<type>’.) This label is very important since it

will be referred to in the type attribute of the z:execute action.

Then the following properties have to be defined for each framework type:

• worker.execute.<type>.bin

This property specifies the OS full path (in the format of the given OS) of the

binary executable file of the selected framework, e.g. C:\Python\python.exe

• worker.execute.<type>.tempfolder

This property specifies the path of the temporary folder relative to the root folder

of the worker filesystem, where the temporary script files will be saved for

execution, e.g. /python-scripts

16.2.3 tempfilename attribute

The copied temporary file name will be generated according to the following rules:

• If the tempfilename attribute is specified, the temporary file name will simply be

the specified value.

• If the tempfilename attribute is not specified, then the temporary file name will

be generated, with the actual time stamp (in the format ‘yyyyMMddHHmmss’):

o If the external script to be executed is defined by using the name attribute

in the z:execute action, the file name of the specified Zagreus resource

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 466

will be used with the timestamp. For example, if the script path was

/users/testuser/external_scripts/test.py, the generated filename for the

copied temporary file will be test-20230901153030.py

o If the external script to be executed is defined by any other way (using the

id attribute or a child element, so the original file name cannot be retrieved),

the name ‘script’ will be used with the timestamp. For example, if the

content of the (here, a python) script was inserted as a child element in the

z:execute action, the generated filename for the copied temporary file

will be script-20230901153030.py

16.2.4 params attribute

The command line is constructed according to the following rules, depending on the

params attribute:

• If the params attribute is not specified, the command line is:
executor_binary temporary_filename_fullpath

• If the params attribute is specified, the command line is using the value of this

attribute as the parameter list, i.e.:
executor_binary temporary_filename_fullpath parameters

• If the params attributes is specified and it contains the #tempfilename string,

then the #tempfilename string will be substituted by the fullpath of the copied

temporary file, and the command line will look like:
executor_binary resolved_parameters

This is the only workaround for the special cases where the temporary file fullpath

is not the first parameter of the executor binary, see this example →

#tempfilename substitution.

Note: the params attribute can contain multiple parameters divided by the space

character. Also, depending on the operating system, if there is a space character inside

one parameter value, double quotes can be used to force them to be created as one

parameter. For example, the string

one two “three four” five

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 467

will be treated as only four parameters.

16.2.5 Synchronous and asynchronous execution

External scripts can be executed either in a synchronous or asynchronous way,

specified by the async attribute in the z:execute action. In case of synchronous

execution (async=”false”), the Zagreus processing engine waits for the end of the

external process, and only then it continues processing the subsequent Zagreus action.

Also, the output of the externally executed script is accessible as the result of the

z:execute action, as well as the exit value of the external execution is passed as the

result attribute exit_value.

On the other hand, in case of asynchronous execution (async=”true”), the Zagreus

processing engine starts the external script execution process, but it immediately

continues processing the subsequent Zagreus action. Since we release the external

process at this point, the Zagreus script cannot reach its output or exit value. Therefore

the output stream and the error stream of the external process are redirected into two

separate files in the worker filesystem, right next to the copied external script. Their

file names are the same as the original copied script, but with .out and .err

extensions, respectively. The OS full path of these files are returned in the results

attributes output_filename and error_filename.

16.2.6 Examples

In the worker.properties configuration file, the external framework type label

‘python’ has been chosen, and used in the following two properties:

worker.execute.python.bin=C:\python-embedded\python.exe

worker.execute.python.tempfolder=/python

In the Zagreus local database, an external python script test.py is saved in the folder

/users/testuser/external_scripts, see Figure 1.

Figure 1 – The list of external scripts stored in the external_scripts folder

The content of test.py is the following:

import sys

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 468

print("Number of arguments: ", len(sys.argv), "arguments.")

print("Argument List: ", str(sys.argv))

Next we present some examples which consist of executing this python script via a

z:execute action in different ways.

16.2.6.1 Synchronous execution

In order to execute the above python script synchronously, the following action has

been created in a Zagreus script:

Figure 2 – A z:execute action referring to the test.py script with async=”false”

The z:execute action in Figure 2. will perform the following steps:

1) It loads the content of the /users/testuser/external_scripts/test.py file.

2) The content is saved in the /python folder of the worker filesystem. Hence the

tempfilename attribute is empty, the copied file name will be generated with a

timestamp, such as test-20230901153030.py

3) The processing engine translates the worker file system path of the previously

copied file into OS full path, such as C:\Programme\zagreus\worker-
controller\worker\filesystem\python\test-20230901153030.py

4) The processing engine constructs the full command line using the specified

executor binary, the translated OS filesystem path and the specified parameters:

C:\python-embedded\python.exe C:\Programme\zagreus\worker-controller\

worker\filesystem\python\test-20230901153030.py one two three

5) The processing engine starts an external process executing the previously

constructed command line. Since the async attribute was set to false, it waits for

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 469

the end of the external process. The output of the external process is passed as

the result of the z:execute action.

6) Since there is a log=”true” attribute specified, the result of the z:execute action

is logged to the job-log file:

16.2.6.2 Asynchronous execution

In order to execute the test.py python script defined above asynchronously, the

following action has been created in a Zagreus script:

Figure 3 – A z:execute action referring to the test.py script with async=”true”

The z:execute action in Figure 3. will perform the following steps:

1) It loads the content of the /users/testuser/external_scripts/test.py file.

2) The content will be saved in the /python folder of the worker filesystem. Hence

the tempfilename attribute is empty, the copied file name will be generated with

a timestamp, such as test-20230901153030.py

3) The processing engine translates the worker file system path of the previously

copied file into OS full path, such as C:\Programme\zagreus\worker-
controller\worker\filesystem\python\test-20230901153030.py

4) The processing engine constructs the full command line using the specified

executor binary, the translated OS filesystem path and the specified parameters:

C:\python-embedded\python.exe C:\Programme\zagreus\worker-controller\

worker\filesystem\python\test-20230901153030.py one two three

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 470

5) The processing engine starts an external process executing the previously

constructed command line. Since the async attribute was set to true, it

immediately continues executing the further actions of the Zagreus script.

6) The external process is executing the specified command line independently of

the Zagreus processing engine. It may even last longer than the execution of the

Zagreus script.

7) Due to the asynchronous execution, the output and the error streams of the

external process are redirected to two separate files in the /python worker

filesystem subfolder, with the .out and .err extensions, respectively, see

Figure 4.

Figure 4 – The copied python script and the generated output and error files

16.2.6.3 Custom tempfilename attribute

The user can opt for specifying a custom name for the copied temporary file by using

the tempfilename attribute. In the next example, the z:execute action is the same

as seen in Figure 3., but with a tempfilename attribute specified:

Figure 5 – A z:execute action specifying the tempfilename attribute

The steps of the execution are identical to those in the previous example, with the

exception of the name of the copied file, which will be custom_test.py (without a

timestamp). Therefore, the following files will be generated in the worker filesystem

temporary folder:

Figure 6 – The copied python script and the generated output and error files with a custom name

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 471

16.2.6.4 #tempfilename substitution

In this example a Powershell script is executed with the z:execute action. In order

to allow this, in the worker.properties configuration file, the type label

‘powershell’ has been chosen, and is used in the following two properties:

worker.execute.powershell.bin=powershell.exe

worker.execute.powershell.tempfolder=/powershell

Note: there is no need to specify the full path of the executor binary (i.e.

powershell.exe), if the location of the binary is part of the OS system path.

In the Zagreus local database, an external Powershell script test.ps1 is saved in the

folder /users/testuser/external_scripts (see Figure 1.) with the content:

Write-Host "You passed $($args.Count) arguments:"

$args | Write-Host

In Figure 7., a properly configured z:execute action is shown:

Figure 7 – A z:execute action specifying a powershell type

In the case of executing Powershell scripts with the powershell.exe binary, there is

a special order of parameters: the script to be executed is not the first parameter of

powershell.exe (as it is in case of most execution frameworks), but it has to be

specified with the -f switch. Because of this, the user has to properly specify the whole

parameter list in the params attribute, including the #tempfilename tag, which will be

substituted with the copied custom temporary file name. Thus, the whole command

line will be the following:

powershell.exe -f C:\Programme\zagreus\worker-controller\worker\

filesystem\powershell\custom.ps1 one two three

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 472

16.3 Document URL feature

In the Zagreus System, there is a possibility to open dynamically created external

links from the Zagreus Client application. This is useful for externally stored

documentation (e.g. Confluence pages) for individual resources.

For example, in Confluence, it is common for the URL of a page to include the title

of the page. Confluence often generates URLs based on the title to create human-

readable and user-friendly links. The title is usually converted to lowercase, spaces are

typically replaced with + signs, in the following format:

https://your-confluence-site.com/display/SPACEKEY/My+Example+Page

Therefore, a resource-based documentation can easily be implemented by

Confluence system using the Zagreus Document URL feature, which allows the user to

use document-specific external links. These links open in the default browser of the

installation environment.

The Zagreus Document URL feature works for the following resource types:

• script

• connection

• template

• time schedule

• event schedule

• mail watcher

• database watcher

• file trigger

Therefore, this feature can only be used for resources stored in the embedded

database, and not to those stored in the local OS filesystem.

16.3.1 How to use

The Document URL needs pre-defined variables. These variables can be declared on

several different levels, for example server, owner, script level (see also → Declaration

levels). For further details about the variables, see the next chapter.

Once the Document URL feature is configured, the user can use it in the Zagreus

Client application by opening the Resource info dialog box (see → Resource

information). At the end of the first line of the dialog box, a new icon appears, see

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 473

Figure 8. By clicking on the icon, the default external browser opens the dynamically

created document URL.

Figure 8 – The Document URL link icon in the Resource info dialog box

16.3.2 docurl variable

The docurl variable must be declared on any of the following levels: server, owner

and script. The already discussed order of variable resolution (see → Precedence order

for resolution) applies to this variable declaration, i.e. a variable docurl defined on the

script level overrides the variable docurl defined on the server level. The value of the

docurl variable defines a valid URL with the necessary http:// or https:// prefixes. For

example, :

variable.server.docurl=https://my-confluence.com/display/SPACE/confluence-

page

This example defines a static link, i.e. it will point to the same URL for any given

resource. For the dynamic behaviour, there is a possibility to use substitution keys.

When a substitution key is present in the value of the docurl variable, it will be resolved

dynamically when the user opens the Resource info dialog box. The following

substitution keys can be used:

• %resourceId

refers to the ID of the resource

• %resourceIdWithVersion

refers to the ID of the resource with the concatenated version

• %resourceName

refers to the name of the resource

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 474

• %resourcePath

refers to the full path of the resource

• %resourceDescription

refers to the description of the resource until the first line break, see → Resource

properties

For example, for the docurl variable using the %resourceName substitution key:

variable.server.docurl=https://confluence.com/display/SPACE/%resourceName

will be resolved as https://confluence.com/display/SPACE/sample_script for the

resource named sample_script.

16.3.3 docurl_replace variable

Sometimes there is a need to replace particular characters in the dynamically

created link. For example, in Confluence the URL of a page is derived from the title of

the page. When the title contains spaces, these appear as plus signs in the page URL.

In Zagreus, the only way to replace some special characters to others in the generated

Document URL is the provided docurl_replace variable functionality. The usage of this

variable is optional.

Just like the docurl variable, the docurl_replace variable can also be declared on the

server, group, user and script levels. Variable resolution behaves the same way as well.

The value of the docurl_replace variable needs to follow the following format:

variable.server.docurl_replace=’ ’,,’+’

This example defines a character pair: all occurrences of the first character (in this

example, the space character in apostrophes) will be replaced by the second one (the

plus sign). The two character definitions are separated by double commas (,,).

This functionality is not limited for replacing single characters, substrings can also

be used.

Multiple replacements can be defined by using double semicolons (;;) as separators.

variable.server.docurl_replace=’ ’,,’+’;;’ä’,,’a’

This example replaces all space characters with plus signs as well as all a-umlaut (ä)

characters with the letter ’a’.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 475

16.3.4 Examples

16.3.4.1 General docurl definition

When the user wants to use a general approach for the Document URL feature, only

two variables need to be specified on the server level:

variable.server.docurl=https://confluence.com/display/SPACE/%resourceName

variable.server.docurl_replace=’ ’,,’+’

This allows the user to open the Resource info dialog for the supported resource

types and to click on the appearing Document URL icon. The generated URL contains

the name of the selected resource at the end, and the space characters are replaced

by plus signs.

16.3.4.2 User-specific docurl definitions

When the goal is to use a general approach for the Document URL feature for most

users, but a different approach for one specific user, first both variables need to be

specified on the server level:

variable.server.docurl=https://confluence.com/display/SPACE/%resourceName

variable.server.docurl_replace=’ ’,,’+’

Then the following variables need to be defined on the user level, see Figure 9.:

Figure 9 – The docurl variable set for the specific user

Now the Document URL behaves in the following way:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 476

• For resources whose owner is not the specific user, the generated Document URL

will follow the general approach declared on the server level.

• For resources whose owner is the specific user, the generated Document URL will

follow the user-specific approach as seen in Figure 9.

16.3.4.3 A single script-level docurl definition

When the goal is to set a Document URL for one single script resource, the user

simply needs to set the docurl variable for the specific script, see Figure 10.:

Figure 10 – The docurl variable set for the specific resource

Since the variable declared on the script level overrides all other levels where the

docurl variable might be set, the specified Document URL will be assigned to the given

script. Therefore, a static link is satisfactory without any substitution.

For the other resources, the Document URL will be determined based on the

variables set on the other levels (i.e. server, group and user).

16.3.4.4 Defining the Document URL in the resource description

There is a special case when the resource description contains the Document URL

for each resource. To do this, the user needs to specify the %resourceDescription

as the value of the docurl variable (either on server, user or group level). The following

example shows such a definition on the server level:

variable.server.docurl=%resourceDescription

variable.server.docurl_replace=’ ’,,’+’

Then, each resource description must contain the whole Document URL static link

in the first line, see Figure 11.:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 477

Figure 11 – The Document URL link is set in the resource description

As it was mentioned earlier, only the first line is substituted by the

%resourceDescription substitution string (from the second line the user can add

additional comments).

16.3.4.5 A more complex example with variable referencing

The docurl variable can also refer to other variables, declared on different levels. By

using variable referencing, more complex examples can be built.

In the next example, aside from the usual docurl and docurl_replace variables, there

are two further variables defined on the server level:

variable.server.docurl=https://confluence.com/display/SPACE/%resourceName

variable.server.docurl_replace=’ ’,,’+’

variable.server.docurl_alt_1=%resourceDescription

variable.server.docurl_alt_2=https://custom-server.com/%resourceId

The variables docurl_alt_1 and docurl_alt_2 will behave as optional alternatives

against the default docurl variable.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 478

For one specific user, the docurl variable can be overridden by referencing to the

first alternative variable declared on the server level, see Figure 12.:

Figure 12 – The docurl variable set for a user is referencing to the docurl_alt_1 server variable

For one specific script, the docurl variable can be overridden by referencing to the

second alternative variable declared on the server level, see Figure 13.:

Figure 13 – The docurl variable set for a script is referencing to the docurl_alt_2 server variable

In this example, the specific script will generate the Document URL derived from the

value of the script ID (i.e. docurl_alt_2), while the Document URLs of all resources of

the aforementioned specific user will use the %resourceDescription substitution string.

All other resources will simply use the default docurl variable from the server level.

By using such a structure, the Document URL behavior can be controlled in a very

flexible and user-friendly way.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 479

16.4 Bank holidays feature

The Zagreus System maintains a list of common European holidays as well as a

configurable, country-specific list of additional bank holidays. The list plays an

important part when performing working day-related calculations with the following

functions:

• workingday(date) and workingday(date, locale)

Tells if the given date (with the optional locale) is a working day.

Example:

workingday(‘2023-05-01’, ‘AT’) returns false

workingday(‘2023-12-18’, ‘AT’) returns true

• workingdayofmonth(date) and workingdayofmonth(date, locale)

Tells which working day of the actual month is the given date.

Example:

workingdayofmonth(‘2023-12-04’, ‘AT’) returns 2

• workingdaysafter(date, number) and workingdaysafter(date, number, locale)

Tells the date which is the specified ‘number’ workingdays later than the given

date.

Example:

workingdaysafter(‘2023-12-04’, 5, ‘AT’) returns ’2023-12-11’

16.4.1 Common European holidays

This is a fixed list of common European holidays:

• January 1

• May 1

• November 1

• December 25 1

• December 26

• Easter Monday

• Ascension Day

• Whit Monday

• Corpus Christi

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 480

16.4.2 Specifying additional bank holidays

The Zagreus System provides a way for the user to specify additional bank holidays.

It can be useful to set locale-specific bank holidays (i.e. dates which count as holidays

only in the particular country).

The following steps need to be taken in order to set a list of additional bank holidays:

• Specifying the full path of a bank holidays descriptor file

The user needs to specify the full path (either in the embeded database or in the

local filesystem) which points to the simple text file which contains the list of

additional bank holidays (see below). This can be set by the bankholidays.path

property in the Zagreus Server configuration, see → Miscellaneous properties.

• Creating the bank holidays descriptor file

The user needs to create a simple text file containing the list of additional bank

holidays in the following format: YYYY-MM-DD;<Country code> in each line.

Comments can be used by starting the line with the # character.

Example:

2023-01-06;AT

2023-08-15;AT

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 481

17. Server administration in the Zagreus

Client

There are a bunch of administrative options which are available in the Zagreus Client

application. These options are grouped together under the server definition node

context menu in the Zagreus Browser window, see Figure 1.

Figure 1 – The server definition node context menu

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 482

17.1 Administrator options

The menu item Administrator options contains several sub-menu items, which will

be described in details in the further sections.

17.1.1 Group management

It opens the Group management for administrators wizard. Here, groups can be

managed based on the options available in the Select action dropdown list, see Figure

2.

Figure 2 – The Group management for administrators wizard

The following options are available in the Select action dropdown list:

• Create new group…: for creating a new group

• Modify existing group…: for modifying a group

• Delete existing group…: for deleting a group

When the user selects the Modify existing group… or Delete existing group… action,

a further list Select group appears for selecting a particular existing group.

By pressing the Next button, the wizard proceeds to the next wizard page to

complete the selected action.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 483

17.1.1.1 Create new group

By selecting this option, a new group can be created, see Figure 3.

Figure 3 – Creating a new group with the Group management wizard

The following options are available on this wizard page:

• Group name

The name of the group to be created.

• Description

A description can be defined for the group.

After specifying the required information and pressing the Next button, the Group

management - summary wizard page appears for the final confirmation, see Figure 4.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 484

Figure 4 – Group management summary for final confirmation in the Group management wizard

17.1.1.2 Modify existing group

By selecting this option, an existing group can be modified, see Figure 5.

Figure 5 – Modifying a group with the Group management wizard

The following options are available on this wizard page:

• Group name

The name of the group can be modified here.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 485

• Description

A description of the group can be modified here.

After specifying the required information and pressing the Next button, the Group

management - summary wizard page appears for the final confirmation, see Figure 4.

17.1.1.3 Delete existing group

By selecting this option, an existing group can be deleted. The Group management

- summary wizard page appears for the final confirmation, see Figure 4.

17.1.2 User management

It opens the User management for administrators wizard. Here, users can be

managed based on the options available in the Select action dropdown list, see Figure

6.

Figure 6 – The User management for administrators wizard

The following options are available in the Select action dropdown list:

• Create new user…: for creating a new user

• Modify existing user…: for modifying a user

• Delete existing user…: for deleting a user

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 486

When the user selects the Modify existing user… or Delete existing user… action, a

further dropdown Select user appears for selecting a particular existing user.

By pressing the Next button, the wizard proceeds to the next wizard page to

complete the selected action.

17.1.2.1 Create new user

By selecting this option, a new user can be created, see Figure 3.

To create a new user, select the Create new user... option and click Next to open

User management - create new user wizard page.

Figure 7 – Creating a new user with the User management wizard

The following options are available on this wizard page:

• User login name

The name of the user to be created. This field is mandatory.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 487

• Password

The password for the user to be created. If the Use password policy option is

checked, the password policy rules must be applied. This field is mandatory.

• Password again

The user has to enter the password again to ensure that there are no typing

errors. This field is mandatory.

• Administrator

If set, the new user will have administrator rights, see → Administrator user

rights.

• Use password policy:

If set, the password policy is activated for the user, see → Password policy.

• User title

The title of the user.

• First name

The first name of the user.

• Last name

The last name of the user.

• Birthday (dd.mm.yyyy)

The birthday of the user. The date format is indicated inside the parentheses.

• Sex

The sex of the user.

• E-mail

The e-mail of the user.

• Mobile phone

The mobile phone number of the user.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 488

• Groups

The groups associated with the new user. By default, the user is assigned to the

public group. Additional groups can be selected by checking the checkbox under

the Belong column. The R, W and Ex are indicators for read, write and execute

user rights, respectively, for the particular group.

Figure 8 – The Groups table in the User management wizard

• Description

A description for the user.

After specifying the required information and pressing the Next button, the User

management - summary wizard page appears for the final confirmation, see Figure 9.

Figure 9 – User management summary for final confirmation in the User management wizard

17.1.2.2 Modify existing user

By selecting this option, an existing user can be modified, see Figure 10.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 489

Figure 10 – Modifying a user with the User management wizard

The attributes are mostly identical to those of the user creating process in the

previous chapter; next only the differences are listed:

the same as those available during the user creation process (See -->), with the

exception of one when the password policy option is selected for the first time during

the user modification.

• Password expiration

If the password policy is activated for the user, a date is displayed here. (For

password policy and password expiration, see → Password policy)

• Account id

The unique identifier number of the user. This field cannot be changed.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 490

After specifying the required information and pressing the Next button, the User

management - summary wizard page appears for the final confirmation, see Figure 9.

17.1.2.3 Delete existing user

By selecting this option, an existing user can be deleted. The User management -

summary wizard page appears for the final confirmation, see Figure 9.

17.1.2.4 Changing password

The user can change his/her own password by selecting the Change password…

menu item from the user context menu (right-clicking his/her user home folder node).

This opens the Change password dialog box, see Figure 11. The old password needs to

be specified as well as the new one. The user can select the Show checkbox in order to

see the plain-text password.

Figure 11 – The Change password dialog box

If the password policy is switched on for the given user (see → Password policy), the

new password needs to satisfy the conditions of the password policy.

An administrator user can change the password for all the users. In this case, the old

password of the given user does not need to be specified, see Figure 12.

Figure 12 – The Change password dialog box for an administrator user

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 491

17.1.3 Cancel all jobs

It opens a Cancel jobs dialog box for cancelling jobs based on their status, see Figure

13.

For further information about job cancelation methods in Zagreus System, see →

Cancellation.

Figure 13 – The Cancel jobs dialog box

17.1.4 Stop / start server components

It controls components of the Zagreus server. This is the very same dialog as

displayed in the Zagreus Monitor; for a detailed description, see → Additional options.

17.1.5 Manage certificates

It opens the Manage certificates dialog box, see Figure 14. With this dialog, the user

can manage the SSL certificates installed on both the Zagreus server and the Zagreus

Worker Controller side, see → Security. There are two tabs by default: Zagreus Server

and Zagreus Worker Contoller 1 (the current 1.5.6.0 version of Zagreus supports only

one Worker Controller module). The two tabs behave in an identical way, the only

difference is the location of the truststore file.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 492

Figure 14 – The Manage certificates dialog box

On the top of the tab item, the truststore file name for the selected module is

displayed. The most recent time when the truststore file was loaded is also indicated;

after all certificate operations, it is properly refreshed.

The table displayed on the tab item contains the following columns:

• Alias

The alias of the certificate, loaded from the truststore file.

• Principal

The subject distinguished name of the certificate.

• Valid from

The start date of the certificate validity.

• Valid to

The end date of the certificate validity.

• Type

The type of the certificate; in most cases it is X.509.

There are color codes for the table: red indicates an expired certificate, while orange

warns that the certificate will expire within a month.

There are two operations that the user can perform via this dialog box:

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 493

• Add certificate…

The user has to select a certificate file from the local OS filesystem via the opened

file browser. This file can be BASE64-encoded or binary type; the extension of the

binary file must be .der. Also, this file can contain multiple certificates

(certificate chain).

After selecting the certificate file, the needs to specify an alias in the Select an

alias dialog box, see Figure 15. Be aware of the fact that if the certificate file

contained a certificate chain, they will be installed separately, and the given alias

will be used with different ordering number suffixes, see the atlassian alias in

Figure 14.

Figure 15 – The Select an alias dialog box

After pressing the OK button, the user needs to confirm the operaton, and the

certificate will be installed on the selected module. The main table on the tab

item will be refreshed accordingly. If there is any problem with a given certificate

(technical issues or the certificate is already expired), an error message is

displayed.

• Delete certificate

The user first needs to select a particular certificate by selecting a table row, then

needs to click on this button. After confirming the deletion operation, the

selected certificate will be removed from the truststore. The main table on the

tab item will be refreshed accordingly.

17.1.6 Monitor watchers, triggers

Clicking on this menu item opens the Monitoring watchers and triggers dialog box,

where the user can monitor the watchers and triggers on the selected Zagreus server.

There are three tabs on this dialog box: Watchers, File Trigger and DB Connection Pool.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 494

17.1.6.1 Watchers tab

Mail and database watcher resources (see → Mail watcher and → Database

watcher) together are listed on this tab, see Figure 16.

 Figure 16 – The Watchers tab of the Monitoring watchers and triggers dialog box

The following columns are displayed in the main table:

• Watcher path

The full path of the watcher.

• Type

The type of the watcher. It can be db watcher or mail watcher.

• Connection

The full path of the connection resource associated with the watcher.

• Schedule

The full path of the time schedule resource associated with the watcher.

• Reset schedule

If a Reset time schedule resource (see → Connection section) is set for the

watcher, the full path of that time schedule resource is displayed.

• Last evaluation

The most recent evaluation date of the watcher (if any).

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 495

• Last execution

The most recent execution date of the watcher (if any).

• Actual value

The actual value of the counter in the watcher. This value is also shown in the

Zagreus mail watcher editor (see → Scheduling section) and Zagreus DB watcher

editor (see → Scheduling section).

17.1.6.2 File Trigger tab

File trigger resources (see → File trigger) are listed on this tab, see Figure 17.

 Figure 17 – The File Trigger tab of the Monitoring watchers and triggers dialog box

The following columns are displayed in the main table:

• Trigger path

The full path of the file trigger.

• Folder path

The full path of the folder monitored by the file trigger.

• Last triggered

The most recent date on which the file trigger was activated.

• Trigger filename

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 496

The filename of the OS file that activated the file trigger most recently.

• Event type

The type of event that activated the file trigger most recently. Can be created,

modified, deleted and exists.

• Currently active

If the file trigger is currently active.

17.1.6.3 DB Connection Pool tab

Database connections kept open by database watchers (with the Keep alive

connections in the background… setting checked, see → Connection section) are listed

on this tab, see Figure 18.

 Figure 18 – The DB Connection Pool tab of the Monitoring watchers and triggers dialog box

The following columns are displayed in the main table:

• Connection

The path of the connection resource associated with the database watcher.

• Driver

The name of the database driver Java library of the open database connection.

• Host

The JDBC connection string.

• User

The database user of the open connection.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 497

17.1.7 Configuration testing

The configuration settings of the main Zagreus modules such as the Zagreus Server,

the Zagreus Worker Controllers and the Zagreus Workers can be tested by selecting

the Configuration testing… menu item. The modules are able to self-test themselves

by running a specific testing procedure, and the results of these procedures are

displayed in the Self-test results dialog box.

The particular property files involved in the self-testing procedures are:

• Zagreus Server
zagreus_home/server/conf/conf.properties

• Zagreus Worker Controller
zagreus_home/worker-controller/conf/workercontroller.properties

• Zagreus Workers
zagreus_home/worker-controller/worker/conf/worker.properties

In the result, errors and warnings may appear in case of any misconfiguration (e.g.

unknown parameter or wrong value). An example for a self-test result for all three

modules can be seen in Figure 19.

Figure 19 – The Self-test results dialog box

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 498

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 499

17.2 Get licence information

This menu item opens the Licence info dialog box, which shows information about

the active licence installed on the Zagreus Server, see Figure 20. This dialog box can be

opened even when the server is disconnected.

Figure 20 – The Licence info dialog box

The Licence status textbox contains information about the licence, see → Licencing.

The user can install a new licence key to the selected Zagreus Server by pasting it

into the Licence key textbox and pressing the Send licence key button. After the new

licence key has been installed on the server, the content of the Licence status textbox

will be refreshed.

Zagreus Documentation 1.5.6.1

Last updated: 2024-06-11, Copyright © 2024 All Rights Reserved 500

17.3 Server information

The Server information dialog box displays version and uptime information about

the actual Zagreus Server, see Figure 21.

Figure 21 – The Server information dialog box

